Math 742, Spring 2016
Homework 8
Due: April 1

1. ExErcises

Notation: Unless otherwise stated, i is a complex square root of -1 . \mathbf{Q} is the field of rational numbers.
(1) Show that $\sqrt{2}+\sqrt{3}$ is algebraic over \mathbf{Q} of degree 4. Find its minimal polynomial.
(2) Let E, F be extensions of a field k which are both in a common field K. Show that

$$
[E F: k] \leq[E: k][F: k] .
$$

Assuming both $[E: k]$ and $[F: k]$ are finite and relatively prime, show that the above inequality is actually an equality.
(3) Let $f(x) \in k[x]$ be a polynomial of degree n and let K be its splitting field. Show that [$K: k$] divides n !.
(4) Let α be a real number such that $\alpha^{4}=5$.
(a) Show that $\mathbf{Q}\left(i \alpha^{2}\right) / \mathbf{Q}$ is normal.
(b) Show that $\mathbf{Q}(\alpha+i \alpha) / \mathbf{Q}\left(i \alpha^{2}\right)$ is normal.
(c) However, show that $\mathbf{Q}(\alpha+i \alpha) / \mathbf{Q}$ is not normal.
(5) Describe the splitting field and calculate the degree of the extension over \mathbf{Q} of the following polynomials:
(a) $x^{4}-2$
(b) $x^{4}+x^{2}+1$
(c) $x^{6}-4$

2. Suggested reading

I assume that you've seen basics of polynomials in an undergraduate algebra course and we won't say much about them explicitly. In particular, you may want to review Lang, §IV. 3 on irreducibility criteria.

