Math 376, Spring 2018
Homework 6
Due: March 14, 2018 in your discussion section
(1) Let E be the region in \mathbf{R}^{3} described by $x^{2}+y^{2} \leq 1$ and $1-x^{2}-y^{2} \leq z \leq 1$. Let $f(x, y, z)$ be a continuous function on E. Setup the integral $\iint_{E} f(x, y, z)$ as an iterated integral in cylindrical coordinates.
(2) Use spherical coordinates to compute the volume of the region in \mathbf{R}^{3} bounded by the sphere $z=x^{2}+y^{2}+z^{2}$ and the cone $z=\sqrt{x^{2}+y^{2}}$. [This looks like an ice cream cone.]
(3) Evaluate $\iint_{\mathbf{R}^{3}} \frac{1}{\left(x^{2}+y^{2}+z^{2}+1\right)^{2}}$.
(4) Prove the following properties about cross products:

- $\mathbf{a} \times \mathbf{a}=0$
- $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
- $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
- $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
- $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and \mathbf{b}, i.e., $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a}=0$ and $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}=0$
[All of these can be deduced from properties of determinants rather than expanding out the expressions - I recommend trying to do it that way.]

