
NOTES FOR MATH 376 (SPRING 2018)

STEVEN V SAM

Contents

1. Applications of differential calculus 2
1.1. Implicit Differentiation 2
1.2. Second-order Taylor formula for scalar fields 3
1.3. Maxima, minima, saddle points 4
1.4. Lagrange multipliers 6
2. Line integrals 8
2.1. Definitions 8
2.2. Basic properties 8
2.3. Connected sets and path independence 9
2.4. Fundamental theorems of calculus for line integrals 9
2.5. When is a vector field a gradient? 11
2.6. Convex regions 12
3. Multiple integrals 14
3.1. Step functions and their integrals 14
3.2. Integrals of bounded functions 15
3.3. Double integrals as repeated one-dimensional integration 15
3.4. Integrability of continuous functions 17
3.5. Double integrals over more general regions 18
3.6. Green’s theorem 21
3.7. Proof of Green’s theorem 23
3.8. Change of variables in a double integral 25
3.9. Proof of change of variables formula 27
3.10. More than 2 dimensions 29
4. Surface integrals 30
4.1. Parametrizations of surfaces 30
4.2. The fundamental vector product 32
4.3. Definition of the surface integral 33
4.4. Change of parametrization 34
4.5. Curl and divergence 35
4.6. Stokes’ theorem 36
4.7. Uncurling a vector field 38
4.8. The divergence theorem 39
5. Linear differential equations 41
5.1. Definitions 41
5.2. Existence-uniqueness of solutions 42

Date: April 24, 2018 12:23am.
1



2 STEVEN V SAM

5.3. The constant-coefficient case 43
5.4. Finding a particular solution 45
6. Systems of differential equations 47
6.1. Notation 47
6.2. Matrix exponentials 48
6.3. Differential equations satisfied by etA 49
6.4. Calculating matrix exponentials for diagonalizable matrices 51
6.5. Proof of uniqueness-existence for linear systems of differential equations 53
6.6. Non-linear first-order systems 56
6.7. Contractions and Banach fixed-point theorem 57
6.8. Applications to differential equations 59

1. Applications of differential calculus

1.1. Implicit Differentiation. Let U ⊆ Rn be an open subset, F : U → R differentiable.
Given open subset V ⊆ Rn−1 and f : V → R, say that xn is implicitly defined by f if

F (a1, . . . , an−1, f(a1, . . . , an−1)) = 0 for all (a1, . . . , an−1) ∈ V .

Theorem 1.1. Suppose f is differentiable. Then for k = 1, . . . , n−1 and (a1, . . . , an−1) ∈ V ,
we have

∂f

∂xk
(a1, . . . , an−1) = −∂F/∂xk(a1, . . . , an−1, f(a1, . . . , an−1))

∂F/∂xn(a1, . . . , an−1, f(a1, . . . , an−1))

whenever ∂F/∂xn(a1, . . . , an−1) 6= 0.

Proof. Define g : V → R by

g(x1, . . . , xn−1) = F (x1, . . . , xn−1, f(x1, . . . , xn−1))

and h : V → Rn by (x1, . . . , xn−1) 7→ (x1, . . . , xn−1, f(x1, . . . , xn−1)). Then g = F ◦ h, so by
the chain rule we have

[
∂g
∂x1

· · · ∂g
∂xn−1

]
=
[
∂F
∂x1

· · · ∂F
∂xn

]




1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn−1




Since g = 0 on V , the left side is 0, so we get the result by multiplying out the right side. �

Remark 1.2. The implicit function theorem gives conditions under which a function f
exists. �

Example 1.3. F (x, y, z) = x3 + y3 + z3 + 6xyz − 1. Assuming z is implicitly defined, we
have

∂z

∂x
= −∂F/∂x

∂F/∂z
= −3x2 + 6yz

3z2 + 6xy

∂z

∂y
= −∂F/∂y

∂F/∂z
= −3y2 + 6xz

3z2 + 6xy
. �
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A natural generalization is to assume that several of the variables are defined implicitly,
i.e., we’re given a function F : U → Rm with U ⊆ Rn and a function f : V → Rm with
V ⊆ Rn−m such that F (a1, . . . , an−m, f(a1, . . . , an−m)) = 0 for all (a1, . . . , an−m) ∈ V .
For simplicity, assume n = 3 and m = 2. Use x, y, z as coordinates and suppose y = Y (x)

and z = Z(x) are defined implicitly. Write the function F : U → R2 as (F1, F2). If we use
the chain rule as before, we get two equations on V :

0 =
∂F1

∂x
+
∂F1

∂y
Y ′(x) +

∂F1

∂z
Z ′(x)

0 =
∂F2

∂x
+
∂F2

∂y
Y ′(x) +

∂F2

∂z
Z ′(x),

which we can rewrite in matrix form:
[
∂F1

∂y
∂F1

∂z
∂F2

∂y
∂F2

∂z

] [
Y ′(x)
Z ′(x)

]
=

[
−∂F1

∂x

−∂F2

∂x

]

Whenever the determinant of the 2 × 2 matrix on the left side is nonzero, we can solve for
Y ′(x) and Z ′(x). For example, using Cramer’s rule, we get

Y ′(x) =

det

[
−∂F1

∂x
∂F1

∂z

−∂F2

∂x
∂F2

∂z

]

det

[
∂F1

∂y
∂F1

∂z
∂F2

∂y
∂F2

∂z

] Z ′(x) =

det

[
∂F1

∂y
−∂F1

∂x
∂F2

∂y
−∂F2

∂x

]

det

[
∂F1

∂y
∂F1

∂z
∂F2

∂y
∂F2

∂z

] .

1.2. Second-order Taylor formula for scalar fields. Let U ⊆ Rn be an open subset and
let f : U → R be a twice-differentiable function with continuous second partial derivatives.
Define the Hessian of f to be the n× n matrix given by

H(a) =

(
∂2f

∂xi∂xj
(a)

)n

i,j=1

.

Our assumption on f implies that H is a symmetric matrix, i.e., partial derivatives commute.

Theorem 1.4. Given a ∈ U and y ∈ Rn such that a+ uy ∈ U for all u ∈ [−1, 1], we have

(1) There exists 0 < c < 1 such that

f(a+ y)− f(a) = ∇f(a) · y + 1

2
yH(a+ cy)yT .(1.4a)

(2) There exists a function E2 such that limy→0E2(a, y) = 0 and

f(a+ y)− f(a) = ∇f(a) · y + 1

2
yH(a)yT + ‖y‖2E2(a, y).(1.4b)

Proof. (1) Define g : [−1, 1] → R by g(u) = f(a+ uy). Then f(a+ y)− f(a) = g(1)− g(0).
By the Lagrange remainder theorem, there exists 0 < c < 1 such that

g(1)− g(0) = g′(0) +
1

2
g′′(c).
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If we define r(u) = a+ uy, then g = f ◦ r, so we can use the chain rule:

g′(u) = ∇f(r(u)) · r′(u) =
n∑

j=1

∂f

∂xj
(r(u))yj

g′(0) = ∇f(a) · y

g′′(u) =
n∑

i=1

∂

∂xi

n∑

j=1

∂f

∂xj
(r(u))yj =

n∑

i,j=1

∂2f

∂xi∂xj
f(r(u))yiyj = yH(a+ uy)yT .

(2) Let c be as above. Define

E2(a, y) =

{
1

2‖y‖2y[H(a+ cy)−H(a)]yT if y 6= 0

0 if y = 0
.

Using (1.4a), this satisfies (1.4b), so it suffices to show that limy→0E2(a, y) = 0. We have

‖y‖2|E2(a, y)| =
1

2

∣∣∣∣∣

n∑

i,j=1

∂2f

∂xi∂xj
(a+ cy)− ∂2f

∂xi∂xj
(a)yiyj

∣∣∣∣∣

≤ 1

2

n∑

i,j=1

∣∣∣∣
∂2f

∂xi∂xj
(a+ cy)− ∂2f

∂xi∂xj
(a)

∣∣∣∣ |yiyj|

≤ 1

2

n∑

i,j=1

∣∣∣∣
∂2f

∂xi∂xj
(a+ cy)− ∂2f

∂xi∂xj
(a)

∣∣∣∣ ‖y‖
2

since |yiyj| ≤ ‖y‖2. In particular,

|E2(a, y)| ≤
1

2

n∑

i,j=1

∣∣∣∣
∂2f

∂xi∂xj
(a+ cy)− ∂2f

∂xi∂xj
(a)

∣∣∣∣ ,

and the result follows since the limit of the terms in the right hand side goes to 0 as y → 0
by continuity. �

1.3. Maxima, minima, saddle points. Let U ⊆ Rn be a subset and let f : U → R be
differentiable. Given a ∈ U , we say that a is:

• an absolute maximum if f(a) ≥ f(x) for all x ∈ U ,
• an relative maximum if f(a) ≥ f(x) for all x in some ball around a,
• an absolute minimum if f(a) ≤ f(x) for all x ∈ U ,
• an relative minimum if f(a) ≤ f(x) for all x in some ball around a.

In all of these cases, call a an extremum. All partial derivatives of f are 0 are a: by
restricting to a line in each direction, this reduces to the 1-variable case and then follows
from single variable calculus. In general, a critical point of f is a point where all partial
derivatives vanish.

Example 1.5. f(x, y) = x4 + y4 − 4xy. Its critical points are (0, 0), (1, 1), (−1,−1). �

Functions in 1 variable can have inflection points (i.e., points which are not relative maxima
nor minima), and in the general case, we call such points saddle points: more formally, a is
a saddle point if it is a critical point, but every n-ball around a contains points x, x′ such
that f(a) < f(x) and f(a) > f(x′).
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Example 1.6. • f(x, y) = y2 − x2. Then (0, 0) is a saddle point.
• f(x, y) = x2 + y2. Then (0, 0) is an absolute minimum.
• f(x, y) = −x2 − y2. Then (0, 0) is an absolute maximum. �

Recall from Math 375 that if A is a real n×n symmetric matrix, then A is diagonalizable
and all of its eigenvalues are real.

Theorem 1.7. Let A be a real n× n symmetric matrix. Then:

(1) yAyT > 0 for all y 6= 0 if and only if all eigenvalues of A are positive.
(2) yAyT < 0 for all y 6= 0 if and only if all eigenvalues of A are negative.

In case (1), A is positive definite, and in case (2), A is negative definite.

Proof. Let C be an orthogonal matrix such that CACT is a diagonal matrix with entries
λ1, . . . , λn. Since C is invertible, we conclude that the theorem is true for A if and only if it
is true for CACT . But

yCACTyT =
n∑

i=1

λiy
2
i ,

so the result is clear: for example, if all λi > 0, then the right side is always positive if y 6= 0,
and conversely, if the right hand side is positive for all y 6= 0, we conclude that λi > 0 by
taking y to be the ith standard basis vector. �

Theorem 1.8. Let U ⊆ Rn be an open subset and let f : U → R have continuous second
partial derivatives. Let a ∈ U be a critical point of f . Then

(1) If all eigenvalues of H(a) are positive, then a is a relative minimum of f .
(2) If all eigenvalues of H(a) are negative, then a is a relative maximum of f .
(3) If H(a) has positive and negative eigenvalues, then a is a saddle point of f .

Proof. We just prove (1). Let λ1, . . . , λn be the eigenvalues of H(a), which we assume to
be positive. Let h = min(λ1, . . . , λn) and set Q(y) = yH(a)yT . Then H(a) − h

2
Id has

positive eigenvalues and hence is positive definite, so y(H(a)− h
2
Id)yT > 0 for all y 6= 0, or

equivalently, Q(y) > h
2
‖y‖2 for all y 6= 0.

As in (1.4b) , write (since a is critical, ∇f(a) = 0) out the Taylor formula

f(a+ y)− f(a) =
1

2
Q(y) + ‖y‖2E2(a, y).

where limy→0E2(a, y) = 0. In particular, there exists r > 0 such that ‖y‖ < r implies that
|E2(a, y)| < h/4. So, for such y, we have

‖y‖2|E2(a, y)| <
h

4
‖y‖2 < 1

2
Q(y).

By the Taylor formula above, we have

f(a+ y)− f(a) ≥ 1

2
Q(y)− ‖y‖2|E2(a, y)| > 0

whenever ‖y‖ < r, so a is a relative minimum. �

Corollary 1.9. Let U ⊆ R2 be an open subset and let f : U → R have continuous second
partial derivatives and let a ∈ U be a critical point. Set

A =
∂2f

∂x1∂x1
(a) B =

∂2f

∂x1∂x2
(a) C =

∂2f

∂x2∂x2
(a) ∆ = AC − B2.
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Then

(1) ∆ < 0 implies a is a saddle point.
(2) ∆ > 0 and A > 0 implies a is a relative minimum.
(3) ∆ > 0 and A < 0 implies a is a relative maximum.

Proof. The Hessian of f at a is the matrix

[
A B
B C

]
. Let λ, µ be its eigenvalues. Recall that

the sum of the eigenvalues of a matrix is its trace and the product of the eigenvalues is its
determinant, so we have

λ+ µ = A+ C, λµ = ∆.

