Math 184A, Fall 2018
Homework 1
Due: Friday, Oct. 5
(1) Take a 6×6 grid of squares of equal size and remove two diagonally opposite corner squares:

Prove that you cannot tile this with the shapes \square and $\square \square$ without any overlaps.
(2) Prove that for all positive integers n,

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2} .
$$

(3) There are 17 marked points inside of an equilateral triangle of side length 1 . Prove that there are 2 of them with distance at most $1 / 4$ between them.
(4) Let $p(k)$ be a polynomial of degree d. The goal of this problem is to prove that $q(n)=\sum_{k=1}^{n} p(k)$ is a polynomial of degree $d+1$ which satisfies $q(0)=0$.

Define $f^{(0)}(x)=1$ and for each $d>0$, define a degree d polynomial

$$
f^{(d)}(x)=x(x-1)(x-2) \cdots(x-d+1)
$$

(a) Show that the conclusion holds for each $f^{(d)}(x)$ with $d>0$ by proving that

$$
\sum_{k=1}^{n} f^{(d)}(k)=\frac{f^{(d+1)}(n+1)}{d+1}
$$

Verify the conclusion directly for $f^{(0)}(x)$.
(b) Show that if the conclusion holds for polynomials $p_{1}(x), \ldots, p_{r}(x)$, then it also holds for any linear combination $\alpha_{1} p_{1}(x)+\cdots+\alpha_{r} p_{r}(x)$ (here α_{i} are scalars). You may assume that the $p_{i}(x)$ all have different degrees.
(c) Show, by induction on d, that any polynomial of degree d is a linear combination of $f^{(0)}(x), f^{(1)}(x), \ldots, f^{(d)}(x)$. For the induction step, note that if c is the leading coefficient of $p(x)$, then $p(x)-c f^{(d)}(x)$ is a polynomial of degree $\leq d-1$.

