Math 376, Spring 2018
Homework 4
Due: February 21, 2018 in your discussion section
(1) Integrate the following functions on $Q=[0,1] \times[0,1]$.
(a) $f(x, y)=x y$.
(b) $f(x, y)=e^{x} y+x e^{y}$.
(c) $f(x, y)=x \sin (x y)$.
(2) (Apostol 11.9.14) Define f on $Q=[0,1] \times[0,1]$ by

$$
f(x, y)=\left\{\begin{array}{ll}
1 & \text { if } x=y \\
0 & \text { if } x \neq y
\end{array} .\right.
$$

Prove that f is integrable and show that $\iint_{Q} f=0$.
(3) (Apostol 11.15.8)
(4) Let Q be a rectangle and let f, g be integrable functions on Q.
(a) Given real numbers c_{1}, c_{2}, show that

$$
\iint_{Q}\left(c_{1} f+c_{2} g\right)=c_{1} \iint_{Q} f+c_{2} \iint_{Q} g .
$$

(b) If Q is broken up into two rectangles Q_{1} and Q_{2}, show that

$$
\iint_{Q} f=\iint_{Q_{1}} f+\iint_{Q_{2}} f .
$$

(c) If $f(x) \geq g(x)$ for all $x \in Q$, show that

$$
\iint_{Q} f \geq \iint_{Q} g
$$

(5) Prove the properties about bounded sets of content 0 from Apostol, $\S 11.11$:
(a) A finite set of points in the plane has content 0 .
(b) A union of a finite number of bounded sets of content 0 is also of content 0 .
(c) If S has content 0 and $S^{\prime} \subseteq S$, then S^{\prime} also has content 0 .
(d) A line segment has content 0 .