If ∆ < 0, then λ and µ have opposite signs, so a is a saddle point.
Now suppose ∆ > 0. Then λ and µ have the same sign, so are both positive or are both

negative. Also, AC > B2, so A and C must have the same sign. In particular, if A > 0,
then λ+ µ > 0, so they are both positive. Otherwise, if A < 0, then λ+ µ < 0, so they are
both negative. �

1.4. Lagrange multipliers. The setup for this section: we’re given f, g1, . . . , gm : Rn → R,
and we want to maximize f(x1, . . . , xn) where (x1, . . . , xn) satisfies the equations g1(x1, . . . , xn) =
· · · = gm(x1, . . . , xn) = 0.

There is a general approach which works in various examples; we’ll just explore a few
different special cases.

Consider the case n = 2 and m = 1, so we’re trying to maximize the value of f(x, y) along
the curve of points (x, y) satisfying g(x, y) = 0.

Theorem 1.10. Suppose that the set of points satisfying g(x, y) = 0 can be parametrized by a
curve α : R → R2 whose derivative is nowhere 0. If (a, b) maximizes f subject to g(a, b) = 0,
then ∇f and ∇g are parallel at (a, b).

If ∇g(a, b) 6= 0 whenever g(a, b) = 0, then this can be reformulated as saying that there
exists λ ∈ R such that ∇f(a, b) = λ∇g(a, b).

We recall one thing from linear algebra: if v is a nonzero vector in Rn, then the set of
vectors orthogonal to v is a subspace of dimension n− 1 in Rn.

Proof. Define ϕ : R → R by ϕ(t) = f(α(t)). Our goal is to maximize ϕ. We know that if
this occurs at a value t0, then ϕ

′(t0) = 0. Let α1, α2 be the components of α. Use the chain
rule:

ϕ′(t0) =
∂f

∂x
(α(t0))α

′
1(t0) +

∂f

∂y
(α(t0))α

′
2(t0) = ∇f(α(t0)) · α′(t0).

Recall that the gradient of g at each point is orthogonal to the tangent vectors of its level
curves1, so ∇f(α(t0)) and ∇g(α(t0)) are both orthogonal to α′(t0). Hence they are scalar
multiples of each other. �

1If we instead define ψ(t) = g(α(t)), then ψ is identically 0, so the chain rule gives 0 = ∇g(α(t)) · α′(t)
for all t.
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Example 1.11. Maximize f(x, y) = x2 + 2y2 subject to the condition 0 = g(x, y) = x2 +
y2 − 1. First we set ∇f = λ∇g:

∂f

∂x
= λ

∂g

∂x
=⇒ 2x = 2λx

∂f

∂y
= λ

∂g

∂y
=⇒ 4y = 2λy.

The first equation says (λ− 1)x = 0, so either λ = 1 or x = 0.

• In the first case (λ = 1), the second equation becomes 4y = 2y, so y = 0. Since
g(x, y) = 0, this gives x2 − 1 = 0, so x = ±1. In these cases, we have f(1, 0) = 1 and
f(−1, 0) = 1.

• In the second case (x = 0), the equation g(x, y) = 0 forces y = ±1. In those cases,
f(0, 1) = 2 and f(0,−1) = 2.

In particular, (±1, 0) are not actual maxima, but (0,±1) is.
To verify that 2 is the maximum value independently, we can analyze some more. Since

g(x, y) = 0, we know that |y| ≤ 1. Also, we can do the substitution x2 = −y2 + 1 into f ,
to get f(x, y) = (−y2 + 1) + 2y2 = y2 + 1, and since |y| ≤ 1, this quantity must be ≤ 2. So
actually (0,±1) are true maxima. �

We can think of the method of Lagrange multipliers as a way to guess potential maximizing
points. In the general case, we could try to prove an analogue of Theorem 1.10 under some
conditions on the solution sets of the functions gi. The outcome would be that ∇f is a linear
combination of the ∇gi, i.e., we have an expression

∇f = λ1∇g1 + · · ·+ λm∇gm
for some λ1, . . . , λm ∈ R. We won’t generalize Theorem 1.10, but let’s try this method in
one example with n = 3 and m = 2:

Example 1.12. Maximize f(x, y, z) = x+2y+3z subject to the conditions that x−y+z = 1
and x2 + y2 = 1.

Set g1(x, y, z) = x− y+ z− 1 and g2(x, y, z) = x2 + y2 − 1. Then the method of Lagrange
multipliers tells to find solutions to

∇f = λ1∇g1 + λ2∇g2.
This gives 3 equations by considering each partial derivative:

1 = λ1 + 2λ2x

2 = −λ1 + 2λ2y

3 = λ1

The first implies that λ2x = −1 and the second implies that λ2y = 5/2. Take the condition
g2 = 0 and multiply by λ22:

(xλ2)
2 + (yλ2)

2 − λ22 = 0 =⇒ 1 +
25

4
= λ22,

so λ2 = ±
√
29/2. Then we can go back and solve for x and y.

• If λ2 =
√
29/2, then x = −2/

√
29, y = 5/

√
29, and using g1 = 0, we get z =

−x+ y + 1 = 2/
√
29 + 5/

√
29 + 1 = 1 + 7/

√
29. In that case, f(x, y, z) = 3 +

√
29.
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• If λ2 = −
√
29/2, we instead get x = 2/

√
29, y = −5/

√
29, and z = −2/

√
29 −

5/
√
29 + 1 = 1− 7/

√
29. In that case, f(x, y, z) = 3−

√
29.

So the method of Lagrange multipliers gives 3 +
√
29 as the maximum value (we haven’t

stated a precise theorem when it’s valid though). �

2. Line integrals

2.1. Definitions. Given real numbers a < b, a function α : [a, b] → Rn is a

• smooth path if α′ exists and is continuous on (a, b).
• piecewise smooth path if there exist a = a0 < a1 < · · · < ar = b such that the
restriction of α to each [ai, ai+1] is a smooth path.

If α is piecewise smooth and f : Rn → Rn is a vector field, we define the line integral of
f along α to be

ˆ

f · dα :=

ˆ b

a

f(α(t)) · α′(t)dt

whenever the right side exists. If C is the image of α, the integral is also denoted
´

C
fdα.

Example 2.1. Let a = 0, b = 1, n = 2, and α(t) = (t, t2), and f(x, y) = (x2 + y2, x2 − y2).
Then α′(t) = (1, 2t), so

ˆ

f · dα =

ˆ 1

0

(t2 + t4, t2 − t4) · (1, 2t)dt =
ˆ 1

0

(t2 + t4 + 2t3 − 2t5)dt. �

2.2. Basic properties. Given a path C which is the union of two paths C1 and C2, we write
C = C1 +C2. Then for a, b ∈ R and vector fields f, g : Rn → Rn, we have the following two
additivity properties:

•
ˆ

C

(af + bg) · dα = a

ˆ

C

f · dα + b

ˆ

C

g · dα.

•
ˆ

C1+C2

f · dα =

ˆ

C1

f · dα +

ˆ

C2

f · dα.

Let α : [a, b] → Rn be a piecewise smooth path and let u : [c, d] → [a, b] be a surjective
continuously differentiable function such that u′ is nowhere 0. Define β : [c, d] → Rn by
β(t) = α(u(t)). We say that α and β are equivalent. Furthermore, if u′ > 0 on [c, d], then
u is orientation-preserving and α and β go in the same direction. If u′ < 0 on [c, d],
then u is orientation-reversing and α and β go in opposite directions.

Theorem 2.2. Let α and β be equivalent piecewise smooth paths.

• If α and β go in the same direction, then

ˆ

f · dα =

ˆ

f · dβ.

• If α and β go in opposite directions, then

ˆ

f · dα = −
ˆ

f · dβ.

Proof. By additivity, we can reduce to the case that α and β are equivalent smooth paths.
Use the notation above, so that β = α ◦ u. Set v = u(t). Then we have

ˆ

f · dβ =

ˆ d

c

f(β(t)) · β′(t)dt =

ˆ d

c

f(α(u(t))) · α′(u(t))u′(t)dt

=

ˆ u(d)

u(c)

f(α(v)) · α′(v)dv.
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If u′ > 0, then u(c) = a and u(d) = b, so the last integral is
´

f · dα. Otherwise, they are
swapped, and the last integral is −

´

f · dα. �

2.3. Connected sets and path independence. Let S ⊆ Rn be an open subset. We say
that S is disconnected if we can write S = S1 ∪ S2 where S1 and S2 are disjoint and
nonempty open subsets. If S is not disconnected, then it is connected.

We will use the following fact: If S is connected and a, b ∈ S, then there is a continuous
function α : [0, 1] → S such that α(0) = a and α(1) = b, i.e., any two points can be joined
together with a path that stays inside of S.
Let f : S → Rn be a continuous vector field. Given a, b ∈ S, we say that the integral of f

is independent of the path from a to b if the value of the integral
´

f · dα is always the
same for any path α that starts at a and ends at b. The integral of f is independent of
the path in S if it is independent of the path from a to b for all choices of points a, b.

Example 2.3. (1) Consider S = R2 and f(x, y) = (
√
y, x3 + y). Take a = (0, 0) and

b = (1, 1). For α : [0, 1] → R2 given by α(t) = (t, t), we have
´

f · dα = 17/12, and
for β : [0, 1] → R2 given by β(t) = (t2, t3), we have

´

f · dβ = 59/42, so the integral
of f is not independent of the path.

(2) Consider instead f(x, y) = (x, y). Then for any curve α : [a, b] → R2, we have
ˆ

f · dα =

ˆ b

a

f(α(t)) · α′(t)dt =

ˆ b

a

(α1(t)α
′
1(t) + α2(t)α

′
2(t))dt =

1

2
(α2

1(t) + α2
2(t))|ba,

where the last equality comes from a u-substitution. The last quantity only depends
on the endpoints α(a) and α(b), but not on the actual path α, so the integral of f is
independent of path. �

2.4. Fundamental theorems of calculus for line integrals. We will use the following
version of the fundamental theorem of calculus from single-variable calculus:

Theorem 2.4 (Second fundamental theorem of calculus). Let ϕ : [a, b] → R be a continuous

function such that ϕ′ exists and is continuous on (a, b). Assuming that
´ b

a
ϕ′(t)dt is defined,

we have
ˆ b

a

ϕ′(t)dt = ϕ(b)− ϕ(a).

Here is the analogue for line integrals:

Theorem 2.5 (Second fundamental theorem of calculus for line integrals). Let U ⊆ Rn be
an open connected subset and let ϕ : U → R be a differentiable function whose gradient ∇ϕ
is continuous. Given a piecewise smooth path α : [a, b] → U , we have

ˆ

∇ϕ · dα = ϕ(α(b))− ϕ(α(a)).

Proof. First assume that α is smooth, not just piecewise smooth. Define g : [a, b] → R by
g(t) = ϕ(α(t)). By the chain rule, we have

g′(t) = ∇ϕ(α(t)) · α′(t).

Since α′(t) is continuous on (a, b) and ∇ϕ is continuous on U , we conclude that g′(t) is also
continuous on (a, b). This, together with the definition of the line integral, gives us
ˆ

∇ϕ · dα =

ˆ b

a

∇ϕ(α(t)) · α′(t)dt =

ˆ b

a

g′(t)dt = g(b)− g(a) = ϕ(α(b))− ϕ(α(a)).
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where the second to last equality is Theorem 2.4.
Now consider the general case that α is only piecewise smooth. Then we can find a =

a0 < a1 < · · · < ar = b so that α is smooth on each [ai, ai+1]. Let α
i be the restriction of α

to [ai, ai+1]. By additivity, we have

ˆ

∇ϕ · dα =
r−1∑

i=0

ˆ

∇ϕ · dαi =
r−1∑

i=0

(ϕ(αi(ai+1))− ϕ(αi(ai))) = ϕ(α(b))− ϕ(α(a)).

For the last equality, we use that αi agrees with α on the interval [ai, ai+1]; then we simplify
the telescoping sum. �

We get the following consequence: the integral of the gradient of a scalar field is inde-
pendent of the path. In particular, if α(a) = α(b), i.e., α traces out a closed loop, then the
integral is 0.

Now we discuss the analogue of the first fundamental theorem of calculus. Let U ⊆ Rn

be an open connected set and let f : U → Rn be a vector field such that the integral of f
is independent of the path in U . Fix a point a ∈ U . Then for any other point x ∈ U , the
value of

´

f · dα is independent of the choice of a path α starting at a and ending at x, so
we can denote it by

´ x

a
f · dα to be more suggestive with the notation.

Define a function ϕ : U → R by

ϕ(x) =

ˆ x

a

f · dα.

Theorem 2.6 (First fundamental theorem of calculus for line integrals). With notation as
above, the gradient of ϕ exists and ∇ϕ(x) = f(x) for all x ∈ U .

Proof. Fix x ∈ U . Let ek be a coordinate unit vector and let (f1, . . . , fn) be the component
functions of f . Since U is open, there is a ball of radius r > 0 around x contained in U , so
x+ hek ∈ U for h ∈ [−r, r]. We want to show that

lim
h→0

ϕ(x+ hek)− ϕ(x)

h

exists, and is equal to fk. The numerator can be rewritten as

ϕ(x+ hek)− ϕ(x) =

ˆ x+hek

a

f · dα−
ˆ x

a

f · dα =

ˆ x+hek

x

f · dα.

where we used additivity of line integrals and Theorem 2.2. By our assumption, the last
integral can be computed using any path α from x to x + hek, so we’ll use α : [0, 1] → U
given by α(t) = x+ thek. Then we have

ϕ(x+ hek)− ϕ(x)

h
=

1

h

ˆ x+hek

x

f · dα =
1

h

ˆ 1

0

f(x+ thek) · hekdt =
ˆ 1

0

fk(x+ thek)dt.

