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Recall the setup: k is a (commutative) ring and V ∼= kn is a finitely generated free k-
module. S(V ) is the symmetric algebra on V and

∧
(V ∗) is the exterior algebra on the dual

V ∗. For simplicity, we will just assume that k is a field.
It is convenient to think of elements of V as having degree 1 and elements of V ∗ as having

degree −1. Then these algebras both have graded decompositions:

S(V ) =
⊕

d≥0

Sd(V ),

∧
(V ∗) =

⊕

d≥0

d∧
(V ∗),

(so Sd(V ) has degree d while
∧

d(V ∗) has degree −d).
The element t ∈

∧1(V ∗) ⊗ S1(V ) = V ∗ ⊗ V is the canonical trace element, i.e., pick a
basis ei for V and a dual basis e∗

i
for V ∗ and take t =

∑
n

i=1 e
∗
i
⊗ ei; this is independent of

the choice of basis and t has degree 0.
In particular, multiplication by t is a degree-preserving operator on

∧
(V ∗) ⊗ S(V ) and

squares to 0 and we can identify the complex

0 → S(V )
·t
−→ V ∗ ⊗ S(V )

·t
−→

2∧
(V ∗)⊗ S(V )

·t
−→ · · ·

·t
−→

n∧
(V ∗)⊗ S(V )

with the Koszul complex on the elements e1, . . . , en ∈ S(V ). We’ve already seen that this
is exact except at the right end (since e1, . . . , en is a regular sequence) at which case the
homology is k (concentrated in degree −n since it’s a quotient of

∧
n(V ∗)⊗ S(V ) which is a

free S(V )-module of rank 1 generated in degree −n).
Since t is degree-preserving, we can decompose this into linear strands, i.e., for every d,

you get a complex of k-modules of degree d:

0 → Sd(V ) → V ∗ ⊗ Sd+1(V ) →
2∧
(V ∗)⊗ Sd+2(V ) → · · · →

n∧
(V ∗)⊗ Sd+n(V )(1)

which is also valid for d < 0 if we interpret Sd(V ) = 0 in this case. This complex is always
exact and if d 6= −n, the last map is also surjective (this is just reformulating what we just
said about the Koszul complex).
Multiplication by t also gives us this complex considered in (c):

∧
(V ∗) →

∧
(V ∗)⊗ S1(V ) →

∧
(V ∗)⊗ S2(V ) → · · · ,(2)

and again since it is degree-preserving, for any e we get a complex of k-modules of degree
−e:

e∧
(V ∗) →

e+1∧
(V ∗)⊗ S1(V ) →

e+2∧
(V ∗)⊗ S2(V ) → · · · .(3)

This is the same complex as in (1) if we take d = −e (again, interpret negative exterior
powers to be 0).
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We know that (1) is exact if d 6= −n, so (3) is exact if e 6= n. In particular, we can extend
(2) to an exact complex as follows:

0 → k →
∧

(V ∗) →
∧

(V ∗)⊗ S1(V ) →
∧

(V ∗)⊗ S2(V ) → · · · ,(4)

where k is concentrated in degree −n.
To calculate Ext∗∧(V ∗)(k, k), use that

∧
(V ∗) is self-injective (i.e., injective as a module

over itself, see Proposition 1 below) and so (4) is an injective resolution of k. Now apply
Hom∧

(V ∗)(k,−) to it and notice that all differentials become 0 by degree reasons, so

Exti∧(V ∗)(k, k) = Hom∧
(V ∗)(k,

∧
(V ∗)⊗ Si(V )) = Si(V )

(here we use that a
∧
(V ∗)-linear map from k to

∧
(V ∗) must land in

∧
n(V ∗)).

Alternatively, you can do something with duals if you wanted to use a projective resolution
of k as a

∧
(V ∗)-module, but that gets a little bit more messy.

Proposition 1.
∧
(V ∗) is self-injective.

Proof. Homk(
∧
(V ∗), k) is an injective module over

∧
(V ∗) (see Lemma A3.8 of Eisenbud, for

example). Fix a generator z ∈
∧

n(V ∗). Define a pairing on
∧
(V ∗) by setting β(a, b) to be

the coefficient of z in a∧ b (in the homogeneous decomposition of a∧ b). Then β is a perfect
pairing. Define a map

∧
(V ∗) → Homk(

∧
(V ∗), k) by a 7→ fa where fa(b) = β(b, a). Note that

fa′∧a(b) = β(b, a′∧a) = β(b∧a′, a) = fa(b∧a′) so this is a module homomorphism. Since β is
a perfect pairing, it’s also an isomorphism. So we conclude that

∧
(V ∗) is self-injective. �


