Math 376, Spring 2018
Homework 7
Due: March 21, 2018 in your discussion section
(1) Find the surface area of the following surfaces:
(a) $\{(x, y, z) \mid 3 x+2 y+z=6, x \geq 0, y \geq 0, z \geq 0\}$
(b) $\left\{(x, y, z) \mid x y=z, x^{2}+y^{2} \leq 1\right\}$
(2) Compute $\iint_{S} F \cdot \mathbf{n} \mathrm{~d} S$ for the following:
(a) S is the unit sphere centered at the origin and $F(x, y, z)=(z, y, x)$.
(b) S is the boundary of the set $\left\{(x, y, z) \mid 0 \leq z \leq 1-x^{2}-y^{2}\right\}$ and $F(x, y, z)=$ (y, x, z).
(3) Let $S \subset \mathbf{R}^{3}$, let a, b be real numbers, let $F, G: S \rightarrow \mathbf{R}^{3}$ be vector fields, and let $\varphi: S \rightarrow \mathbf{R}$ be a scalar field. Prove the following properties (assume all of the relevant derivatives exist and are continuous):

$$
\begin{aligned}
\operatorname{div}(a F+b G) & =a \operatorname{div} F+b \operatorname{div} G \\
\operatorname{curl}(a F+b G) & =a \operatorname{curl} F+b \operatorname{curl} G \\
\operatorname{div}(\operatorname{curl} F) & =0 \\
\operatorname{div}(\varphi F) & =\varphi \operatorname{div} F+\nabla \varphi \cdot F \\
\operatorname{curl}(\varphi F) & =\varphi \operatorname{curl} F+\nabla \varphi \times F .
\end{aligned}
$$

(4) Let μ be a scalar field which is always nonzero and F a vector field (both defined on some region in \mathbf{R}^{3}) such that μF is a gradient. Prove that F is perpindicular to curl F. Again, just assume all relevant derivatives exist and are continuous.
(5) Compute $\iint_{S} \operatorname{curl} F \cdot \mathbf{n} \mathrm{~d} S$ where S is the intersection of the sphere $x^{2}+y^{2}+z^{2}=4$ and the cylinder $x^{2}+y^{2} \leq 1$.
(6) Let $S \subseteq \mathbf{R}^{3}$ be the 2-dimensional sphere of radius R centered at the origin. Since S has no boundary, Stokes' theorem tells us that $\iint_{S} \operatorname{curl} F \cdot \mathbf{n} \mathrm{~d} S=0$ for any F since it turns into an integral over the empty set. This might feel strange, so verify this independently using Stokes' theorem by showing that

$$
\iint_{S_{1}} \operatorname{curl} F \cdot \mathbf{n} \mathrm{~d} S=-\iint_{S_{2}} \operatorname{curl} F \cdot \mathbf{n} \mathrm{~d} S
$$

where S_{1} is the $z \geq 0$ part of the sphere and S_{2} is the $z \leq 0$ part of the sphere.

