Math 376, Spring 2018 Homework 2 Due: February 7, 2018 in your discussion section

(1) (Apostol 9.15.8) Find the points on the curve of intersection of the two surfaces

$$x^{2} - xy + y^{2} - z^{2} = 1$$
 and $x^{2} + y^{2} = 1$

which are closest to the origin.

[You may assume that Lagrange multipliers gives the correct answer in this situation.]

- (2) Integrate the vector field f(x, y) = (xy, xy) going counterclockwise along the top half of the unit circle.
- (3) (a) Let α: [a, b] → Rⁿ be a smooth closed loop, i.e., α(a) = α(b). In that case, call α(a) the base point of the loop.
 We've shown that for a vector field f, the integral ∫ f · dα doesn't depend on the parametrization as long as we go in the same direction.
 Show that the integral also doesn't depend on which point is the base point. [Part of this problem is to turn the previous sentence into a precise mathematical statement.]
 - (b) Let k be a positive integer. In the setup above, let $\alpha^{(k)}$ denote the path which traces out the closed loop α k times in a row. Give a formula for $\alpha^{(k)}$ in terms of α and use it to show that

$$k\int f\cdot \mathrm{d}\alpha = \int f\cdot \mathrm{d}\alpha^{(k)}.$$

(4) Given a scalar field $\varphi \colon \mathbf{R}^n \to \mathbf{R}$ and a piecewise smooth path $\alpha \colon [a, b] \to \mathbf{R}^n$ whose image is C, the **line integral of** φ with respect to arc length is defined to be

$$\int_C \varphi \,\mathrm{d}s = \int_a^b \varphi(\alpha(t)) \sqrt{\alpha_1'(t)^2 + \dots + \alpha_n'(t)^2} \,\mathrm{d}t.$$

- (a) (Apostol 10.9.7) Calculate $\int_C (x+y) ds$ where C is the triangle with vertices (0,0), (1,0), (0,1) going counterclockwise.
- (b) Calculuate $\int_C (2x + 9z) ds$ where C is given by $t \mapsto (t, t^2, t^3)$ for $0 \le t \le 1$.
- (5) Let $S \subset \mathbf{R}^n$ be a subset. Define a relation \sim on S by $x \sim y$ if there is a continuous path from x to y that stays in S.
 - (a) Show that \sim is an equivalence relation¹. The equivalence classes are called the **path-connected components** of *S*.
 - (b) If S is open, show that each path-connected component of S is also open.
- (6) (Apostol 10.18.18)

¹This means that: (1) $x \sim x$ for all x, (2) $x \sim y$ implies $y \sim x$, and (3) $x \sim y$ and $y \sim z$ implies that $x \sim z$. An equivalence class is a set of the form $\{x \mid x \sim y\}$ for some fixed y.