Math 376, Spring 2018
Homework 2
Due: February 7, 2018 in your discussion section
(1) (Apostol 9.15.8) Find the points on the curve of intersection of the two surfaces

$$
x^{2}-x y+y^{2}-z^{2}=1 \quad \text { and } \quad x^{2}+y^{2}=1
$$

which are closest to the origin.
[You may assume that Lagrange multipliers gives the correct answer in this situation.]
(2) Integrate the vector field $f(x, y)=(x y, x y)$ going counterclockwise along the top half of the unit circle.
(3) (a) Let $\alpha:[a, b] \rightarrow \mathbf{R}^{n}$ be a smooth closed loop, i.e., $\alpha(a)=\alpha(b)$. In that case, call $\alpha(a)$ the base point of the loop.
We've shown that for a vector field f, the integral $\int f \cdot \mathrm{~d} \alpha$ doesn't depend on the parametrization as long as we go in the same direction.
Show that the integral also doesn't depend on which point is the base point. [Part of this problem is to turn the previous sentence into a precise mathematical statement.]
(b) Let k be a positive integer. In the setup above, let $\alpha^{(k)}$ denote the path which traces out the closed loop αk times in a row. Give a formula for $\alpha^{(k)}$ in terms of α and use it to show that

$$
k \int f \cdot \mathrm{~d} \alpha=\int f \cdot \mathrm{~d} \alpha^{(k)} .
$$

(4) Given a scalar field $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and a piecewise smooth path $\alpha:[a, b] \rightarrow \mathbf{R}^{n}$ whose image is C, the line integral of φ with respect to arc length is defined to be

$$
\int_{C} \varphi \mathrm{~d} s=\int_{a}^{b} \varphi(\alpha(t)) \sqrt{\alpha_{1}^{\prime}(t)^{2}+\cdots+\alpha_{n}^{\prime}(t)^{2}} \mathrm{~d} t
$$

(a) (Apostol 10.9.7) Calculate $\int_{C}(x+y) \mathrm{d} s$ where C is the triangle with vertices $(0,0),(1,0),(0,1)$ going counterclockwise.
(b) Calculuate $\int_{C}(2 x+9 z) \mathrm{d} s$ where C is given by $t \mapsto\left(t, t^{2}, t^{3}\right)$ for $0 \leq t \leq 1$.
(5) Let $S \subset \mathbf{R}^{n}$ be a subset. Define a relation \sim on S by $x \sim y$ if there is a continuous path from x to y that stays in S.
(a) Show that \sim is an equivalence relation ${ }^{1}$. The equivalence classes are called the path-connected components of S.
(b) If S is open, show that each path-connected component of S is also open.
(6) (Apostol 10.18.18)

[^0]
[^0]: ${ }^{1}$ This means that: (1) $x \sim x$ for all x, (2) $x \sim y$ implies $y \sim x$, and (3) $x \sim y$ and $y \sim z$ implies that $x \sim z$. An equivalence class is a set of the form $\{x \mid x \sim y\}$ for some fixed y.

