Math 746, Spring 2016
Homework 4
Due: April 11 (Monday)

1. ExErcises

(1) Let m, n be positive integers and pick $1 \leq r \leq \min (m, n)$. Let R be a commutative ring. Set $S=R\left[x_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right]$. Let I_{r} be the ideal generated by the $r \times r$ minors of the generic $m \times n$ matrix $X=\left(x_{i j}\right)$.
(a) If R is a field, call a monomial ordering anti-diagonal if the initial monomial of a minor is the product of the entries along the anti-diagonal of the submatrix. For example, the anti-diagonal monomial of $\operatorname{det}\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right)$ is $x_{12} x_{21}$. Show that anti-diagonal monomial orders exist.
(b) Again, assuming R is a field, it is true that the $r \times r$ minors form a Gröbner basis for any anti-diagonal monomial ordering. Prove this in the case $r=m=2 . \square$ Conclude that $\operatorname{in}\left(I_{r}\right)$ is radical.
(c) Use the fact in (b) to show that I_{r} is a prime ideal when R is a field.
(d) Use the fact in (b) to show that S / I_{r} is a free R-module (first do the case $R=\mathbf{Z}$), and hence flat over R.
(2) Let R be a noetherian ring and let M be an R-module. Let $I, J \subset R$ be ideals.
(a) Show that there is a natural exact sequence

$$
0 \rightarrow \mathrm{H}_{I+J}^{0}(M) \rightarrow \mathrm{H}_{I}^{0}(M) \oplus \mathrm{H}_{J}^{0}(M) \rightarrow \mathrm{H}_{I \cap J}^{0}(M)
$$

and that the last map is surjective if M is an injective module.
(b) Use injective resolutions to construct the Mayer-Vietoris sequence

(3) Let k be a field and $S=k\left[x_{1}, \ldots, x_{n}\right]$. Let $I \subset S$ be an ideal. The arithmetic rank of I is the smallest r such that there exist f_{1}, \ldots, f_{r} with $\sqrt{\left(f_{1}, \ldots, f_{r}\right)}=\sqrt{I}$.
(a) If $\mathrm{H}_{I}^{i}(S) \neq 0$, show that the arithmetic rank of I is at least i.
(b) Set $n=4$ and $I=\left(x_{1}, x_{2}\right) \cap\left(x_{3}, x_{4}\right)=\left(x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{4}\right)$. Use the MayerVietoris sequence to show that $\mathrm{H}_{I}^{3}(S) \neq 0$.
(c) Continue (b). Show that $I=\sqrt{\left(x_{1} x_{3}, x_{2} x_{4}, x_{1} x_{4}+x_{2} x_{3}\right)}$ and conclude that I has arithmetic rank 3.2

[^0]
2. Further Reading

- The determinantal ring S / I_{r} is Cohen-Macaulay when R is Cohen-Macaulay; this essentially reduces to the case of a field, and in that case, one can prove this by showing that $S / \operatorname{in}\left(I_{r}\right)$ is Cohen-Macaulay. There are special techniques for showing that quotients by squarefree monomial ideals are Cohen-Macaulay. For example, see Theorem 5.53 of

Ezra Miller, Bernd Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Math. 227, Springer-Verlag, 2005.

See Theorem 16.43 for a reference specific to this example.

- The arithmetic rank of any ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ with k a field is always at most n. For a proof and more general results, see:

David Eisenbud, E. Graham Evans, Every algebraic set in n-space is the intersection of n hypersurfaces, Invent. Math. 19 (1973), 107-112.

[^0]: ${ }^{1}$ If you're feeling ambitious, do the general case, though I hope this special case already illustrates some interesting points.
 ${ }^{2}$ Give an argument for the radical equality that avoids the use of software.

