Math 742, Spring 2016
Homework 7
Due: March 14 (MONDAY)

1. ExERCISES

(1) Let k be a field and $R=k\left[x_{1}, \ldots, x_{n}\right]$. Let I be a monomial ideal.
(a) Let m be a monomial which is a minimal generator of I and suppose we have a factorization into other monomials $m=m^{\prime} m^{\prime \prime}$. Show that $I=\left(I+\left(m^{\prime}\right)\right) \cap\left(I+\left(m^{\prime \prime}\right)\right)$.
(b) Use (a) to describe a primary decomposition of a monomial ideal into primary monomial ideals.
(c) In the case $R=k[x, y, z]$, find a primary decomposition of $\left(x^{2}, x z^{3}, y z\right)$. Identify the minimal and embedded associated primes.
(2) Let k be a field and let R be a finitely generated k-algebra. Show that R is artinian if and only if R is a finite-dimensional vector space over k.
(3) The results of Chapter 19 show that any artinian commutative ring is a direct product of artinian local rings. In particular, any finite commutative ring is a direct product of finite local rings. We will see that this is false in the non-commutative setting. Let R be a nonzero ring (not necessarily commutative).

Some terminology: $x \in R$ is left-invertible if there exists $y \in R$ such that $y x=1$. Right-invertible is defined in a similar way. An element is a unit if it is both leftand right-invertible. A left ideal I is a subset closed under addition such that $x \in R$ and $y \in I$ implies $x y \in I$. A left ideal I is maximal if it is not the whole ring and any other left ideal that contains I is either the whole ring or equal to I. The notion of right ideal and maximal right ideals is similar.
(a) Assume that $x y=1$ and $y x \neq 1$. Use the identity $y x(1-y x)=(1-y x) y x=0$ to show that $y x$ and $1-y x$ are not left-invertible and not right-invertible.
(b) Show that if R has a unique maximal left ideal, then this ideal is also a right ideal and, in fact, is the unique maximal right ideal. Also, show that this is the set of non-units of R. In this case we say that R is local. Conclude that in a local ring, left-invertibility and right-invertibility are equivalent.
(c) $e \in R$ is a central idempotent if $e^{2}=e$ and $e x=x e$ for all $x \in R$, and it is nontrivial if $e \neq 0$ and $e \neq 1$. Show that R is isomorphic to a direct product of two nonzero rings if and only if there exists a nontrivial central idempotent $e \in R$.
(d) Let k be a commutative field. Let

$$
R=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in k\right\}
$$

be the ring of 2×2 upper triangular matrices. Show that R is not local and that R has no nontrivial central idempotents. In particular, if k is finite, this gives the desired example.
(4) Let k be a field. Consider the polynomial ring $R=k[x, y, z, w]$ as a graded ring in the usual way. Compute the Hilbert polynomial and Hilbert series of the quotient ring R / I where $I=(x, y) \cap(z, w)$.
(5) Corollary 20.8 says that if R is a polynomial ring where each variable has degree 1 , then the Hilbert function of a finitely generated module M is eventually a polynomial function. Here's the general setting.

A quasi-polynomial is a function $f: \mathbf{Z} \rightarrow \mathbf{Q}$ which is of the form $n \mapsto \sum_{i=0}^{d} c_{i}(n) n^{i}$ where $c_{i}(n): \mathbf{Z} \rightarrow \mathbf{Q}$ is a periodic function for each i, i.e., there exists p_{i} such that $c_{i}(n)=c_{i}\left(n+p_{i}\right)$ for all n; if p_{i} is as small as possible, this is the minimal period of c_{i}.

In the notation of Theorem 20.7, show that there exists a quasi-polynomial $h(M, n)$ such that the Hilbert function of M is given by $h(M, n)$ for sufficiently large n, and the minimal period of each coefficient function divides $k_{1} k_{2} \cdots k_{r}$.

2. Suggested exercises (DOn't submit)

From Altman-Kleiman:

- Chapter 18: 17, 26, 27
- Chapter 19: 2, 5, 13, 16
- Chapter 20: 5, 6, 9

