MATH 490 HOMEWORK 2 DUE: FEBRUARY 9

Your homework should be written in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$.
(1) In class, we computed the homology of a connected graph. Generalize this computation to an arbitrary (finite) graph.
(2) Let F be a field and let ϕ be an $m \times n$ matrix with entries in F.

Given a non-negative integer k, a $k \times k$ minor of ϕ is the determinant of a $k \times k$ submatrix of ϕ. Prove that the rank of ϕ is r if and only if all $(r+1) \times(r+1)$ minors of ϕ are 0 , and some $r \times r$ minor is nonzero.
(The determinant of a 0×0 matrix is defined to be 1.)
(3) Consider the following chain complex ${ }^{1}$:

$$
\mathbf{Z}^{2} \xrightarrow{\left(\begin{array}{cc}
-1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right)} \mathbf{Z}^{3} \xrightarrow{\left(\begin{array}{ccc}
-1 & -1 & 0 \\
1 & 1 & 0
\end{array}\right)} \mathbf{Z}^{2}
$$

(a) Show that $\mathrm{H}_{2} \cong 0, \mathrm{H}_{1} \cong \mathbf{Z} / 2$, and $\mathrm{H}_{0} \cong \mathbf{Z}$.
(b) Use problem 2 to compute the ranks of the two matrices with \mathbf{Z} replaced by the field of rational numbers \mathbf{Q} and also with the finite field \mathbf{Z} / p where p is a prime.
(c) Use (b) to compute the dimensions of the homology groups when \mathbf{Z} is replaced by one of the fields \mathbf{Q} or \mathbf{Z} / p.

[^0]Hints:
(1) Different connected components of a graph don't interact with each other when applying the boundary map.
(2) The rank of a matrix is the dimension of its column space, and also the dimension of its row space. A square matrix has determinant 0 if and only if its columns are linearly dependent if and only if its rows are linearly independent.
(3) For (a), to calculate H_{1}, first find a spanning set for the kernel of the right map and a spanning set for the image of the left map. Then show there are exactly 2 different cosets when quotienting the kernel by the image.

[^0]: ${ }^{1}$ This computes the homology of the real projective plane $\mathbf{R} \mathbf{P}^{2}$ but that fact isn't needed.