Now do a change of variables: u = ht, du = hdt to get

1

h

ˆ h

0

fk(x+ uek)du.
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Next, define g : [−r, r] → R by

g(t) =

ˆ t

0

fk(x+ uek)du.

Since fk is continuous, we can apply the usual fundamental theorem of calculus to conclude
that g′(t) = fk(x+ tek). Combining everything:

lim
h→0

ϕ(x+ hek)− ϕ(x)

h
= lim

h→0

1

h

ˆ h

0

fk(x+ uek)du = lim
h→0

g(h)− g(0)

h
= g′(0) = fk(x). �

2.5. When is a vector field a gradient? Given a vector field f , we want to know when
it is the gradient of a differentiable function ϕ. If ϕ exists, we call it a potential function.
The fundamental theorems of calculus for line integrals give us equivalent conditions for this
to be true. Call a path α closed if its starting and end points are the same.

Theorem 2.7. Let U ⊆ Rn be an open connected subset and let f : U → Rn be a continuous
vector field. Then the following are equivalent:

(a) f is the gradient of a potential function.
(b) The line integral of f is independent of the path in U .
(c) The line integral of f is 0 around every piecewise smooth closed path in U .

Proof. We show (a) =⇒ (c) =⇒ (b) =⇒ (a).
(a =⇒ c) First suppose (a) holds, so f is the gradient of a function ϕ. If α is a piecewise

smooth closed path, then the second fundamental theorem implies that the integral of f
around α is ϕ(x)− ϕ(x) = 0, so (c) holds.
(c =⇒ b) Now suppose that (c) holds. Let α and β be any two piecewise smooth closed

path with the same starting and end points. Let γ be the closed loop which first does α, and
then goes backwards along β. By (c), the integral of f along γ is 0. By additivity, we have

ˆ

f · dγ =

ˆ

f · dα−
ˆ

f · dβ,

so we conclude that the integral along α and β are the same, which shows (b) holds.
(b =⇒ a) If (b) holds, we can use the first fundamental theorem to construct the potential

function. �

Example 2.8. Going back to Example 2.3, let f(x, y) = (
√
y, x3+y). We found two different

paths from (0, 0) to (1, 1) such that the integral of f along these paths give different values.
In particular, we conclude that f is not the gradient of a function. �

We can also give a necessary condition for f to be the gradient of a function which does
not use integrals:

Theorem 2.9. Let f = (f1, . . . , fn) be a continuously differentiable vector field on an open
subset U ⊆ Rn. If f is the gradient of a potential function ϕ, then

∂fi
∂xj

=
∂fj
∂xi

for all i, j.

Proof. This is just the statement that if ϕ has continuous second derivatives, then its second
partial derivatives can be computed in either order. �
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Example 2.10. Continue with the previous example f(x, y) = (
√
y, x3 + y). Then

∂f1
∂y

=
1

2
√
y
,

∂f2
∂x

= 3x2,

so this gives another reason why f is not the gradient of a potential function. �

Example 2.11. It is important to note that the criteria using derivatives is a necessary
condition for f to be a gradient, but not sufficient. For example, take U = R2 \ {(0, 0)} and

f(x, y) =

( −y
x2 + y2

,
x

x2 + y2

)
.

Then
∂f1
∂y

=
−x2 + y2

(x2 + y2)2
=
∂f2
∂x

.

However, we claim that f is not the gradient of a potential function. Let α : [0, 2π] → U be
the closed path α(t) = (cos t, sin t). Then

ˆ

f · dα =

ˆ 2π

0

(− sin t, cos t) · (− sin t, cos t)dt =

ˆ 2π

0

dt = 2π.

Since it is nonzero, Theorem 2.7 tells us f is not a gradient. �

Remark 2.12. In the example above, U has a “hole”: we’ve removed the point (0, 0).
Roughly speaking, if U does not have holes, then the necessary condition with derivatives is
also a sufficient condition. In general, the failure of this to be true can be detected by the
first de Rham cohomology group of U , H1

dR(U). We might touch on this topic later in the
course if there is time. �

2.6. Convex regions. A subset U ⊆ Rn is convex, if given any two points a, b ∈ U , the
line segment from a to b is contained in U . Given a vector field f : U → Rn, Apostol shows
that ∂fi

∂xj
=

∂fj
∂xi

for all i, j implies that f is the gradient of a potential function. In fact, the

proof implies a more general statement, so we state that version here:

Theorem 2.13. Let U ⊆ Rn be an open connected subset and assume that there is a point
a ∈ U such that for all other x ∈ U , the line segment between a and x is contained in U .
Given a continuously differentiable vector field f : U → Rn, we have that f is the gradient
of a potential function if and only if ∂fi

∂xj
=

∂fj
∂xi

for all i, j.

The proof of this theorem requires a technical statement (whose proof we omit, but can
be found in §10.21).

Call a product of intervals [a1, b1] × · · · × [an, bn] ⊆ Rn an interval (slightly confusing,
though we’re following Apostol’s terminology here). It has nonempty interior if bi > ai for
all i.

Theorem 2.14. Let S be an interval in Rn with nonempty interior and let J = [a, b]. Write
points of S × J as (x, t) where x ∈ S and t ∈ J . Let ψ : S × J → R be a scalar field such
that ∂ψ

∂xk
is continuous on S × J for some k = 1, . . . , n. Define ϕ : S → R by

ϕ(x) =

ˆ b

a

ψ(x, t) dt.
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For each interior point x ∈ S, we have

∂ϕ

∂xk
=

ˆ b

a

∂ψ

∂xk
(x, t) dt.

In other words, we can differentiate under the integral sign.

Proof of Theorem 2.13. We have already seen that if f is a gradient, then ∂fi
∂xj

=
∂fj
∂xi

for all

i, j.
Now suppose that ∂fi

∂xj
=

∂fj
∂xi

for all i, j. We will use these equalities to construct a potential

function for f . Without loss of generality, we may assume that the point a is the origin by
translating everything by a. Define ψ : U × [0, 1] → R by ψ(x, t) = f(tx) · x. We define a
function ϕ : U → R by

ϕ(x) =

ˆ 1

0

ψ(x, t) dt.

(Note that this is just the line integral of a straight line path from the origin to x.) Since U
is open, we can find a ball of positive radius centered at x. Inside of that ball, we can find
an interval S with nonempty interior. Since f is continuous differentiable, we conclude that
ψ is also continuously differentiable on S × [0, 1]. Then Theorem 2.14 implies that

∂ϕ

∂xk
(x) =

ˆ 1

0

∂ψ

∂xk
(x, t) dt.

Expanding ψ(x, t) = f1(tx)x1 + · · ·+ fn(tx)xn, we get

∂ψ

∂xk
(x, t) = t

(
∂f1
∂xk

(tx)x1 + · · ·+ ∂fn
∂xk

(tx)xn

)
+ fk(tx)

= t

(
∂fk
∂x1

(tx)x1 + · · ·+ ∂fk
∂xn

(tx)xn

)
+ fk(tx)

= t∇fk(tx) · x+ fk(tx),

where in the second equality, we used our assumption on the derivatives of f . Now define
g(t) = fk(tx), so that we get

∂ψ

∂xk
(x, t) = tg′(t) + g(t) =

d

dt
(tg(t)),

and in particular,

∂ϕ

∂xk
(x) =

ˆ 1

0

∂ψ

∂xk
(x, t) dt = tg(t)|10 = g(1) = fk(x).

In conclusion, ∇ϕ = f , so we have constructed the desired potential function. �

This gives an explicit way to construct a potential function for a vector field f once we
know that ∂fi

∂xj
=

∂fj
∂xi

for all i, j. In the above proof, we assumed that a = 0, and obtained

the following formula for the potential:

ϕ(x) =

ˆ 1

0

f(tx) · x dt.

In general, we would get

ϕ(x) =

ˆ 1

0

f(a+ t(x− a)) · (x− a) dt.
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Example 2.15. Consider U = R2 and f(x, y) = (x, y). Then ∂f1
∂y

= 0 = ∂f2
∂x

. We can

construct a potential function by

ϕ(x) =

ˆ 1

0

f(tx) · x dt =
ˆ 1

0

(tx, ty) · (x, y) dt =
ˆ 1

0

t(x2 + y2)dt =
1

2
(x2 + y2). �

3. Multiple integrals

Given a region Q ⊆ Rn, and a function f : Q → R, our goal is to define the integral of f
over Q, denoted

˜

Q
f . There is a big difference between n = 1 (which you have seen) and

n > 1. For simplicity, we will stick with n = 2. It will usually be clear how to generalize to
higher dimensions, but the notation gets more involved.

3.1. Step functions and their integrals. First we treat the case that Q is a rectangle,
i.e., Q is a product of intervals Q = [a, b] × [c, d] = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}.
We do allow the possibility that a = b or c = d in our definition of rectangle. Given
a = a0 < a1 < · · · < ar = b and c = c0 < c1 < · · · < cs = d, we can subdivide the intervals
[a, b] and [c, d] into r and s many intervals, respectively, which in turn subdivide Q into rs
smaller rectangles.

Given two subdivisions of an interval, we get a finer subdivision by taking together all
of the values from both of them. Similarly, given two subdivisions of a rectangle, we get a
common refinement of both of them.

A function f : Q → R is a step function if there exists a refinement of Q into subrect-
angles such that f is constant on each of the small rectangles.

Lemma 3.1. Let f, g be step functions on Q and c1, c2 ∈ R. Then c1f + c2g is also a step
function.

Proof. It follows from the definition that c1f and c2g are step functions, so it suffices to
check that the sum of two step functions is again a step function. To do this, we take the
subdivisions of Q on which c1f and c2g are constant, and take their common refinement to
get one where the sum is also constant. �

Keep the notation above, so f is a step function. For 1 ≤ i ≤ r and 1 ≤ j ≤ s, let Qij

denote the subrectangle [ai−1, ai]× [cj−1, cj] and let f(Qij) denote the common value f takes
on any point of that rectangle. We define the integral of f as

¨

Q

f =
r∑

i=1

s∑

j=1

f(Qij)(ai − ai−1)(cj − cj−1).

In principle, this definition may depend on the subdivision. In homework you will show
that it does not. Here are some basic properties:

Theorem 3.2. Let f, g be step functions on Q.

(a) Linearity: For c1, c2 ∈ R, we have
¨

Q

(c1f + c2g) = c1

¨

Q

f + c2

¨

Q

g.

(b) Additivity: If Q is subdivided into two subrectangles Q1 and Q2, then
¨

Q

f =

¨

Q1

f +

¨

Q2

f.
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(c) Comparison: If f(x) ≤ g(x) for all x ∈ Q, then
¨

Q

f ≤
¨

Q

g.

3.2. Integrals of bounded functions. As before, let Q be a rectangle. Now let f be a
bounded function on Q. This means that there is some real number C so that |f(x)| ≤ C
for all x ∈ Q. If g is another function on Q, we write g ≤ f to mean that g(x) ≤ f(x) for
all x ∈ Q. Define two sets:

S =

{
¨

Q

s | s is a step function and s ≤ f

}

T =

{
¨

Q

t | t is a step function and t ≥ f

}
.

Since f is bounded, there exist step functions s ≤ f and also t ≥ f , so both S and T are
nonempty. Note that by the comparison property, for any σ ∈ S and τ ∈ T , we have σ ≤ τ .
So S is bounded from above, and hence supS is well-defined, and similarly, T is bounded
from below, and hence inf T is well-defined and we have supS ≤ inf T .

The number supS is the lower integral of f , and is denoted by I(f). Similarly, inf T is
the upper integral of f , and is denoted by I(f). If I(f) = I(f), then f is called integrable,
and
˜

Q
f is defined to be this common value.

3.3. Double integrals as repeated one-dimensional integration. So far, we don’t
have a way to evaluate multiple integrals in an easy way. In some cases, we can reduce it to
computing one-dimensional integrals.

Lemma 3.3. Let f be a step function on a rectangle Q = [a, b]× [c, d]. Then
¨

Q

f =

ˆ d

c

(
ˆ b

a

f(x, y)dx

)
dy.

Proof. First assume that f is constant on all of Q. Then
˜

Q
f = f(Q)(b− a)(d− c). On the

other hand,
ˆ d

c

(
ˆ b

a

f(x, y)dx

)
dy =

ˆ d

c

f(Q)(b− a)dy = f(Q)(d− c)(b− a).

For the general case, we can repeatedly make use of the additivity property for
˜

Q
f with

respect to subdividing Q as well as a similar additivity property for the repeated integral on
the right side of the desired equation. �

Theorem 3.4. Let f be a bounded, integrable function on Q = [a, b] × [c, d]. For each

y ∈ [c, d], assume that A(y) =
´ b

a
f(x, y)dx exists. If

´ d

c
A(y)dy also exists, then it is equal

to
˜

Q
f , so we have the equality

¨

Q

f =

ˆ d

c

(
ˆ b

a

f(x, y)dx

)
dy.

Proof. Choose step functions s, t on Q such that s ≤ f ≤ t. Integrating over [a, b] with
respect to x, we get

ˆ b

a

s(x, y)dx ≤ A(y) ≤
ˆ b

a

t(x, y)dx.
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Now we can integrate over [c, d] with respect to y. Using Lemma 3.3, we get

¨

Q

s ≤
ˆ d

c

A(y)dy ≤
¨

Q

t.

