Comments on Eisenbud, Exercise 17.21
February 26, 2016
Recall the setup: k is a (commutative) ring and $V \cong k^{n}$ is a finitely generated free k module. $S(V)$ is the symmetric algebra on V and $\bigwedge\left(V^{*}\right)$ is the exterior algebra on the dual V^{*}. For simplicity, we will just assume that k is a field.

It is convenient to think of elements of V as having degree 1 and elements of V^{*} as having degree -1 . Then these algebras both have graded decompositions:

$$
\begin{gathered}
S(V)=\bigoplus_{d \geq 0} S^{d}(V) \\
\bigwedge\left(V^{*}\right)=\bigoplus_{d \geq 0} \bigwedge^{d}\left(V^{*}\right)
\end{gathered}
$$

(so $S^{d}(V)$ has degree d while $\bigwedge^{d}\left(V^{*}\right)$ has degree $-d$).
The element $t \in \bigwedge^{1}\left(V^{*}\right) \otimes S^{1}(V)=V^{*} \otimes V$ is the canonical trace element, i.e., pick a basis e_{i} for V and a dual basis e_{i}^{*} for V^{*} and take $t=\sum_{i=1}^{n} e_{i}^{*} \otimes e_{i}$; this is independent of the choice of basis and t has degree 0 .

In particular, multiplication by t is a degree-preserving operator on $\bigwedge\left(V^{*}\right) \otimes S(V)$ and squares to 0 and we can identify the complex

$$
0 \rightarrow S(V) \xrightarrow{\cdot t} V^{*} \otimes S(V) \xrightarrow{\cdot t} \bigwedge^{2}\left(V^{*}\right) \otimes S(V) \xrightarrow{\cdot t} \cdots \xrightarrow{\cdot t} \bigwedge^{n}\left(V^{*}\right) \otimes S(V)
$$

with the Koszul complex on the elements $e_{1}, \ldots, e_{n} \in S(V)$. We've already seen that this is exact except at the right end (since e_{1}, \ldots, e_{n} is a regular sequence) at which case the homology is k (concentrated in degree $-n$ since it's a quotient of $\bigwedge^{n}\left(V^{*}\right) \otimes S(V)$ which is a free $S(V)$-module of rank 1 generated in degree $-n$).

Since t is degree-preserving, we can decompose this into linear strands, i.e., for every d, you get a complex of k-modules of degree d :

$$
\begin{equation*}
0 \rightarrow S^{d}(V) \rightarrow V^{*} \otimes S^{d+1}(V) \rightarrow \bigwedge^{2}\left(V^{*}\right) \otimes S^{d+2}(V) \rightarrow \cdots \rightarrow \bigwedge^{n}\left(V^{*}\right) \otimes S^{d+n}(V) \tag{1}
\end{equation*}
$$

which is also valid for $d<0$ if we interpret $S^{d}(V)=0$ in this case. This complex is always exact and if $d \neq-n$, the last map is also surjective (this is just reformulating what we just said about the Koszul complex).

Multiplication by t also gives us this complex considered in (c):

$$
\begin{equation*}
\bigwedge\left(V^{*}\right) \rightarrow \bigwedge\left(V^{*}\right) \otimes S^{1}(V) \rightarrow \bigwedge\left(V^{*}\right) \otimes S^{2}(V) \rightarrow \cdots \tag{2}
\end{equation*}
$$

and again since it is degree-preserving, for any e we get a complex of k-modules of degree $-e$:

$$
\begin{equation*}
\bigwedge^{e}\left(V^{*}\right) \rightarrow \bigwedge^{e+1}\left(V^{*}\right) \otimes S^{1}(V) \rightarrow \bigwedge^{e+2}\left(V^{*}\right) \otimes S^{2}(V) \rightarrow \cdots \tag{3}
\end{equation*}
$$

This is the same complex as in (1) if we take $d=-e$ (again, interpret negative exterior powers to be 0).

We know that (1) is exact if $d \neq-n$, so (3) is exact if $e \neq n$. In particular, we can extend (2) to an exact complex as follows:

$$
\begin{equation*}
0 \rightarrow k \rightarrow \bigwedge\left(V^{*}\right) \rightarrow \bigwedge\left(V^{*}\right) \otimes S^{1}(V) \rightarrow \bigwedge\left(V^{*}\right) \otimes S^{2}(V) \rightarrow \cdots \tag{4}
\end{equation*}
$$

where k is concentrated in degree $-n$.
To calculate $\operatorname{Ext}_{\Lambda\left(V^{*}\right)}^{*}(k, k)$, use that $\bigwedge\left(V^{*}\right)$ is self-injective (i.e., injective as a module over itself, see Proposition 1 below) and so (4) is an injective resolution of k. Now apply $\operatorname{Hom}_{\wedge\left(V^{*}\right)}(k,-)$ to it and notice that all differentials become 0 by degree reasons, so

$$
\operatorname{Ext}_{\wedge\left(V^{*}\right)}^{i}(k, k)=\operatorname{Hom}_{\wedge\left(V^{*}\right)}\left(k, \bigwedge\left(V^{*}\right) \otimes S^{i}(V)\right)=S^{i}(V)
$$

(here we use that a $\bigwedge\left(V^{*}\right)$-linear map from k to $\bigwedge\left(V^{*}\right)$ must land in $\bigwedge^{n}\left(V^{*}\right)$).
Alternatively, you can do something with duals if you wanted to use a projective resolution of k as a $\bigwedge\left(V^{*}\right)$-module, but that gets a little bit more messy.

Proposition 1. $\bigwedge\left(V^{*}\right)$ is self-injective.
Proof. $\operatorname{Hom}_{k}\left(\bigwedge\left(V^{*}\right), k\right)$ is an injective module over $\bigwedge\left(V^{*}\right)$ (see Lemma A3.8 of Eisenbud, for example). Fix a generator $z \in \bigwedge^{n}\left(V^{*}\right)$. Define a pairing on $\bigwedge\left(V^{*}\right)$ by setting $\beta(a, b)$ to be the coefficient of z in $a \wedge b$ (in the homogeneous decomposition of $a \wedge b$). Then β is a perfect pairing. Define a map $\bigwedge\left(V^{*}\right) \rightarrow \operatorname{Hom}_{k}\left(\bigwedge\left(V^{*}\right), k\right)$ by $a \mapsto f_{a}$ where $f_{a}(b)=\beta(b, a)$. Note that $f_{a^{\prime} \wedge a}(b)=\beta\left(b, a^{\prime} \wedge a\right)=\beta\left(b \wedge a^{\prime}, a\right)=f_{a}\left(b \wedge a^{\prime}\right)$ so this is a module homomorphism. Since β is a perfect pairing, it's also an isomorphism. So we conclude that $\bigwedge\left(V^{*}\right)$ is self-injective.

