Math 184A, Fall 2018 Homework 2 Due: Friday, Oct. 12 by 3:30PM in basement of AP&M

(1) How many solutions are there to the equation

 $x_1 + x_2 + x_3 + x_4 + x_5 = 96$

where each x_i is required to be a nonnegative integer?

- (2) How many ways are there to list the letters of the word LAJOLLA?
- (3) How many integers are there between 1000 and 9999 in which all digits are different?
- (4) (a) We want to select two subsets A and C of [n] so that $A \subseteq C$. Show that there are 3^n ways to do this.
 - (b) We want to select three subsets A, B, and C of [n] so that $A \subseteq C$ and $B \subseteq C$. How many ways can this be done?
 - (c) We want to select three subsets A, B, and C of [n] so that $A \subseteq C$, $B \subseteq C$, and $A \cap B \neq \emptyset$. How many ways can this be done?
- (5) Fix a positive integer $n \ge 1$. Let A_1 be the set of subsets $S \subseteq [n]$ with no consecutive elements, i.e., if $i \in S$, then $i + 1 \notin S$.

For example, when n = 3, $|A_1| = 5$ and A_1 is the following set of subsets:

Let A_2 be the set of ways of tiling the $2 \times (n+1)$ rectangle with the shapes: 2×1 rectangle and 1×2 rectangle without any overlaps.

For exam	1	1 6	N 4	· ~	1	A •	1	C 11 ·		• • • • • •
L'ON OTTOM	D D	rhon m -	<i>i</i> 1 1	1 — h	and	/ 10	+ h o	tollownpm	ant of	tiling
гогехян	INP W	$nen n \equiv r$	$) \mid A \circ$	=	and	A IS	LITE	111111111111111111111111111111111111	Set OI	LITINOS

										J

Construct a bijection between A_1 and A_2 (and prove that it is a bijection).

You may use the fact, without proving it, that the following configuration never appears in a tiling:

(6) Let *n* and *k* be positive integers. Show that the number of ordered collections (X_1, \ldots, X_k) , where each X_i is a subset of [n], and $X_1 \cap X_2 \cap \cdots \cap X_k = \emptyset$ (i.e., there is no element which is in all of the X_i) is $(2^k - 1)^n$.

For example, when k = 2 and n = 2, here are the 9 ordered collections:

$$\begin{array}{cccc} (\emptyset, \emptyset) & (\emptyset, \{1\}) & (\emptyset, \{2\}) \\ (\emptyset, \{1, 2\}) & (\{1\}, \emptyset) & (\{2\}, \emptyset) \\ (\{1, 2\}, \emptyset) & (\{1\}, \{2\}) & (\{2\}, \{1\}). \end{array}$$