Math 746, Spring 2016 Homework 3 Due: March 18

1. Exercises

- (1) Eisenbud 19.10
- (2) Eisenbud 19.15
- (3) Let ϕ be a skew-symmetric matrix (i.e., $\phi_{ii} = 0$ and $\phi_{ij} = -\phi_{ji}$) of odd size 2n + 1 with entries in R. Let f_j be the Pfaffian¹ of the skew-symmetric submatrix obtained by deleting the *j*th column and *j*th row of ϕ . Let $J(\phi)$ be the ideal generated by f_1, \ldots, f_{2n+1} . Define

$$\mathbf{F} \colon 0 \to R \xrightarrow{\phi_3} R^{2n+1} \xrightarrow{\phi_2} R^{2n+1} \xrightarrow{\phi_1} R$$

as follows:

- $\phi_1 = (f_1 f_2 \cdots f_{2n} f_{2n+1}),$
- $\phi_2 = \phi$,
- $\phi_3 = \phi_1^T$, where T denotes transpose.
- (a) Verify that \mathbf{F}_{\bullet} is a complex.
- (b) Consider the universal case $R = \mathbf{Z}[x_{ij} \mid 1 \le i < j \le 2n+1]$ and

$$\phi_{ij} = \begin{cases} 0 & \text{if } i = j \\ x_{ij} & \text{if } i < j \\ -x_{ij} & \text{if } i > j \end{cases}$$

Show that depth $J(\phi) = 3$ and that \mathbf{F}_{\bullet} is exact.

- (c) Go back to the general case of a noetherian ring R and assume that $J(\phi) \neq R$. Use the generic perfection theorem to show that depth $J(\phi) \leq 3$ and that \mathbf{F}_{\bullet} is exact if and only if depth $J(\phi) = 3$.
- (4) Let k be a field and let $I \subset k[x, y, z]$ be the ideal of polynomials vanishing on a finite set of points in $\mathbf{P}_k^{2,2}$ Use the Hilbert–Burch theorem to show that if the points lie on a curve of degree d, then I can be generated by d + 1 elements.

2. Further reading

The complex in #3 was studied in Buchsbaum, Eisenbud, "Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3" and plays a role similar to the Hilbert–Burch complex. Namely, assuming that the ideal $J(\phi)$ has depth 3, the ring $R/J(\phi)$ is Gorenstein, which we will learn about later in Chapter 21. Conversely, a depth 3 ideal whose quotient is Gorenstein and which has a finite free resolution of length 3 must be of the form $J(\phi)$ for some skew-symmetric matrix ϕ (up to a choice of basis, ϕ is the second map in the free resolution) – the existence of the resolution is automatic if R is a regular (graded) local ring.

¹Recall that if X is a skew-symmetric matrix of even size, there is a function, the Pfaffian, such that $Pf(X)^2 = det(X)$. This has a Laplace expansion formula similar to the determinant case; the wikipedia page has many basic properties, or see any introductory algebra text.

²Algebraically, this means that I is radical and R/I is equidimensional of dimension 1.