Math 746, Spring 2016 Homework 4 Due: April 11 (Monday)

1. Exercises

- (1) Let m, n be positive integers and pick $1 \le r \le \min(m, n)$. Let R be a commutative ring. Set $S = R[x_{ij} \mid 1 \le i \le m, 1 \le j \le n]$. Let I_r be the ideal generated by the $r \times r$ minors of the generic $m \times n$ matrix $X = (x_{ij})$.
 - (a) If R is a field, call a monomial ordering **anti-diagonal** if the initial monomial of a minor is the product of the entries along the anti-diagonal of the submatrix. For example, the anti-diagonal monomial of det $\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$ is $x_{12}x_{21}$. Show that anti-diagonal monomial orders exist.
 - (b) Again, assuming R is a field, it is true that the $r \times r$ minors form a Gröbner basis for any anti-diagonal monomial ordering. Prove this in the case r = m = 2.¹ Conclude that $in(I_r)$ is radical.
 - (c) Use the fact in (b) to show that I_r is a prime ideal when R is a field.
 - (d) Use the fact in (b) to show that S/I_r is a free *R*-module (first do the case $R = \mathbf{Z}$), and hence flat over *R*.
- (2) Let R be a noetherian ring and let M be an R-module. Let I, J ⊂ R be ideals.
 (a) Show that there is a natural exact sequence

$$0 \to \mathrm{H}^{0}_{I+J}(M) \to \mathrm{H}^{0}_{I}(M) \oplus \mathrm{H}^{0}_{J}(M) \to \mathrm{H}^{0}_{I\cap J}(M),$$

and that the last map is surjective if M is an injective module.

(b) Use injective resolutions to construct the Mayer–Vietoris sequence

$$0 \longrightarrow \mathrm{H}^{0}_{I+J}(M) \longrightarrow \mathrm{H}^{0}_{I}(M) \oplus \mathrm{H}^{0}_{J}(M) \longrightarrow \mathrm{H}^{0}_{I\cap J}(M)$$
$$\overset{}{\longrightarrow} \mathrm{H}^{1}_{I+J}(M) \xrightarrow{} \mathrm{H}^{1}_{I}(M) \oplus \mathrm{H}^{0}_{J}(M) \longrightarrow \mathrm{H}^{1}_{I\cap J}(M) \longrightarrow \cdots$$

- (3) Let k be a field and $S = k[x_1, \ldots, x_n]$. Let $I \subset S$ be an ideal. The **arithmetic rank** of I is the smallest r such that there exist f_1, \ldots, f_r with $\sqrt{(f_1, \ldots, f_r)} = \sqrt{I}$.
 - (a) If $H_I^i(S) \neq 0$, show that the arithmetic rank of I is at least i.
 - (b) Set n = 4 and $I = (x_1, x_2) \cap (x_3, x_4) = (x_1x_3, x_1x_4, x_2x_3, x_2x_4)$. Use the Mayer-Vietoris sequence to show that $H_I^3(S) \neq 0$.
 - (c) Continue (b). Show that $I = \sqrt{(x_1x_3, x_2x_4, x_1x_4 + x_2x_3)}$ and conclude that I has arithmetic rank 3.²

¹If you're feeling ambitious, do the general case, though I hope this special case already illustrates some interesting points.

²Give an argument for the radical equality that avoids the use of software.

2. Further reading

• The determinantal ring S/I_r is Cohen–Macaulay when R is Cohen–Macaulay; this essentially reduces to the case of a field, and in that case, one can prove this by showing that $S/in(I_r)$ is Cohen–Macaulay. There are special techniques for showing that quotients by squarefree monomial ideals are Cohen–Macaulay. For example, see Theorem 5.53 of

Ezra Miller, Bernd Sturmfels, *Combinatorial Commutative Algebra*, Graduate Texts in Math. **227**, Springer-Verlag, 2005.

See Theorem 16.43 for a reference specific to this example.

• The arithmetic rank of any ideal in $k[x_1, \ldots, x_n]$ with k a field is always at most n. For a proof and more general results, see:

David Eisenbud, E. Graham Evans, Every algebraic set in *n*-space is the intersection of *n* hypersurfaces, *Invent. Math.* **19** (1973), 107–112.