Math 376, Spring 2018
Homework 5
Due: February 28, 2018 in your discussion section
(1) (Apostol 11.15.6)
(2) (Apostol 11.15.9, 11.15.14, 11.15.16)
(3) (Apostol 11.22.1)
(4) Let C be the curve parametrized by $\alpha(t)=(t \cos t, t \sin t)$ for $0 \leq t \leq 2 \pi$. Find the area of the region bounded by C and the positive x-axis.
(5) Pick numbers $0<r_{1}<r_{2}$ and consider the annulus

$$
R=\left\{(x, y) \mid r_{1}^{2} \leq x^{2}+y^{2} \leq r_{2}^{2}\right\}
$$

Let f be a continuously differentiable vector field defined on some open set containing R. By chopping R in half, use Green's theorem to find a formula for

$$
\iint_{R}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)
$$

in terms of line integrals.
(6) Evaluate $\iint_{\mathbf{R}^{3}} \frac{1}{\left(x^{2}+y^{2}+z^{2}+1\right)^{2}}$.