Since this is valid for all s ≤ f and all t ≥ f , we conclude that

I(f) ≤
ˆ d

c

A(y)dy ≤ I(f).

Since f is integrable, the outside two quantities are equal to each other, the common value
being

˜

Q
f . Hence the middle term is also equal to

˜

Q
f . �

Remark 3.5. Here we integrated with respect to the first variable and then the second
variable. There’s no particular reason to prefer that, so we can swap the roles of x and y in
the statement of the previous theorem. �

Example 3.6. Let Q = [0, 2]× [1, 2] and f(x, y) = x− 3y2. Then

ˆ 2

1

(
ˆ 2

0

(x− 3y2)dx

)
dy =

ˆ 2

1

[
x2

2
− 3xy2

]2

0

dy

=

ˆ 2

1

(2− 6y2)dy

=
[
2y − 2y3

]2
1
= −12. �

In the 1-variable case, we can interpret the integral
´ b

a
f(x) dx as the area under the graph

of f(x) (suitably interpreted if f takes negative values). If we apply this to our repeated
integration formula, then we can interpret

˜

Q
f as the volume of the region under the graph

of f(x, y) (again suitably interpreted if f takes negative values). To be precise, first suppose
that f(x, y) ≥ 0 for all (x, y) ∈ Q. We have

¨

Q

f =

ˆ d

c

(
ˆ b

a

f(x, y) dx

)
dy,

and the integrand A(y) =
´ b

a
f(x, y) dx can be interpreted as the area of the cross-sections

of the region under the graph of f . By integrating it once more with respect to y, we get the
volume. In the general case, the integral is computing the volume of the region above the
xy-plane and below the graph of f minus the region which is below the xy-plane and above
the graph of f .

Example 3.7. Let Q = [−1, 1] × [−3, 3] and f(x, y) =
√
1− x2. We can interpret the

integral
˜

Q
f as the volume of half of a cylinder with radius 1 and height 6, so it is 3π. �

Example 3.8. Let S be the solid which is below the graph of f(x, y) = 16 − x2 − 2y2 and
bounded by the coordinate planes and the planes x = 2 and y = 2. In this case, it is not
obvious how to compute the volume of S, so we can instead set it up as a double integral
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(set Q = [0, 2]× [0, 2]):

vol(S) =

ˆ

Q

(16− x2 − 2y2)

=

ˆ 2

0

(
ˆ 2

0

(16− x2 − 2y2) dx

)
dy

=

ˆ 2

0

(
88

3
− 4y2

)
dy

= 48.

Here we’ve implicitly assumed that the double integral can be set up as an iterated integral,
but there are no problems verifying the hypotheses of Theorem 3.4 since at all steps we’re
just dealing with polynomial functions. �

3.4. Integrability of continuous functions. Our goal is the following theorem:

Theorem 3.9. Let f be a continuous function on a rectangle Q = [a, b] × [c, d]. Then f is
integrable on Q, and moreover, we have

¨

Q

f =

ˆ d

c

(
ˆ b

a

f(x, y) dx

)
dy =

ˆ b

a

(
ˆ d

c

f(x, y) dy

)
dx.

In order to prove this, we need some properties of continuous functions on rectangles which
we won’t prove in this class (it could be done, but might be more appropriate for Math 521).

Theorem 3.10. Let f be a continuous function on a rectangle Q.

(a) f is bounded, i.e., there exists C so that |f(x)| ≤ C for all x ∈ Q.
(b) For any ε > 0, we can subdivide Q into finitely many rectangles Q1, . . . , Qn with the

following property: for each i, let mi(f) be the minimum value of f on Qi, and let
Mi(f) be the maximum value. Then Mi(f)−mi(f) < ε for all i.

Proof of Theorem 3.9. By Theorem 3.10(a), f is bounded, so we can define its upper and
lower integrals I(f) and I(f), and our goal is to show that they are equal. To do this, it
suffices to show that the difference I(f)− I(f) is smaller than any positive number ε.

Let A be the area of Q. By Theorem 3.10(b), we can subdivide Q into finitely many
rectangles Q1, . . . , Qn so that, for each i, we have Mi(f) −mi(f) <

ε
A
, where Mi(f) is the

maximum value f takes on Qi, and mi(f) is the minimum value that it takes.
Define step functions s, t on Q as follows: if x is in the interior of Qi, define s(x) = mi(f)

and t(x) = Mi(f). On the points x of overlap between the Qi, we define s(x) = m and
t(x) = M where m = min(m1, . . . ,mn) and M = max(M1, . . . ,Mn). By construction, we
have s ≤ f ≤ t. Also,

¨

Q

s =
n∑

i=1

mi(f)area(Qi),

¨

Q

t =
n∑

i=1

Mi(f)area(Qi).

In particular, we have
¨

Q

s ≤ I(f) ≤ I(f) ≤
¨

Q

t,
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and hence

I(f)− I(f) ≤
¨

Q

t−
¨

Q

s =
n∑

i=1

(Mi(f)−mi(f))area(Qi) <
ε

A

n∑

i=1

area(Qi) = ε.

Since we can prove this for any ε, we conclude that I(f) = I(f), and hence f is integrable.
Finally, we have to prove that

˜

Q
f can be evaluated as an iterated integral, so we use

Theorem 3.4. There are two iterated integrals, but the proofs are the same in both cases, so
we just explain the first one.

First, the integral A(y) =
´ b

a
f(x, y) dx exists for all y since f is continuous, and you have

already seen that continuous functions are integrable in the 1-variable case. To show that
´ d

c
A(y) dy also exists, it suffices to show that A(y) is a continuous function on [c, d]. To

show this, fix a point y0 ∈ [c, d]. Then for any other y1 ∈ [c, d], pick x0 ∈ [a, b] so that
|f(x0, y0)− f(x0, y1)| is maximized amongst all x ∈ [a, b]. Then we have

|A(y0)− A(y1)| =
∣∣∣∣
ˆ b

a

(f(x, y0)− f(x, y1)) dx

∣∣∣∣

≤
ˆ b

a

|f(x, y0)− f(x, y1)| dx

≤ (b− a)|f(x0, y0)− f(x0, y1)|.
We claim that as y1 gets closer to y0, the last quantity can be made arbitrarily small. Pick
ε > 0. By Theorem 3.10, we can subdivide Q into finitely many rectangles so that the
difference between the min and max values of f on each is less than ε/(b − a). If |y1 − y0|
is small enough, then for any x, the points (x, y0) and (x, y1) will be in the same rectangle.
So in particular, the last quantity above is < ε, which shows that A is continuous at y0, and
finishes the proof. �

3.5. Double integrals over more general regions. We’d like to have a definition of
integrals over regions which are not necessarily rectangles. First, we need a definition: if A
is a bounded subset of the plane (i.e., we can enclose it in a circle of some finite radius),
then A has content zero if, for every ε > 0, there is a finite set of rectangles whose union
contains A and whose total area is at most ε.

Theorem 3.11. Let f be a bounded function on a rectangle Q = [a, b] × [c, d]. Let D be
the set of points where f is not continuous and assume that D has content 0. Then f is
integrable on Q.

Proof. Let C be a number such that |f(x)| ≤ C for all x ∈ Q. Pick δ > 0. Since D has
content 0, we can cover it with a finite number of rectangles whose total area is at most δ.
Let R be the union of these rectangles. We can extend this set of rectangles to a partition
of Q into subrectangles. Now pick ε > 0. By Theorem 3.10, we can further refine our
partition into a new partition so that the difference between the max and min values of f
on all rectangles not in R is at most ε.
Define step functions s, t as follows. If x is in the interior of a rectangle Q′ not in R, then

s(x) is the minimum value that f takes in Q′, and t(x) is the maximum value that f takes
in Q′. For all other points, set s(x) = −C and t(x) = C. Then s ≤ f ≤ t and

I(f)− I(f) ≤
¨

Q

t−
¨

Q

s ≤ ε(area(Q)− area(R)) + 2Carea(R) ≤ εarea(Q) + 2Cδ.
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Since this is true for any ε > 0, we conclude that I(f) − I(f) ≤ 2Cδ. However, this latter
inequality is also valid for any δ > 0, so in fact I(f) = I(f), so f is integrable. �

Here’s an important application of this fact. Let S be a bounded region in the plane, and
let Q be a rectangle that contains S. Let f be a bounded function on S. We extend f to a

function f̃ on Q by

f̃(a) =

{
f(a) if a ∈ S

0 if a /∈ S
.

If f̃ is integrable on Q, then we say that f is integrable on S, and define
¨

S

f :=

¨

Q

f̃ .

Since we have extended the definition of f by setting it 0 outside of S, we see that actually
this definition does not depend on the choice of Q (i.e., choosing a larger Q that contains S
would not affect its integrability or the value of its integral).

By the previous theorem, it would suffice to know that the set where f̃ fails to be continuous
has content zero. For example, if f is continuous on S, then this roughly amounts to asking
that the boundary of S has content zero.
A general class of such regions can be constructed from the following fact:

Lemma 3.12. If ϕ : [a, b] → R is a continuous function, then the graph of ϕ has content
zero.

Proof. This follows from Theorem 3.10 (it applies to intervals [a, b] as a special case when
c = d, for example). Pick ε > 0. Then we can break [a, b] into finitely many subintervals so
that the difference between the max and min of ϕ on these subintervals is at most ε/(b− a).
The graph of ϕ on such an interval is then contained in a rectangle of area ε times the length
of the interval, so the whole graph of ϕ is contained in a finite union of rectangles whose
total area is at most ε. �

Given two functions ϕ1, ϕ2 : [a, b] → R such that ϕ1(x) ≤ ϕ2(x) for all x ∈ [a, b], consider
the region

S = {(x, y) | a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)}.
Apostol calls this a region of Type I. This is the area that is under the graph of ϕ2 and
above the graph of ϕ1. The interior of S is defined by taking strict inequalities instead of
weak ones in the definition of S. Similarly, we can define regions of Type II as those of the
form

T = {(x, y) | ϕ1(y) ≤ x ≤ ϕ2(y), a ≤ y ≤ b}.

Theorem 3.13. If S is a region of Type I, and f : S → R is a function which is continuous
on the interior of S, then

˜

S
f exists. Furthermore, we can compute it as an iterated integral:

¨

S

f =

ˆ b

a

(
ˆ ϕ2(x)

ϕ1(x)

f(x, y) dy

)
dx.
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Similarly, if S is a region of type II, and f : S → R is a function which is continuous on
the interior of S, then

˜

S
f exists. Furthermore, we can compute it as an iterated integral:

¨

S

f =

ˆ b

a

(
ˆ ϕ2(y)

ϕ1(y)

f(x, y) dx

)
dy.

Proof. We just discuss the Type I case since they are analogous.
First, note that ϕ1, ϕ2 are bounded functions since they are continuous on a finite interval.

So S is a bounded region, and since f is continuous on it, f is also a bounded function. In
particular, we can find a rectangle Q = [a, b]× [c, d] containing S, and extend f to a function

f̃ : Q → R by defining it to be 0 outside of S. By Lemma 3.12, the boundary of S has

content 0, so by Theorem 3.11, f̃ is integrable on Q, and so
˜

S
f =
˜

Q
f̃ exists.

To prove the second part, we apply Theorem 3.4, or really the variant of it in Remark 3.5.

Define A(x) =
´ d

c
f̃(x, y) dy. Then f̃(x, y), as a function of y, is discontinuous in at most 2

places (ϕ1(x) and ϕ2(x)), and hence A(x) exists for each x. We can show that the function
A is continuous as in the proof of Theorem 3.9, but there are more details to take care of,
so we will omit it. In any case, then the integral of A(x) exists, so we have

¨

Q

f̃ =

ˆ b

a

(
ˆ d

c

f̃(x, y) dy

)
dx.

Finally, we have
´ d

c
f̃(x, y) dy =

´ ϕ2(x)

ϕ1(x)
f(x, y) dy since f̃(x, y) is 0 outside of S. �

Example 3.14. Integrate the function sin(y2) over the triangle T with vertices {(0, 0), (1, 0), (1, 1)}.
The triangle is a Type II region with ϕ1(y) = 0 and ϕ2(y) = y over the interval [0, 1]. So

we have
¨

T

sin(y2) =

ˆ 1

0

(
ˆ y

0

sin(y2) dx

)
dy

=

ˆ 1

0

y sin(y2) dy = −1

2
cos(y2)|10 =

1

2
(1− cos(1)).

The triangle is also a Type I region with ϕ1(x) = x and ϕ2(x) = 1 over the interval [0, 1].
So we have

¨

T

sin(y2) =

ˆ 1

0

(
ˆ 1

x

sin(y2) dy

)
dx.

However, this integral is more difficult to evaluate. �

We have already seen that the double integral can be interpreted as the volume of the
region under the graph of a function on a rectangle. By the way we defined the double
integral over a more general region S, when

˜

S
f exists, we may also interpret it as the

(signed) volume of the region under the graph of f . In the special case f(x, y) = 1, the
volume is just the area of the region S, so we see that

¨

S

1 = area(S).

This is not interesting for rectangles, and hence this is a genuinely new kind of computation
in dimensions ≥ 2. If S is of Type I or Type II, this kind of computation isn’t that surprising:



NOTES FOR MATH 376 (SPRING 2018) 21

the formula in Theorem 3.13 gives

area(S) =

ˆ b

a

(ϕ2(x)− ϕ1(x)) dx

which you’ve already seen in 1-variable calculus. We’ll see some ways to use this (and connect
it to line integrals) for more general regions when we discuss Green’s theorem.

