Math 184A, Fall 2018
Homework 5
Due: Friday, November 9 by 3:30PM in basement of AP\&M
(1) Define a sequence by

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=3 \\
& a_{n}=8 a_{n-1}-16 a_{n-2} \quad \text { for } n \geq 2 .
\end{aligned}
$$

(a) Express $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ as a rational function in x.
(b) Find a closed formula for a_{n}.
(2) Define a sequence of numbers a_{0}, a_{1}, \ldots by

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=2 \\
& a_{n}=-a_{n-1}+2 \sum_{i=0}^{n-2} a_{i} a_{n-2-i} \quad \text { for } n \geq 2 .
\end{aligned}
$$

Find a simple expression for $A(x)=\sum_{n \geq 0} a_{n} x^{n}$.
(3) If $\sum_{n \geq 0} a_{n} x^{n}=\frac{1+x+3 x^{3}}{(1-2 x)^{4}}$, find a formula for the a_{n}.
(4) Let $S(n, k)$ be the Stirling number of the second kind. For each $k \geq 1$, define the ordinary generating function

$$
S_{k}(x)=\sum_{n \geq 0} S(n, k) x^{n}
$$

(a) For $k \geq 2$, translate the identity from class

$$
S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)
$$

into an identity involving $S_{k}(x)$ and $S_{k-1}(x)$.
(b) Use the identity you just found to show that for all $k \geq 1$, we have:

$$
S_{k}(x)=\frac{x^{k}}{(1-x)(1-2 x) \cdots(1-k x)} .
$$

(5) If $p(n)$ is a polynomial of degree d, show that there is a polynomial $h_{p}(x)$ of degree $\leq d$ such that $\sum_{n \geq 0} p(n) x^{n}=\frac{h_{p}(x)}{(1-x)^{d+1}}$.

Hints:
5: If $p(n)$ is a polynomial of degree d, then $(\Delta p)(n)=p(n)-p(n-1)$ is a polynomial of degree $\leq d-1$. What is the relationship between the generating function for $p(n)$ and $(\Delta p)(n)$?

