Math 376, Spring 2018
Homework 3
Due: February 14, 2018 in your discussion section
(1) For each vector field f defined on $U \subseteq \mathbf{R}^{n}$, determine if f is a gradient. If yes, construct a potential function for f.
(a) $U=\mathbf{R}^{3}$ and $f(x, y, z)=\left(y^{3}, 3 x y^{2}+e^{3 z}, 3 y e^{3 z}\right)$.
(b) $U=\mathbf{R}^{2}$ and $f(x, y)=(\sin x, \cos y)$.
(c) $U=\mathbf{R}^{3}, f(x, y, z)=(x+z,-y-z, x-y)$.
(d) $U=\mathbf{R}^{3} \backslash\{(0,0,0)\}$ and

$$
f(x, y, z)=\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right) .
$$

(e) $U=\mathbf{R}^{3}$ and $f(x, y, z)=\left(x y, \frac{y^{2}}{2}, y z\right)$.
(2) Let $Q=[a, b] \times[c, d]$ be a rectangle and let $f: Q \rightarrow \mathbf{R}$ be a step function. Show that the value of $\iint_{Q} f$ does not depend on the choice of subdivision of Q as long as f is constant on each rectangle.
(3) Prove Theorem 3.2 from the notes.
(4) Let $f:[0,1] \rightarrow \mathbf{R}$ be the function defined by

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x \text { is a rational number } \\
0 & \text { if } x \text { is irrational }
\end{array} .\right.
$$

Compute the upper and lower integrals of f. Is f integrable?

