MATH 490 HOMEWORK 1 DUE: FEBRUARY 2

You're strongly encouraged to write your homework in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$. I won't require it for the first assignment, but I likely will for the rest of the assignments.
(1) Let M be an abelian group. Show that there is a unique way to give M the structure of a \mathbf{Z}-module (\mathbf{Z} is the ring of integers).
(2) Let \mathbf{M} be a complex of finite-dimensional vector spaces:

$$
M_{n} \rightarrow M_{n-1} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0}
$$

Show that

$$
\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} M_{i}=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} H_{i}(\mathbf{M})
$$

(3) (a) Let G be the following oriented graph (I've labeled the vertices with coordinates).

Write down the matrix representing the boundary homomorphism for G and compute a basis for $\mathrm{H}_{1}(G)$.
(b) More generally, pick positive integers m, n and let $G_{m, n}$ be the graph whose vertices are points (i, j) with $0 \leq i \leq m$ and $0 \leq j \leq n$. (The previous part concerns $G_{2,1}$.) All of the edges are between vertices "next to each other", i.e., (i, j) is connected to both $(i+1, j)$ and $(i, j+1)$.
Pick whatever orientation you like for the edges (explain it) and then compute a basis for $\mathrm{H}_{1}\left(G_{m, n}\right)$. Also, give a simple formula for the size of the basis.
Part of the problem is to figure out a good way to label the edges (the way I did it in part (a) isn't so good - they don't have to all be called $\alpha!$).

Hints:

(1) You know that you have to define $1 \cdot m=m$. What would $2 \cdot m$ have to be? $-1 \cdot m$?
(2) Try the case $n=1$ first and then $n=2$. The review exercises will help here.
(3) This problem can be solved using the results we proved in class, and is more about coming up with a good way to develop your own notation.

For the general formula: if you can't deduce it, try fixing m and varying n and computing examples and see if you can find a pattern.