Still, we can use the interpretation as volume to get some formulas. Here’s a familiar
example.

Example 3.15. Compute the volume of the sphere of radius r.
We can describe the top half of the sphere as the region underneath the function f(x, y) =√
r2 − x2 − y2 defined on the disk S of radius r. The disk S is a region of type I (and also

type II). It can be described by the functions ϕ2(x) =
√
r2 − x2 and ϕ1(x) = −

√
r2 − x2 on

the interval [−r, r]. So we can get the volume as the integral

2

ˆ r

−r

(
ˆ

√
r2−x2

−
√
r2−x2

√
r2 − x2 − y2 dy

)
dx.

We could evaluate this directly using trigonometric substitutions. Instead, note that the
inner integral is computing the area of a half-disk of radius

√
r2 − x2, and hence the value

is π(r2 − x2)/2. So we get

2

ˆ r

−r

π

2
(r2 − x2) dx = π(2r3 − 2

3
r3) =

4

3
πr3.

Similarly, we can compute the volumes of higher-dimensional spheres by iterating several
integrals (using the higher dimensional analogues of the theorems we’ve discussed). For
example, the volume of the 4-dimensional sphere of radius r is

2

ˆ r

−r

(
ˆ

√
r2−x2

−
√
r2−x2

(
ˆ

√
r2−x2−y2

−
√
r2−x2−y2

√
r2 − x2 − y2 − z2 dz

)
dy

)
dx.

Again, the inner part is the integral we setup above for a 3-sphere of radius
√
r2 − x2, so

this simplifies to

2

ˆ r

−r

2

3
π(r2 − x2)3/2 dx =

1

2
π2r4.

To get the final answer, one could use trigonometric substitutions. There might be better
ways I’m not seeing. �

3.6. Green’s theorem. In some cases, the integral of a function on a region can be reduced
to a line integral along the boundary of the region. This is not entirely unfamiliar: think of
the second fundamental theorem of calculus:

ˆ b

a

ϕ′(t) dt = ϕ(b)− ϕ(a).

In this case, we are replacing a 1-dimensional integral by a “0-dimensional integral” along
the boundary of the interval [a, b] at the cost of having to take an antiderivative. Green’s
theorem says that something similar happens: 2-dimensional integrals can be replaced by
1-dimensional integrals. We will see other versions of this idea and time permitting, we’ll
discuss a complete generalization of this (general Stokes’ theorem).
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Let α : [a, b] → R2 be a continuous planar curve. Recall that α is closed if α(a) = α(b).
We say that α is simple if α is injective on [a, b), i.e., if a ≤ t0 < t1 < b, then α(t0) 6= α(t1).
This just means that α does not cross itself. We say that α is a Jordan curve if it is both
simple and closed.
The Jordan curve theorem tells us that if we remove the image of α from R2, we are left

with 2 connected regions: a bounded region, which we call the interior, and an unbounded
region, which we call the exterior.

Finally, given a Jordan curve parametrized by α, we can say whether it is traveling clock-
wise or counterclockwise. We don’t have a good language to define this rigorously (see
the section in Apostol on winding numbers for a way to do this), so we will rely on the
intuitive notion.

Example 3.16. If α : [0, 1] → R2 is given by α(t) = (cos(t), sin(t)), then the image is the
unit circle and it is traveling counterclockwise. The interior is {(x, y) | x2 + y2 < 1} and the
exterior is {(x, y) | x2 + y2 > 1}. �

Theorem 3.17 (Green’s theorem). Let C be a piecewise smooth Jordan curve parametrized
by α in a counterclockwise direction, and let R be the interior of C union with C. Let S be
an open set that contains R, and let f = (f1, f2) : S → R2 be a continuously differentiable
vector field. Then

¨

R

(
∂f2
∂x

− ∂f1
∂y

)
=

ˆ

f · dα.

Remark 3.18. Much of what we have said up to this point is valid for an arbitrary number
of dimensions, but it is important to keep in mind that Green’s theorem is strictly about
2-dimensional integrals! We will see later how it generalizes, but right now it is not clear. �

Remark 3.19. I’ve written the theorem in a way that reflects our previous notation, but
it is usually written with different notation: P = f1 and Q = f2, and the right side of the
formula is usually written

‰

C

(P dx+Q dy).

The integral symbol denotes that we are traveling around C in the counterclockwise direction
via a parametrization α, and the inner integral is an alternate notation for

(P (α1(t), α2(t))α
′
1(t) +Q(α1(t), α2(t))α

′
2(t)) dt. �

We will go through the proof of Green’s theorem in some easy cases later, but first, let’s
see how this can be applied to compute areas. Given a bounded region S whose boundary
has content 0, we have

area(S) =

¨

S

1.

Assuming further that the boundary is a piecewise smooth Jordan curve C, we can apply
Green’s theorem to get

area(S) =

‰

C

(P dx+Q dy)

for any choice of (P,Q) such that ∂Q
∂x

− ∂P
∂y

= 1. We can take (P,Q) = ((c− 1)y, cx) for any

real number c, so we get the following consequence of Green’s theorem:
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Theorem 3.20. Let S be a bounded region whose boundary is a piecewise smooth Jordan
curve C which is parametrized by α : [a, b] → R2. Write the components of α as α(t) =
(X(t), Y (t)). Then for any real number c, we have

area(S) =

ˆ b

a

((c− 1)X ′(t)Y (t) + cX(t)Y ′(t)) dt.

If we choose c = 0 or c = 1, the formula above simplifies a lot. However, the next example
shows that different choices might give easier integrals.

Example 3.21. Let S be the unit disk. Then C is the unit circle and α(t) = (cos(t), sin(t))
on [0, 2π]. If we choose c = 1, then we get

ˆ 2π

0

cos2(t) dt,

which can be solved using a double-angle identity. Alternatively, we can choose c = 1/2 and
then we get

1

2

ˆ 2π

0

(sin2(t) + cos2(t)) dt =
1

2

ˆ 2π

0

dt = π. �

Example 3.22. This example illustrates a piecewise defined curve (even though the end
result is easy). Consider the triangle with vertices (0, 0), (1, 0), (0, 1). We can parametrize it
by α : [0, 3] → R2 with α(t) = (X(t), Y (t)) and

X(t) =





t if 0 ≤ t ≤ 1

2− t if 1 ≤ t ≤ 2

0 if 2 ≤ t ≤ 3

, Y (t) =





0 if 0 ≤ t ≤ 1

t− 1 if 1 ≤ t ≤ 2

3− t if 2 ≤ t ≤ 3

.

We’ll take c = 1 in the theorem above. Then

X(t)Y ′(t) =





0 if 0 ≤ t ≤ 1

2− t if 1 ≤ t ≤ 2

0 if 2 ≤ t ≤ 3

,

so the area of the triangle is given by

ˆ 2

1

(2− t)dt = 2t− t2

2

∣∣∣∣
2

1

= 2− 3

2
=

1

2
. �

3.7. Proof of Green’s theorem. We will only prove Green’s theorem in some special cases.
First we start with the case when S is a region of Type I and Q = 0. Consider the picture
below:
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ϕ1(x)

ϕ2(x)

S

Since Q = 0, we’re trying to show that

−
¨

S

∂P

∂y
=

ˆ

(P, 0) · dα

where α parametrizes the boundary of S. First let’s simplify the left hand side. We can
write it as an iterated integral:

−
¨

R

∂P

∂y
= −
ˆ b

a

(
ˆ ϕ2(x)

ϕ1(x)

∂P

∂y
dy

)
dx = −

ˆ b

a

(P (x, ϕ2(x))− P (x, ϕ1(x)) dx.

For the right hand side, we use the parametrization α(t) = (t, ϕ1(t)) from [a, b] for the bottom
part and the parametrization γ(t) = (t, ϕ2(t)) from [a, b] for the top part (but notice we’re
going in the wrong direction here). For the right side, we use β(t) = (b, t) from [ϕ1(b), ϕ2(b)]
and for the left side, we use δ(t) = (a, t) from [ϕ1(a), ϕ2(a)] (again, we’re going in the wrong
direction here). Then the right hand side becomes
ˆ

(P, 0) · dα +

ˆ

(P, 0) · dβ −
ˆ

(P, 0) · dγ −
ˆ

(P, 0) · dδ =
ˆ b

a

P (t, ϕ1(t)) dt−
ˆ b

a

P (t, ϕ2(t)) dt,

which is what we wanted.
In a similar way, we can show that Green’s theorem holds if S is a Type II region and

P = 0.
By adding together these two cases, we have shown that Green’s theorem holds for

regions S that are both Type I and Type II.
To do the general case, we can chop up our region into smaller pieces. Consider the

following:

ϕ1(x)

ϕ2(x)
S1

S2

ε
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Let ∂S denote the boundary of a region S. Then we have:
¨

S

=

¨

S1

+

¨

S2

,

‰

∂S

=

‰

∂S1

+

‰

∂S2

.

The second identity follows because ∂S1 uses ε while ∂S2 uses ε in the opposite direction,
so that these terms cancel when we sum them together. Hence, if we know Green’s theorem
holds for the pieces S1 and S2, then we also know that it holds for S. We get the following:
Green’s theorem holds for a region S if we can decompose it into finitely many
pieces which are both of Type I and Type II.

Fortunately, many regions we might think of have such a decomposition. Going beyond
to things that don’t, we’d need a more general proof, but we will stop here. In our example,
we might do this:

3.8. Change of variables in a double integral. Our aim now is to give a version of
“u-substitution” for double integrals. Recall that for 1-variable integrals, we have identities
of the form

ˆ b

a

f(g(t))g′(t) dt =

ˆ g(b)

g(a)

f(x) dx

which we think of as being related by the substitution x = g(t). Here the assumption is that
g′ and f are continuous.

In the 2-variable case, a change of variables should involve 2 functions

x = X(u, v), y = Y (u, v).

We will assume that the partial derivatives of X and Y exist and are continuous. So we can
form the Jacobian determinant

J(u, v) := det



∂X

∂u

∂X

∂v
∂Y

∂u

∂Y

∂v


 .

Given a region T (thought of as living in the u, v-plane), we can define a new region

S = {(X(u, v), Y (u, v)) | (u, v) ∈ T}
(thought of as living in the x, y-plane). We will assume that there is a subset of T of
content 0 so that the mapping from the complement of this subset to S is injective, i.e., if
(X(u, v), Y (u, v)) = (X(u′, v′), Y (u′, v′)) and (u, v), then (u, v) = (u′, v′). Furthermore, we
will assume that J(u, v) ≥ 0 for all (u, v) ∈ T and that the set of (u, v) where J(u, v) = 0
has content 0.
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The analogous change of variables formula (which we prove later) is:

Theorem 3.23. With the notation as above, we have
¨

T

f(X(u, v), Y (u, v))J(u, v) dudv =

¨

S

f(x, y) dxdy.

We haven’t been writing the dxdy for multiple integrals before, but we do it here to
emphasize that we are changing the variables.

Remark 3.24. Here is a heuristic for the formula (hopefully to be made precise later). We
can write

dx =
∂X

∂u
du+

∂X

∂v
dv, dy =

∂Y

∂u
du+

∂Y

∂v
dv.

If we expand out the product dxdy, then we get J(u, v) dudv if we adopt the rules that
dudu = 0 = dvdv and dudv = −dvdu. At this point it doesn’t make much sense to do this,
though it is a convenient way to remember the formula (the one thing we need to remember
is that the symbols dx pick up a sign whenever we move them past each other). �

An important example is given by polar coordinates. In this case, it is traditional to
use r (radius) and θ (angle) instead of u and v. The change of variables is

x = r cos θ, y = r sin θ.

Instead of labeling points by their (x, y)-coordinate, polar coordinates specify points by two
pieces of information: the angle (measured in radians) θ of the vector from the origin to that
point and its distance from the origin. To make our assumptions above satisfied, we will
assume that T lies in the region with r ≥ 0 and 0 ≤ θ < 2π.
In this case, our Jacobian determinant becomes

J(r, θ) := det

[
cos θ sin θ

−r sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r ≥ 0,

so the change of variables formula becomes
¨

S

f(x, y) dxdy =

¨

T

f(r cos θ, r sin θ)r drdθ.

Example 3.25. The point of polar coordinates is that rectangles in the r, θ-plane become
disks in the x, y-plane. For example, let T be the rectangle with 0 ≤ r ≤ a and 0 ≤ θ ≤ 2π
let f(x, y) = 1. Then S is the disk of radius a, and we have

¨

S

1 dxdy =

¨

T

r drdθ =

ˆ 2π

0

ˆ a

0

r drdθ =

ˆ 2π

0

a2

2
dθ = πa2.

This is nothing new, but the point is that the integral in polar coordinates is much simpler
than the integral in Cartesian coordinates. �

Example 3.26. Here’s a more striking example where we can compute something we
couldn’t do before. Consider the problem of evaluating the improper integral

I =

ˆ ∞

0

e−x
2

dx.

