Math 742, Spring 2016
Homework 4
Due: February 19

1. ExErcises

(1) Let R be an integral domain and let $R[x]$ be the polynomial ring in one variable. Given $f \in R[x]$, the content of f, denoted cont (f), is the ideal of R generated by the coefficients of f.
(a) Given $f, g \in R[x]$, show that

$$
\operatorname{cont}(f g) \subseteq \operatorname{cont}(f) \operatorname{cont}(g) \subseteq \sqrt{\operatorname{cont}(f g)}
$$

(b) Pick $a, b, c, d \in R[x]$ and assume that $a b=c d$. Show that if $p \in R$ is a prime element that divides a, then p divides either c or d.
(c) Now assume R is a unique factorization domain. Prove Gauss' Lemma: Let K be the fraction field of R. Show that if $f \in R[x]$ is irreducible, then f is also irreducible in the larger ring $K[x]$.
(2) Let n be a square-free integer (i.e., every prime divides n at most once). Let \mathbf{Q} be the rational numbers. Define

$$
\mathbf{Q}(\sqrt{n})=\{a+b \sqrt{n} \mid a, b \in \mathbf{Q}\}
$$

(a) Verify that $\mathbf{Q}(\sqrt{n})$ is a field.
(b) If $b \neq 0$, show that $a+b \sqrt{n}$ satisfies a unique monic degree 2 polynomial with rational coefficients.
(c) Determine the integral closure of \mathbf{Z} in $\mathbf{Q}(\sqrt{n})$.
(d) What happens if we don't assume n is square-free?
(3) Let M be an R-module. Define the support of M to be

$$
\operatorname{Supp}(M)=\left\{P \in \operatorname{Spec}(R) \mid M_{P} \neq 0\right\} .
$$

(a) Show that $\operatorname{Supp}(M) \subseteq V(\operatorname{Ann}(M))$, and that equality holds if M is finitely generated.
(b) Give an example where $\operatorname{Supp}(M)$ is not a closed subset of $\operatorname{Spec}(R)$ (and in particular is not equal to $V(\operatorname{Ann}(M)))$.
(c) Let N be another R-module. Show that $\operatorname{Supp}\left(M \otimes_{R} N\right) \subseteq \operatorname{Supp}(M) \cap \operatorname{Supp}(N)$, and that equality holds if M and N are finitely generated.
(4) Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a sequence of R-modules. Show that the following are equivalent:
(a) $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact.
(b) $0 \rightarrow A_{P} \rightarrow B_{P} \rightarrow C_{P} \rightarrow 0$ is exact for all prime ideals P.
(c) $0 \rightarrow A_{P} \rightarrow B_{P} \rightarrow C_{P} \rightarrow 0$ is exact for all maximal ideals P.
(5) In this exercise, we'll explore localization in the noncommutative setting. So, in this exercise, R denotes a not necessarily commutative ring, i.e., we have all of the axioms for a ring except $a b=b a$ is no longer required.
(a) Given a multiplicative subset $S \subseteq R$, call a ring homomorphism $f: R \rightarrow R^{\prime} S$ inverting if $f(s)$ is a unit for all $s \in S$. Show that there exists a ring R_{S}, along with an S-inverting map $\phi: R \rightarrow R_{S}$ which is universal in the sense that for any other S-inverting map $f: R \rightarrow R^{\prime}$, there exists a unique $g: R_{S} \rightarrow R^{\prime}$ such that $f=g \circ \phi$. If R is commutative, show that $R_{S}=S^{-1} R$.
(b) In the commutative setting, we can construct R_{S} using "fractions", but this might not be possible in general: let k be a (commutative) field and let $R=k\langle X, Y\rangle$ be the ring of noncommutative polynomials. Describe the ring R_{S} where S is the multiplicative subset generated by $\{X, Y\}$.
(c) Exercise 11.2 of Altman-Kleiman says that, if R is commutative, then $S^{-1} R=0$ if and only if S contains a nilpotent element. This can also fail in the noncommutative setting: Let k be a field and let $n \geq 2$ be an integer. Set $R=M_{n}(k)$ to be the ring of $n \times n$ matrices with entries in k. For $1 \leq i, j \leq n$, let $E_{i j}$ be the matrix ${ }^{2}$ with a 1 in the (i, j) position and 0 's elsewhere. Show that $R_{S}=0$ where $S=\left\{E_{1,1}\right\}$.

2. SUGGESTED EXERCISES (DON'T SUBMIT)

From Altman-Kleiman:

- Chapter 10: 22, 35
- Chapter 11: 2, 8, 18, 25, 32
- Chapter 12: 6, 8, 14, 28

3. Further Reading

The issues that come up in Exercise 5 illustrate that localization for noncommutative rings can be subtle. See Chapter 4 of T.-Y. Lam, Lectures on Modules and Rings for more information on noncommutative localization.

[^0]
[^0]: ${ }^{1}$ A noncommutative monomial is a sequence of X 's and Y 's and we take the product by concatenating them, e.g., $\left(X^{3} Y X^{2} Y^{5}\right)\left(Y X^{2}\right)=X^{3} Y X^{2} Y^{6} X^{2}$. X and Y do not commute, but they do commute with the elements of k, and a noncommutative polynomial is a finite linear combination of noncommutative monomials with coefficients in k.
 ${ }^{2}$ These are called matrix units.

