Math 184A, Fall 2018
Homework 4
Due: Friday, November 2 by 3:30PM in basement of AP\&M
There are some hints on the next page.
(1) How many positive integers ≤ 1000 are neither perfect squares nor perfect cubes? [Recall that a perfect square is an integer of the form n^{2} where n is an integer, and a perfect cube is an integer of the form n^{3} where n is an integer.]
(2) Let λ be an integer partition. Write $\lambda \subseteq m \times n$ if $\ell(\lambda) \leq m$ and $\lambda_{1} \leq n$, i.e., the Young diagram of λ fits inside of a $m \times n$ rectangle. For $0<k<n$, define a polynomial $P_{n, k}(x)$ by

$$
P_{n, k}(x)=\sum_{\lambda \subseteq k \times(n-k)} x^{|\lambda|} .
$$

In other words, the coefficient of x^{i} is the number of partitions of i whose Young diagram fits into the $k \times(n-k)$ rectangle. By convention, $P_{n, n}(x)=P_{n, 0}(x)=1$. As an example, $P_{4,2}(x)=1+x+2 x^{2}+x^{3}+x^{4}$ (the 1 corresponds to the fact that there is a single partition of size 0).
(a) Show that $P_{n, k}(x)=P_{n, n-k}(x)$.
(b) If $0<k<n$, show that

$$
P_{n, k}(x)=x^{k} P_{n-1, k}(x)+P_{n-1, k-1}(x) .
$$

(c) Using (b), show that $P_{n, k}(1)=\binom{n}{k}$ for all $0 \leq k \leq n$. [If you cannot solve (b), you can still use it to solve this problem for credit.]
(d) Find a direct explanation (not using (b)) for why $P_{n, k}(1)=\binom{n}{k}$. In other words, show that the number of Young diagrams that fit inside the $k \times(n-k)$ rectangle is $\binom{n}{k}$.
(3) How many ways are there to list the letters of the word WISCONSIN so that no two consecutive letters are the same?
(4) Fix a positive integer n. Show that

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

(5) Fix a positive integer n. Show that

$$
\sum_{k=0}^{n} \frac{(-1)^{k+1}}{k+1}\binom{n}{k}=-\frac{1}{n+1}
$$

Hints:
2(b): Think about adding/removing columns from Young diagrams
2(c): You can either do a double induction, or do induction on $n+k$.
2(d): Given a Young diagram $Y(\lambda) \subseteq k \times(n-k)$, we can remove it, and the top boundary of the resulting shape is a path from the bottom left corner of the rectangle to the top right corner using the steps "up" and "right". Show these are counted by $\binom{n}{k}$.

5: Antiderivative