Techniques from first-year calculus won’t help much since the antiderivative of e−x
2

isn’t any
familiar function, though you can use first-year calculus to show that I is a finite value.
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It turns out it is much easier to evaluate I2. We haven’t dealt with infinite regions, so
what follows is missing justification since I just want to emphasize the idea rather than the
details. We can compute this as an iterated integral:
ˆ ∞

0

(
ˆ ∞

0

e−x
2−y2 dx

)
dy =

ˆ ∞

0

e−y
2

(
ˆ ∞

0

e−x
2

dx

)
dy =

(
ˆ ∞

0

e−x
2

dx

)(
ˆ ∞

0

e−y
2

dy

)
= I2.

Here we are integrating over the first quadrant. In polar coordinates, this is the region
0 ≤ r ≤ ∞ and 0 ≤ θ ≤ π/2. Hence we also get

I2 =

ˆ π/2

0

(
ˆ ∞

0

e−r
2

r dr

)
dθ =

ˆ π/2

0

(
−1

2
e−r

2

∣∣∣∣
∞

0

)
dθ =

ˆ π/2

0

1

2
dθ =

π

4
.

Since I ≥ 0 (because e−x
2 ≥ 0), we conclude that

ˆ ∞

0

e−x
2

dx =

√
π

2
. �

3.9. Proof of change of variables formula. Recall that the integral of a function is
defined in terms of the integral of step functions, which in turn relied on the area of a
rectangle. The outline of the proof for the change of variables formula

¨

T

f(X(u, v), Y (u, v))J(u, v) dudv =

¨

S

f(x, y) dxdy

follows this:

• First we show the formula holds when S is a rectangle and f(x, y) = 1.
• Next we show the formula holds when S is a rectangle and f is a step function.
• Finally, we move to a general integrable function f .

To avoid complications, we make the following additional assumptions:

• The Jacobian J(u, v) is never 0. Note that this does not hold even in the example
of polar coordinates (since r = 0 is a possibility). It can be dealt with, but we won’t
do it here.

• The second derivatives of X and Y exist and are continuous.
• The mapping (X, Y ) is injective everywhere, and has an inverse.

3.9.1. The case when f(x, y) = 1. The right side of the formula is
˜

S
1 dxdy where S is a

rectangle. By Green’s theorem applied to the vector field (0, x), we have
¨

S

1 dxdy =

‰

∂S

x dy

where ∂S is the boundary of S. For the left side of the formula, we have

J(u, v) =
∂X

∂u

∂Y

∂v
− ∂X

∂v

∂Y

∂u
=

∂

∂u

(
X
∂Y

∂v

)
− ∂

∂v

(
X
∂Y

∂u

)
.

By another application of Green’s theorem to the vector field
(
X ∂Y

∂u
, X ∂Y

∂v

)
, we have

¨

T

J(u, v) dudv =

‰

∂T

(
X
∂Y

∂u
du+X

∂Y

∂v
dv

)

where ∂T is the boundary of T . So to finish this case, we want to show that
‰

∂T

(
X
∂Y

∂u
du+X

∂Y

∂v
dv

)
=

‰

∂S

x dy.
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Let α : [a, b] → R2 be a counterclockwise parametrization of ∂T . Write α(t) = (U(t), V (t)).
Then we have
¨

T

J(u, v) dudv =

‰

∂T

(
X
∂Y

∂u
du+X

∂Y

∂v
dv

)
=

ˆ b

a

X(U(t), V (t))

(
∂Y

∂u
U ′(t) +

∂Y

∂v
V ′(t)

)
dt

Define β : [a, b] → R2 by

β(t) = (X(U(t), V (t)), Y (U(t), V (t)))

The derivative is

β′(t) =

(
∂X

∂u
U ′(t) +

∂X

∂v
V ′(t),

∂Y

∂u
U ′(t) +

∂Y

∂v
V ′(t)

)

So the last expression above is
´

(X, 0) · dβ. Finally, β gives a parametrization for ∂S, so we
get

‰

∂T

(
X
∂Y

∂u
du+X

∂Y

∂v
dv

)
= ±
‰

∂S

x dy

where the sign is + if β is counterclockwise, and − otherwise. The left integral is the same as
˜

T
J(u, v) dudv, which is positive since J(u, v) is positive. The right integral is also positive

since it is the same as
˜

S
1dxdy, so we conclude that the sign is +.

3.9.2. The case when f(x, y) is a step function. If f is a step function on S, then partition
S into subrectangles S1, . . . , Sn so that f is constant on each. Let ci be the value of f on Si.
Since (X, Y ) is invertible, let Ti be the region in the u, v plane that maps to Si. Then by
the previous case, we have
¨

S

f(x, y) =
n∑

i=1

ci

¨

Si

1 dxdy =
n∑

i=1

ci

¨

Ti

J(u, v) dudv =

¨

T

f(X(u, v), Y (u, v))J(u, v) dudv,

where the last equality uses that
˜

T
=
∑n

i=1

˜

Ti
.

3.9.3. The case of a general integrable function f . Now suppose f is an integrable function
on R. Pick step functions s, t such that s(x, y) ≤ f(x, y) ≤ t(x, y) for all x, y. In particular,
we also have

s(X(u, v), Y (u, v)) ≤ f(X(u, v), Y (u, v)) ≤ t(X(u, v), Y (u, v))

for all u, v since X(u, v), Y (u, v) is just a particular instance of x, y. Since J(u, v) > 0, we
can multiply this inequality by J(u, v) and integrate over T to get

¨

T

s(X(u, v), Y (u, v))J(u, v)dudv ≤
¨

T

f(X(u, v), Y (u, v))J(u, v)dudv

≤
¨

T

t(X(u, v), Y (u, v))J(u, v)dudv.

By the case we just saw, this can be rewritten as
¨

S

s(x, y)dxdy ≤
¨

T

f(X(u, v), Y (u, v))J(u, v)dudv ≤
¨

S

t(x, y)dxdy.

Since this is true for all s, t with s ≤ f ≤ t, we conclude that the middle integral satisfies

I(f) ≤
¨

T

f(X(u, v), Y (u, v))J(u, v)dudv ≤ I(f).
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But f is integrable, so the outer two values are the same, from which we conclude that
¨

T

f(X(u, v), Y (u, v))J(u, v)dudv =

ˆ

S

f(x, y)dxdy.

3.10. More than 2 dimensions. As I mentioned before, most everything in this section can
be adapted to n-dimensions for any n. Generalizations of Green’s theorem will be discussed
later. But here are some highlights of what goes through in a straightforward manner.

3.10.1. Type I/II regions. Given a region Q ⊆ R2 and functions ϕ1, ϕ2 : Q → R, we can
define an analogue of Type I/II regions to be those of the form

S = {(x, y, z) | (x, y) ∈ Q, ϕ1(x, y) ≤ z ≤ ϕ2(x, y)}.
If f is a continuous function on S, we have

¨

S

f =

¨

Q

ˆ ϕ2(x,y)

ϕ1(x,y)

f(x, y, z) dz.

We can also swap z with either x and y and get different kinds of regions.

3.10.2. Change of variables. Suppose we have variables u1, . . . , un and x1, . . . , xn related by
the equations

xi = Xi(u1, . . . , un) = Xi(u).

where the third expression is shorthand for the second one. We can form the Jacobian
determinant

J(u) = det




∂X1

∂u1
· · · ∂X1

∂un
...

...
∂Xn

∂u1
· · · ∂Xn

∂un


 .

Again, assuming (X1, . . . , Xn) gives an injective mapping and the Jacobian is never 0 (or
some slight relaxation of this), we have a change of variables formula for integrals:

¨

S

f(x1, . . . , xn)dx1 · · · dxn =

¨

T

f(X1(u), . . . , Xn(u))J(u) du1 · · · dun

where T is some region in u1, . . . , un-space, and

S = {(X1(u), . . . , Xn(u)) | (u1, . . . , un) ∈ T}.
Here are 2 important examples when n = 3.

Example 3.27 (Cylindrical coordinates). Cyclindrical coordinates are essentially the same
as polar coordinates. Instead of u1, u2, u3, we write r, θ, z. Here, given a point (x, y, z),
we are keeping z the same and (r, θ) are the radius and angle of (x, y) in the x, y-plane.
Specifically, we have

x = r cos θ, y = r sin θ, z = z

where we stick to the region where r ≥ 0 and 0 ≤ θ < 2π. The Jacobian determinant is

det



cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1


 = r cos2 θ + r sin2 θ = r ≥ 0.
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The point here is that cylinders are “rectangles” in the r, θ, z-variables. If we have a cylinder
S whose base circle is centered at (0, 0) and has radius R and whose height goes from h1 to
h2, then integrating a continuous function f over S becomes

¨

S

f =

ˆ h2

h1

(
ˆ 2π

0

(
ˆ R

0

f(r cos θ, r sin θ, z)r dr

)
dθ

)
dz.

Since the bounds of the integrals don’t depend on each other, you can also exchange the
order of integration if needed. �

Example 3.28 (Spherical coordinates). In spherical coordinates, we represent a point in
3-space by its distance ρ from the origin, the angle ϕ between the positive z-axis and the
vector from (0, 0, 0) to that point, and the angle θ used in cyclindrical coordinates. Since
the length of (x, y) is given by ρ sinϕ, we have

x = ρ cos θ sinϕ, y = ρ sin θ sinϕ, z = ρ cosϕ.

We also have the restrictions ρ ≥ 0, 0 ≤ θ < 2π, and 0 ≤ ϕ ≤ π. The Jacobian determinant
is (expanding along the last row)

J(ρ, ϕ, θ) = det



cos θ sinϕ ρ cos θ cosϕ −ρ sin θ sinϕ
sin θ sinϕ ρ sin θ cosϕ ρ cos θ sinϕ
cosϕ −ρ sinϕ 0




= cosϕ(ρ2 cos2 θ cosϕ sinϕ+ ρ2 sin2 θ cosϕ sinϕ)

+ ρ sinϕ(ρ cos2 θ sin2 ϕ+ ρ sin2 θ sin2 ϕ)

= ρ2 cos2 ϕ sinϕ+ ρ2 sin3 ϕ = ρ2 sinϕ.

The last quantity is ≥ 0 since 0 ≤ ϕ ≤ π.
The point here is that a 3-dimensional sphere S centered at (0, 0, 0) is a “rectangle” in

the ρ, ϕ, θ-variables. Namely, if the radius is R, then we take 0 ≤ ρ ≤ R, 0 ≤ θ < 2π, and
0 ≤ ϕ ≤ π, so integrating a continuous fnuction f over S becomes

¨

S

f =

ˆ 2π

0

(
ˆ π

0

(
ˆ R

0

f(ρ cos θ sinϕ, ρ sin θ sinϕ, ρ cosϕ)ρ2 sinϕ dρ

)
dϕ

)
dθ.

Again, you can exchange the order of integration if needed. �

4. Surface integrals

Surface integrals are 2-dimensional analogues of line integrals. To line up notation: the
surface integrals defined by Apostol are analogous to line integrals with respect to arc length.
So surface integrals are defined for scalar fields, and we’ll see what the analogue for vector
fields is. One thing surface integrals will do for us is to give us a 3-dimensional version of
Green’s theorem (also called the divergence theorem or Gauss’ theorem): the integrals of
certain functions over 3-dimensional regions can be rewritten as a surface integral over its
boundary.

4.1. Parametrizations of surfaces. For line integrals, we represented curves in space as
the image of an interval α : [a, b] → Rn. For this section, we’ll do the same for surfaces, but
stick to R3. Since we want something 2-dimensional, the interval [a, b] gets replaced by a
2-dimensional connected set T ⊆ R2 and α becomes a function r : T → R3 (the change in
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notation is to emphasize this is a surface and not a curve). We usually write the component
functions of r as X, Y, Z and the variables in T as u, v. So our surface S is the set

S = {(X(u, v), Y (u, v), Z(u, v)) | (u, v) ∈ T}.

The function r = (X, Y, Z) gives a parametric representation of S.

Example 4.1. The 2-dimensional sphere of radius r has an explicit representation given
by the function F (x, y, z) = x2 + y2 + z2 − r2. We can also parametrize it by taking
T = {(u, v) | 0 ≤ u ≤ 2π, −π/2 ≤ v ≤ π/2} and

X(u, v) = r cosu cos v, Y (u, v) = r sin u cos v, Z(u, v) = r sin v. �

Example 4.2. We can get a cone of height h with vertex at the origin whose radius at
height r is given by r with the following parametrization:

X(u, v) = v cosu, Y (u, v) = v sin u, Z(u, v) = v.

Here the domain is 0 ≤ v ≤ h and 0 ≤ u ≤ 2π. To get a cone with a different ratio, say we
want the radius at height r to be cr for some constant c, then we take

X(u, v) = cv cosu, Y (u, v) = cv sin u, Z(u, v) = v.

By making c > 1, we get wider cones than the first example, and 0 < c < 1 gives us skinnier
cones. �

Example 4.3. If a surface S is represented as the graph of a 2-variable function, i.e., we
have a function f(x, y) so that S it is the set of points {(x, y, f(x, y)) | (x, y) ∈ T} for some
region T , then we call this an explicit representation of S and we can parametrize it by
r : T → S using

X(u, v) = u, Y (u, v) = v, Z(u, v) = f(u, v).

