Math 746, Spring 2016
Homework 3
Due: March 18

1. ExERCISES

(1) Eisenbud 19.10
(2) Eisenbud 19.15
(3) Let ϕ be a skew-symmetric matrix (i.e., $\phi_{i i}=0$ and $\phi_{i j}=-\phi_{j i}$) of odd size $2 n+1$ with entries in R. Let f_{j} be the Pfaffian ${ }^{11}$ of the skew-symmetric submatrix obtained by deleting the j th column and j th row of ϕ. Let $J(\phi)$ be the ideal generated by $f_{1}, \ldots, f_{2 n+1}$. Define

$$
\mathbf{F}: 0 \rightarrow R \xrightarrow{\phi_{3}} R^{2 n+1} \xrightarrow{\phi_{2}} R^{2 n+1} \xrightarrow{\phi_{1}} R
$$

as follows:

- $\phi_{1}=\left(\begin{array}{lllll}f_{1} & -f_{2} & \cdots & -f_{2 n} & f_{2 n+1}\end{array}\right)$,
- $\phi_{2}=\phi$,
- $\phi_{3}=\phi_{1}^{T}$, where T denotes transpose.
(a) Verify that F. is a complex.
(b) Consider the universal case $R=\mathbf{Z}\left[x_{i j} \mid 1 \leq i<j \leq 2 n+1\right]$ and

$$
\phi_{i j}= \begin{cases}0 & \text { if } i=j \\ x_{i j} & \text { if } i<j \\ -x_{i j} & \text { if } i>j\end{cases}
$$

Show that depth $J(\phi)=3$ and that $\mathbf{F}_{\mathbf{\bullet}}$ is exact.
(c) Go back to the general case of a noetherian ring R and assume that $J(\phi) \neq R$. Use the generic perfection theorem to show that depth $J(\phi) \leq 3$ and that $\mathbf{F}_{\mathbf{\bullet}}$ is exact if and only if depth $J(\phi)=3$.
(4) Let k be a field and let $I \subset k[x, y, z]$ be the ideal of polynomials vanishing on a finite set of points in $\mathbf{P}_{k}^{2} \cdot{ }^{2}$ Use the Hilbert-Burch theorem to show that if the points lie on a curve of degree d, then I can be generated by $d+1$ elements.

2. Further reading

The complex in \#3 was studied in Buchsbaum, Eisenbud, "Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3" and plays a role similar to the Hilbert-Burch complex. Namely, assuming that the ideal $J(\phi)$ has depth 3, the ring $R / J(\phi)$ is Gorenstein, which we will learn about later in Chapter 21. Conversely, a depth 3 ideal whose quotient is Gorenstein and which has a finite free resolution of length 3 must be of the form $J(\phi)$ for some skew-symmetric matrix ϕ (up to a choice of basis, ϕ is the second map in the free resolution) - the existence of the resolution is automatic if R is a regular (graded) local ring.

[^0]
[^0]: ${ }^{1}$ Recall that if X is a skew-symmetric matrix of even size, there is a function, the Pfaffian, such that $\operatorname{Pf}(X)^{2}=\operatorname{det}(X)$. This has a Laplace expansion formula similar to the determinant case; the wikipedia page has many basic properties, or see any introductory algebra text.
 ${ }^{2}$ Algebraically, this means that I is radical and R / I is equidimensional of dimension 1.

