Math 376, Spring 2018 Homework 3 Due: February 14, 2018 in your discussion section

- (1) For each vector field f defined on $U \subseteq \mathbf{R}^n$, determine if f is a gradient. If yes, construct a potential function for f. (a) $U = \mathbf{R}^3$ and $f(x, y, z) = (y^3, 3xy^2 + e^{3z}, 3ye^{3z})$. (b) $U = \mathbf{R}^2$ and $f(x, y) = (\sin x, \cos y)$. (c) $U = \mathbf{R}^3$, f(x, y, z) = (x + z, -y - z, x - y). (d) $U = \mathbf{R}^3 \setminus \{(0, 0, 0)\}$ and $f(x, y, z) = \left(\frac{x}{(x^2 + y^2 + z^2)^2}, \frac{y}{(x^2 + y^2 + z^2)^2}, \frac{z}{(x^2 + y^2 + z^2)^2}\right)$. (e) $U = \mathbf{R}^3$ and $f(x, y, z) = (xy, \frac{y^2}{2}, yz)$.
- (2) Let $Q = [a, b] \times [c, d]$ be a rectangle and let $f: Q \to \mathbf{R}$ be a step function. Show that the value of $\iint_Q f$ does not depend on the choice of subdivision of Q as long as f is constant on each rectangle.
- (3) Prove Theorem 3.2 from the notes.
- (4) Let $f: [0,1] \to \mathbf{R}$ be the function defined by

 $f(x) = \begin{cases} 1 & \text{if } x \text{ is a rational number} \\ 0 & \text{if } x \text{ is irrational} \end{cases}.$

Compute the upper and lower integrals of f. Is f integrable?