For example, the top hemisphere of the sphere of radius R has an explicit representation
given by the function f(x, y) =

√
R2 − x2 − y2 over the region T which is the disk of radius

R. While this only gives half of the sphere, when we are doing surface integrals, we can
always chop up our surface into different pieces and integrate on each separately. �

Example 4.4. Surfaces obtained by rotating the graph of a one-variable function around
one of the axes also have an easy parametrization. If f(x) is the function, and we want to
rotate the graph of f around the x-axis, we can take

X(u, v) = u, Y (u, v) = f(u) cos v, Z(u, v) = f(u) sin v.

where here u ranges over the domain of f (which we assume is a finite interval if want a
bounded region) and 0 ≤ v ≤ 2π. �

Some terminology and notation: we will denote S by r(T ) to highlight the function r
and its domain, and call r(T ) a parametric surface. We will usually assume that r is
continuous. If r is injective, i.e., r(u, v) = r(u′, v′) if and only if (u, v) = (u′, v′), then r(T )
is a simple parametric surface.
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4.2. The fundamental vector product.

Definition 4.5. Given two 3-dimensional vectors a = (a1, a2, a3) and b = (b1, b2, b3) (the
entries are either real numbers or functions), their cross product is another 3-dimensional
vector a× b defined by

a× b = (a2b3 − a3b2,−a1b3 + a3b1, a1b2 − a2b1).

Here is a way to remember the formula: if we write vectors as a = a1i + a2j + a3k where
i, j,k are the standard basis vectors for R3, then

a× b = det



i j k
a1 a2 a3
b1 b2 b3


 . �

The cross product is special to 3-dimensions. Here’s a few basic properties of the cross
product:

• a× a = 0
• a× b = −b× a
• a× (b+ c) = a× b+ a× c
• (a+ b)× c = a× c+ b× c
• a× b is orthogonal to a and b, i.e., (a× b) · a = 0 and (a× b) · b = 0
• ‖a× b‖ is the area of the parallelogram formed by a and b.

Let r(T ) be a parametric surface. We now assume that r is differentiable and define

∂r

∂u
=

(
∂X

∂u
,
∂Y

∂u
,
∂Z

∂u

)
,

∂r

∂v
=

(
∂X

∂v
,
∂Y

∂v
,
∂Z

∂v

)
.

Given two functions F,G in variables x, y, we’ll use the shorthand:

∂(F,G)

∂(x, y)
= det



∂F

∂x

∂G

∂x
∂F

∂y

∂G

∂y




Note that ∂(F,G)
∂(x,y)

= −∂(G,F )
∂(x,y)

.

The fundamental vector product is

∂r

∂u
× ∂r

∂v
=
∂(Y, Z)

∂(u, v)
i+

∂(Z,X)

∂(u, v)
j+

∂(X, Y )

∂(u, v)
k.

A point r(a, b) ∈ r(T ) is a regular point of r if both ∂r
∂u

and ∂r
∂v

are continuous at (a, b)
and the fundamental vector product is nonzero at (a, b). All other points are called singular
points of r. The parametric surface r(T ) is smooth if all points of T are regular. Warning:
this depends on r, and not just the image of T , meaning that there are surfaces that have
both smooth parametrizations and also non-smooth parametrizations.

Theorem 4.6. Let r(T ) be a smooth parametric surface, let D be a smooth curve in T , and
let C = r(D) be the image of C under r. Then for each (a, b) ∈ D, the fundamental vector
product ∂r

∂u
(a, b)× ∂r

∂v
(a, b) is orthogonal to the tangent vector of C at r(a, b).

Proof. Let α(t) = (U(t), V (t)) be a parametrization for D. We get a parametrization ρ for
C by composing with r:

ρ(t) = r(U(t), V (t)) = (X(U(t), V (t)), Y (U(t), V (t)), Z(U(t), V (t)))
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with derivative

ρ′(t) = (∇X(U(t), V (t)) · α′(t),∇Y (U(t), V (t)) · α′(t),∇Z(U(t), V (t)) · α′(t))

=
∂r

∂u
(U(t), V (t))U ′(t) +

∂r

∂v
(U(t), V (t))V ′(t)

We know that ∂r
∂u
(U(t), V (t)) × ∂r

∂v
(U(t), V (t)) is orthogonal to both ∂r

∂u
(U(t), V (t)) and

∂r
∂v
(U(t), V (t)), so it is also orthogonal to ρ′(t) by linearity of cross products. �

Since the fundamental vector product at (a, b) is orthogonal to the tangent vector of all
curves that pass through r(a, b), we see that it is actually normal to the tangent plane at
r(a, b). Since we have a normal vector and a point on the tangent plane, we can write down
an equation for it.

Recall that if n = (n1, n2, n3) is normal to a plane, and (a, b, c) is a point on that plane,
then that plane is the set of (x, y, z) satisfying the equation

n1(x− a) + n2(y − b) + n3(z − c) = 0.

4.3. Definition of the surface integral. Consider the parametrization r : T → S. From
now on, we’ll assume that r is differentiable. Consider a rectangle in T with sides ∆u and
∆v (these are meant to indicate small values). Under r, this turns into a region which we
can linearly approximate using the partial derivatives ∂r

∂u
∆u and ∂r

∂v
∆v. By properties of

cross product mentioned earlier, the area of this approximation is ‖ ∂r
∂u

× ∂r
∂v
‖∆u∆v. Similar

to how one gets the arc length for a parametrized curve, we can write down a formula for
the surface area a(S) of S by covering T by smaller and smaller rectangles and summing the
result:

a(S) =

¨

T

∥∥∥∥
∂r

∂u
× ∂r

∂v

∥∥∥∥ dudv.

Example 4.7. Consider the parametrization of the sphere S of radius r given in Example 4.1:

X(u, v) = r cosu cos v, Y (u, v) = r sin u cos v, Z(u, v) = r sin v

where T is the region with 0 ≤ u ≤ 2π and −π/2 ≤ v ≤ π/2. We compute the partials:

∂r

∂u
= (−r sin u cos v, r cosu cos v, 0), ∂r

∂v
= (−r cosu sin v,−r sin u sin v, r cos v)

The cross product is

∂r

∂u
× ∂r

∂v
= det




i j k
−r sin u cos v r cosu cos v 0
−r cosu sin v −r sin u sin v r cos v




= (r2 cosu cos2 v)i+ (r2 sin u cos2 v)j+ (r2 sin v cos v)k.
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So

a(S) =

¨

T

√
r4(cos2 u cos4 v + sin2 u cos4 v + sin2 v cos2 v) dudv

= r2
ˆ π/2

−π/2

(
ˆ 2π

0

√
cos4 v + sin2 v cos2 v du

)
dv

= r2
ˆ π/2

−π/2

(
ˆ 2π

0

| cos v| du
)
dv

= 2πr2
ˆ π/2

−π/2
| cos v| dv = 4πr2. �

Since this is measuring a geometric quantity of S, it should not depend on the way that S
was parametrized, much like the arc length of a curve does not depend on its parametrization.
We’ll see why that is later. Using this definition, we can generalize the definition of a line
integral with respect to arc length. Let f : S → R be a bounded function on S. We define
the surface integral of f (with respect to surface area) to be

¨

r(T )

f dS :=

¨

T

f(r(u, v))

∥∥∥∥
∂r

∂u
× ∂r

∂v

∥∥∥∥ dudv

whenever the right side exists (we have discussed conditions for that to be the case, for
example if f and ∂r

∂u
and ∂r

∂v
are continuous, or they are discontinuous on a set of content

zero).
So far, this is different from how we treated line integrals: recall that we took the line

integral of a vector field, and not a scalar field. Let N = ∂r
∂u

× ∂r
∂v

be the fundamental vector
product (which is normal to S at every point) and let n = N/‖N‖ be the unit length vector
product. Given a vector field F : S → R3, the dot product F · n is a scalar field, so we can
take its integral:

¨

S

F · n dS =

¨

T

F (r(u, v)) ·
(
∂r

∂u
× ∂r

∂v

)
dudv.

This is analogous to how we defined line integrals (thinking of the fundamental vector product
as taking the role of the derivative of the parametrization). It perhaps would have been less
confusing to do this in the same order as was done in line integrals, but we’re following
Apostol’s exposition to maintain consistency. In that sense, the integral above might be
denoted

˜

F · r, but we won’t introduce that notation. To make it easier to visualize, here
is a table:

Line Surface
´

(vector field) · dα
´

(vector field) · n dS
´

(scalar field) · ds
´

(scalar field) dS

4.4. Change of parametrization. Suppose we are given a parametrized surface r : A →
R3 where A is a region in the u, v-plane. Suppose we are given another region B in the
s, t-plane and a continuously differentiable function G(s, t) = (U(s, t), V (s, t)) that sends A
to B, i.e.,

A = {(U(s, t), V (s, t)) | (s, t) ∈ B}.
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Furthermore, we assume that G is injective, i.e., G(s, t) = G(s0, t0) implies that (s, t) =
(s0, t0). If we define ρ(s, t) = r(G(s, t)), then ρ(B) is another parametrization for the surface
r(A). The parametrizations r and ρ are called smoothly equivalent.

Lemma 4.8. For any (a, b) ∈ B, we have

∂ρ

∂s
(a, b)× ∂ρ

∂t
(a, b) =

∂(U, V )

∂(s, t)

(
∂r

∂u
(U(a, b), V (a, b))× ∂r

∂v
(U(a, b), V (a, b))

)
.

Proof. By the chain rule, we have

∂ρ

∂s
=
∂r

∂u

∂U

∂s
+
∂r

∂v

∂V

∂s
,

∂ρ

∂t
=
∂r

∂u

∂U

∂t
+
∂r

∂v

∂V

∂t

where ∂r
∂u

and ∂r
∂v

are evaluated at (U(a, b), V (a, b)) and all the others are evaluated at (a, b).
The rest follows if we remember that x × y = −y × x and x × x = 0 for any vectors x,y
(and ∂U

∂s
and ∂U

∂t
evaluated at (a, b) are just numbers):

∂ρ

∂s
× ∂ρ

∂t
=

(
∂U

∂s

∂U

∂t
− ∂V

∂s

∂V

∂t

)
∂r

∂u
× ∂r

∂v
=
∂(U, V )

∂(s, t)

∂r

∂u
× ∂r

∂v
. �

Theorem 4.9. Notation as above. Let f : S → R be a bounded function such that
˜

r(A)
f dS

exists. Assume also that ∂(U,V )
∂(s,t)

is always positive. Then
˜

ρ(B)
f dS also exists and the two

integrals are equal.

Proof. We have
¨

r(A)

f dS =

¨

A

f(r(u, v))

∥∥∥∥
∂r

∂u
× ∂r

∂v

∥∥∥∥ dudv (by definition)

=

¨

B

f(r(G(s, t)))

∥∥∥∥
(
∂r

∂u
× ∂r

∂v

)
(U(s, t), V (s, t))

∥∥∥∥
∂(U, V )

∂(s, t)
dsdt (change of variables)

=

¨

B

f(ρ(s, t))

∥∥∥∥
∂ρ

∂s
× ∂ρ

∂t

∥∥∥∥ dsdt (Lemma 4.8)

=

¨

ρ(B)

f dS. �

4.5. Curl and divergence. Let F : S → R3 be a differentiable vector field defined on some
region S. Write the components of F as (P,Q,R), i.e., F = P i +Qj + Rk. The curl of F ,
denoted curlF , is another vector field defined as follows:

curlF =

(
∂R

∂y
− ∂Q

∂z

)
i+

(
∂P

∂z
− ∂R

∂x

)
j+

(
∂Q

∂x
− ∂P

∂y

)
k.

Here is a heuristic for remembering it. If we think of ∂P
∂x
, etc. as the “product” of ∂

∂x
and P ,

then curlF can be written as a determinant:

curlF = det




i j k
∂
∂x

∂
∂y

∂
∂z

P Q R


 .

Going with this a little further, we can think of the gradient ∇ as the vector ( ∂
∂x
, ∂
∂y
, ∂
∂z
),

and then the above is simply a cross product:

curlF = ∇× F.
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We have to keep in mind that this has a very specific meaning that we have just introduced
and this is not the same as we’ve been using cross products. However, this shorthand is very
helpful for remembering the formula so the abuse of notation is worth it.
The divergence of F is a scalar field, denoted divF , and is defined by

divF =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

Following our new notation, we can write this as a dot product:

divF = ∇ · F.
While we’re at it, if ϕ : S → R is a scalar field, then we can interpret the gradient as a
product ∇ϕ, which is already the notation we use.

Remark 4.10. We can interpret Theorem 2.13 as saying that if S is an open convex set
(or the generalization we discussed there), then F : S → R3 is a gradient if and only if
curlF = 0. �

Here are some basic properties of div and curl which you’ll prove in homework.

Theorem 4.11. Let S ⊂ R3, let a, b be real numbers, let F,G : S → R3 be vector fields
with continuous second partial derivatives, and let ϕ : S → R be a scalar field. The following
properties hold:

div(aF + bG) = a divF + b divG

curl(aF + bG) = a curlF + b curlG

div(curlF ) = 0

div(ϕF ) = ϕ divF +∇ϕ · F
curl(ϕF ) = ϕ curlF +∇ϕ× F.

The last two can be rewritten with our special notation:

∇ · (ϕF ) = ϕ(∇ · F ) +∇ϕ · F
∇× (ϕF ) = ϕ(∇× F ) + (∇ϕ)× F.

This looks formally like the product rule for derivatives, and gives a way to remember these
formulas more easily.

