Math 184A, Fall 2018
Homework 3
Due: Friday, Oct. 19 by 3:30PM in basement of AP\&M
Some hints are given on the next page.
(1) Find the number of compositions of 56 into even pieces (i.e., compositions (a_{1}, \ldots, a_{k}) of 56 so that each a_{i} is even, and here k is allowed to vary).
(2) Find a simple formula for $S(n, n-2)$, i.e., the number of partitions of [n] into $n-2$ blocks (assume that $n \geq 3$).
(3) Let $F(n)$ be the number of all partitions of $[n]$ such that every block has size ≥ 2. Prove that

$$
B(n)=F(n)+F(n+1),
$$

where $B(n)$ is the nth Bell number.
(4) In class, we showed that the number of compositions of n is 2^{n-1}. Find a bijection between the set of compositions of n and the set of subsets of $[n-1]$. In proving correctness of this bijection, you should not need to use the fact that these sets have size 2^{n-1}.
(5) Fix an integer $n \geq 2$. Call a composition $\left(a_{1}, \ldots, a_{k}\right)$ of n doubly even if the number of a_{i} which are even is also even (i.e., there could be no even a_{i}, or 2 of them, or 4 , or ...).

Show that the number of doubly even compositions of n is 2^{n-2}.
For example, if $n=4$, then here are the 4 doubly even compositions of 4 :

$$
(2,2), \quad(3,1), \quad(1,3), \quad(1,1,1,1)
$$

Hints

(4) Partial sums
(5) Given a composition $\alpha=\left(a_{1}, \ldots, a_{k}\right)$, define another composition $\Phi(\alpha)$ by

$$
\Phi(\alpha)=\left\{\begin{array}{ll}
\left(1, a_{1}-1, a_{2}, a_{3}, \ldots, a_{k}\right) & \text { if } a_{1}>1 \\
\left(a_{2}+1, a_{3}, \ldots, a_{k}\right) & \text { if } a_{1}=1
\end{array} .\right.
$$

(in both cases, we didn't do anything to a_{3}, \ldots, a_{k}). Show that Φ defines a bijection between the set of doubly even compositions of n and the set of compositions of n which are not doubly even.

