Math 746, Spring 2016
Homework 2
Due: February 26

1. ExErcises

(1) Eisenbud 18.12(a,b)
(2) Cohen-Macaulayness of graded rings can be used in combinatorics to prove positivity statements. Here's one simple positivity statement that can be proven without much machinery.

Let $R=\bigoplus_{n>0} R_{n}$ be a noetherian graded algebra which is generated by R_{1} over the field $k=R_{0}$. Assume that R has depth d with respect to the homogeneous ideal $R_{+}=\bigoplus_{n>0} R_{n}$.
(a) Show that if k is infinite, then there is a regular sequence of length d consisting of elements in R_{1}.
(b) The Hilbert series of R can be written as

$$
\sum_{n \geq 0}\left(\operatorname{dim}_{k} R_{n}\right) t^{n}=\frac{h_{0}+h_{1} t+\cdots+h_{r} t^{r}}{(1-t)^{\operatorname{dim} R}}
$$

If R is Cohen-Macaulay, show that $h_{i} \geq 0$ for $i=0, \ldots, r$. (Reduce to the case where k is infinite and use (a)).
(3) Let k be a field and let n be a positive integer. Let $R=k\left[x_{i j} \mid 1 \leq i, j \leq n\right]$ be the polynomial ring in n^{2} variables, which we think of as the polynomial functions on the set of $n \times n$ matrices $X=\left(x_{i j}\right)$. Let \mathcal{N} be the set of nilpotent matrices and let I be the ideal of all polynomial functions which vanish on \mathcal{N}.
(a) Show that \mathcal{N} is an irreducible algebraic set. (Depending on your background, you might not have enough to do this - so feel free to skip this part and use it for the remaining parts.)
(b) Find n equations f_{1}, \ldots, f_{n} with $\operatorname{deg}\left(f_{i}\right)=i$ so that a matrix is nilpotent if and only if each f_{i} vanishes on it. In particular, $\sqrt{\left(f_{1}, \ldots, f_{n}\right)}=I$. For example, when $n=2, f_{1}=\operatorname{trace}(X)=x_{1,1}+x_{2,2}$ and $f_{2}=\operatorname{det}(X)=x_{1,1} x_{2,2}-x_{1,2} x_{2,1}$.
(c) Show that the Jacobian of f_{1}, \ldots, f_{n} evaluated on a generic nilpotent matrix (i.e., having one Jordan block) has full rank n.
(d) Conclude that $\left(f_{1}, \ldots, f_{n}\right)=I$ and hence R / I is Cohen-Macaulay.
(e) Show that R / I satisfies $\left(\mathrm{R}_{1}\right)^{1}$ and hence is normal. (Again, depending on background, you might not have enough to do this, so feel free to skip.)

2. Further reading

- Eisenbud 18.14 says that the ring of invariants R^{G} of a Cohen-Macaulay ring R is also Cohen-Macaulay in characteristic 0. For a proof, see Corollary 6.4.6 of Bruns, Herzog, Cohen-Macaulay Rings.
- Hochster's ICM talk on Cohen-Macaulay rings may also be of interest: http://www. mathunion.org/ICM/ICM1978.1/Main/icm1978.1.0291.0298.ocr.pdf.

[^0]
[^0]: ${ }^{1}$ Geometrically: the singular locus of \mathcal{N} has codimension ≥ 2 in \mathcal{N}