4.6. Stokes’ theorem.

Theorem 4.12 (Stokes’ theorem). Let r : T → S be a smooth, simple parametric surface,
and assume that the boundary of T is a piecewise smooth Jordan curve Γ and assume that r
has continuous second-order partial derivatives in some neighborhood of T ∪Γ. Let C = r(Γ)
be the boundary of S, and let F : S → R3 be a continuously differentiable vector field. Then

¨

S

(curlF ) · n dS =

ˆ

F · dα,

where β is a counterclockwise simple parametrization of Γ, and α = r ◦ β is a simple
parametrization of C.
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For shorthand, we might write this as
˜

S
curlF =

´

∂S
F , but we have to remember all of

the conventions in place about parametrizations. If we think of curlF as a sort of derivative
for F , then we can view this as a version of the second fundamental theorem of calculus. In
fact, Green’s theorem gives such a version for surfaces in R2, and this is just an extension
to surfaces in R3.

Proof. The idea is to replace both integrals with integrals over T and Γ, respectively, so that
the desired equality follows from Green’s theorem.

First assume that F (x, y, z) = (P (x, y, z), 0, 0) for a scalar field P , i.e., assume that the
second and third components of F are 0. In that case, curlF = (0, ∂P

∂z
,−∂P

∂y
). Define a

function ϕ : T → R by

ϕ(u, v) = P (X(u, v), Y (u, v), Z(u, v)).

Then we have the identity (deferred to homework):
(
0,
∂P

∂z
,−∂P

∂y

)
·
(
∂r

∂u
× ∂r

∂v

)
=

∂

∂u

(
ϕ
∂X

∂v

)
− ∂

∂v

(
ϕ
∂X

∂u

)
.

So the left hand side of the desired identity is
¨

T

(
0,
∂P

∂z
,−∂P

∂y

)
·
(
∂r

∂u
× ∂r

∂v

)
dudv =

¨

T

∂

∂u

(
ϕ
∂X

∂v

)
− ∂

∂v

(
ϕ
∂X

∂u

)
dudv.

Using Green’s theorem, this becomes
ˆ
(
ϕ
∂X

∂u
, ϕ
∂X

∂v

)
· dβ.

Finally, we have α(t) = (X(β(t)), Y (β(t)), Z(β(t)), so the right hand side of the desired
identity is (let [a, b] be the domain of the parametrization of β)

ˆ

F · dα =

ˆ b

a

P (r(β(t)))
d

dt
(X(β(t))) dt.

But this last integral is the same as the previous one, so we conclude that
¨

S

(curlF ) · n dS =

ˆ

F · dα

in this special case. By a similar calculation, we can show the same identity when F =
(0, Q, 0) and when F = (0, 0, R). If you add together the identities from these 3 special
cases, you get the identity for the general case. �

We can use this theorem in two ways: either to turn a line integral into a surface integral,
or the other way around.

Example 4.13. Let C be the curve of intersection of the the plane y + z = 2 and the
cylinder x2 + y2 = 1 with the orientation counterclockwise when viewed from above. If we
want to evaluate a line integral

´

f · dα where α parametrizes C counterclockwise, then we
can instead calculate

´

S
(curlF ) · n dS where S is any surface whose boundary is C (but

make sure to keep track of the orientation). There are infinitely many choices for such a
surface, one such obvious choice is the ellipse E that it fills out which is described by

E = {(x, y, z) | y + z = 2, x2 + y2 ≤ 1}.
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This is the graph of a function, so has an easy parametrization. We take T = {(u, v) |
u2 + v2 ≤ 1} and r(u, v) = (u, v, 2 − v). The boundary of T is the unit circle in the u, v-
plane, and if we parametrize it counterclockwise and then apply r, we see that we’re going
counterclockwise when looking from above, so we have the right orientation (if we didn’t, we
could just multiply by −1 at the end of our calculation).

So we get
ˆ

f · dα =

¨

E

(curl f) · n dS =

¨

T

(curl f)(r(u, v)) ·
(
∂r

∂u
× ∂r

∂v

)
dudv.

We simplify this: ∂r
∂u

= (1, 0, 0), ∂r
∂v

= (0, 1,−1), so the cross product is (0, 1, 1).
For concreteness, let’s pick f(x, y, z) = (−y2, x, z2). Then curl f = (0, 0, 1+2v), so we can

continue to simplify:
¨

T

(0, 0, 1 + 2v) · (0, 1, 1) dudv =

¨

T

(1 + 2v) dudv.

Best to use polar coordinates now:
ˆ 2π

0

ˆ 1

0

(1 + 2r sin θ)r drdθ = · · · = π. �

4.7. Uncurling a vector field. In the previous example, we use Stokes’ theorem to convert
a line integral into a surface integral. This is backwards from how we use the fundamental
theorem of calculus, i.e., moving down in the dimension should be simpler rather than harder.
To convert surface integrals into line integrals, one difficulty we face is that we need to solve
the equation curlF = G given G, analogous to how we solve the equation f ′ = g when we
solve 1-dimensional integrals.

As explained before, if curlF has continuous partial derivatives, then we have div(curlF ) =
0, so given G, we can’t solve this equation unless divG = 0. In some cases, this is actually
enough to guarantee that F exists. You can think of this as analogous to the statement
that gradient satisfies certain equalities among its partial derivatives, and that in some cases
(like convex regions), these equalities also guarantee that a vector field is actually a gradient.
Here’s one such statement (recall that an interval in R3 is a rectangular prism, i.e., a region
of the form [a1, b1]× [a2, b2]× [a3, b3]):

Theorem 4.14. Let G be a continuously differentiable vector field on an interval in R3.
Then there exists a vector field F with curlF = G if and only if divG = 0. Furthermore,
we can define F as follows. Fix a point (x0, y0, z0) in the interval. Then we can take
F = (0,M,N) where

M(x, y, z) =

ˆ x

x0

G3(t, y, z) dt−
ˆ z

z0

G1(x0, y, u) du

N(x, y, z) = −
ˆ x

x0

G2(t, y, z) dt.

If our vector field is defined on all of R3, the above still works since we can pick a point
(x0, y0, z0) once and for all and verify that the formulas work in any interval containing this
point (and hence everywhere). For simplicity, we can take the point (0, 0, 0).

Proof. We already know that the existence of F implies that divG = 0, so we just need
to verify that the formula above works under the assumption that divG = 0. We will use
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Theorem 2.14, which says that we can differentiate the integrals in the above formula by
differentiating the integrand, and we will also use both fundamental theorems of calculus for
1-dimensional integrals. With our formula, we have curlF = (∂N

∂y
− ∂M

∂z
,−∂N

∂x
, ∂M
∂x

). Now we

verify:

∂N

∂y
− ∂M

∂z
= −
ˆ x

x0

∂G2

∂y
(t, y, z) dt−

ˆ x

x0

∂G3

∂z
(t, y, z) dt+G1(x0, y, z)

=

ˆ x

x0

∂G1

∂x
(t, y, z) dt+G1(x0, y, z)

= G1(x, y, z)−G1(x0, y, z) +G1(x0, y, z) = G1(x, y, z)

where in the second line we used that divG = 0. We also have

−∂N
∂x

= G2(x, y, z),
∂M

∂x
= G3(x, y, z)

by the first fundamental theorem of calculus. So we conclude that curlF = G. �

Example 4.15. Let G(x, y, z) = (x, y,−2z), so divG = 0. The above theorem tells us that
G = curlF where F = (0,M,N) and

M(x, y, z) =

ˆ x

0

−2z dt−
ˆ z

0

0 du = −2xz,

N(x, y, z) = −
ˆ x

0

y dt = −xy.

You can verify directly that curl(0,−2xz,−xy) = (x, y,−2z). �

How unique is the solution? If curlF = curlH = G, then curl(F − H) = 0, and since
intervals (and R3) are convex, by Remark 4.10, there exists a scalar field ϕ such that ∇ϕ =
F − H. Hence any two solutions to curlF = G differ by the gradient of a scalar field. So
the most general solution to curlF = G is

F =

(
∂ϕ

∂x
,M +

∂ϕ

∂y
,N +

∂ϕ

∂z

)

where M,N are defined as in the previous theorem.

4.8. The divergence theorem. We will need the notion of an orientable surface in R3.
Given a parametrization, we have discussed the unit normal vector of the fundamental
vector product. There are actually 2 unit normal vectors: the one we discussed as well as
its negative. We’ll say that a surface is orientable if it is possible to choose a unit normal
vector at all points in a continuous way. If it is not possible, we call it non-orientable. For
example, the 2-sphere is orientable: we can choose the unit normals to be pointing “outside”.
An example of a non-orientable surface is the Möbius strip, which is drawn as follows and
has the following parametrization (−1/2 ≤ r ≤ 1/2 and 0 ≤ θ ≤ 2π):

X(r, θ) = 2 cos θ + r cos(θ/2), Y (r, θ) = 2 sin θ + r cos(θ/2), Z(r, θ) = r sin(θ/2)
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If you’ve never seen this before, take a sheet of paper, wrap the ends around and rotate
one of the sides and tape them together.

Finally, a surface is closed if its complement is open, it is bounded, and it has no boundary.

Theorem 4.16 (Divergence theorem). Let V be a bounded 3-dimensional region in R3 whose
boundary is an orientable closed surface S, and let n be the unit normal vector field on S
which points away from V . If F : V → R3 is a continuously differentiable vector field, then

¨

V

(divF ) dxdydz =

¨

S

F · n dS.

Proof. The proof of the divergence theorem can be done by a strategy similar to the proof
we gave for Green’s theorem. First one assumes that the region V is simultaneously of type
I, type II, and what you would call type III (for 3-dimensions). The point is to first consider
vector fields F where only one of its component functions is nonzero and then to explicitly
compare the two sides of the equations. This gives 3 different special identities which can be
added together to get the general identity. More general regions can be handled by cutting
them into pieces which are simultaneously of types I, II, and III. We won’t go through the
details, though you can find them in §12.19 of Apostol. �

Again, we can think of the divergence of a vector field as a sort of derivative, so that this
can be thought of as a 3-dimensional version of the second fundamental theorem of calculus.

Remark 4.17. The divergence theorem can be used to prove an alternative formula for the
divergence of a vector field which can then be used to give a physical interpretation. See
§12.20 of Apostol for details, though we won’t discuss it in this class. �

Example 4.18. Consider the region V bounded by the graph of z = 1− x2 and the planes
z = 0, y = 0, and y+z = 2 and let S be the boundary. There are 4 pieces of S, so evaluating
surface integrals directly requires a bunch of work. Alternatively, we can use the divergence
theorem to get

¨

S

F · n dS =

¨

V

divF dxdydz

where n is the outwards pointing normal. The region V can be described by 3 inequalities:

V = {(x, y, z) | −1 ≤ x ≤ 1, 0 ≤ z ≤ 1− x2, 0 ≤ y ≤ 2− z},
so we can setup the triple integral as follows:

ˆ 1

−1

(
ˆ 1−x2

0

(
ˆ 2−z

0

divF dy

)
dz

)
dx. �
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Since integrating the function 1 on a 3-dimensional region gives us its volume, we can use
the divergence theorem to turn this problem into a surface integral since div(ax, by, cz) = 1
whenever a+ b+ c = 1. So if V has boundary S, then

vol(V ) =

¨

V

dxdydz =

¨

S

(ax, by, (1− a− b)z) · n dS

for any choice of a, b ∈ R and where n is the outwards pointing normal. I don’t know of a
good example where the surface integral is actually less work, but let’s see how this would
work for the ball of radius R.

Example 4.19. If V is the ball of radius R, then its boundary S is the sphere of radius R.
We can parametrize S by taking T = {(u, v) | 0 ≤ u ≤ 2π, −π/2 ≤ v ≤ π/2} and

r(u, v) = (R cosu cos v,R sin u cos v, R sin v).

In Example 4.7, we computed the fundamental vector product to be

∂r

∂u
× ∂r

∂v
= (R2 cosu cos2 v, R2 sin u cos2 v, R2 sin v cos v).

Let’s take F = 1
3
(x, y, z). Then

vol(V ) =
1

3

¨

S

(x, y, z) · n dS

=

¨

T

R3

3
(cos2 u cos3 v + sin2 u cos3 v + sin2 v cos v) dudv

=
R3

3

¨

T

cos v dudv

=
R3

3

ˆ π/2

−π/2

(
ˆ 2π

0

cos v du

)
dv

=
2πR3

3

ˆ π/2

−π/2
cos v dv =

4πR3

3
. �

5. Linear differential equations

5.1. Definitions. In our discussion of differential equations, an interval shall mean some-
thing of the form (a, b) where a, b are either real numbers of ±∞. We will denote it by J
throughout. If both a, b are numbers, then J is bounded, otherwise, it is unbounded.
Let C n(J) denote the set of functions f : J → R such that the derivatives f ′, f ′′, . . . , f (n−1), f (n)

all exist and are continuous on J . Some special cases: if n = 0, then C 0(J) is the set of con-
tinuous functions on J (with no requirement on the existence of derivatives) and if n = ∞,
then C ∞(J) is the set of functions with all derivatives. Note that C n(J) is a vector space
with the usual addition of functions and scalar multiplication by real numbers. We will use
the convention that f (0) = f , i.e., the zeroth derivative of a function is the function itself.

Let P1(x), . . . , Pn(x), R(x) ∈ C 0(J). We consider the differential equation

y(n) + P1(x)y
(n−1) + · · ·+ Pn(x)y = R(x).

The n here is the order of the equation, and we say first-order, second-order, etc. Solving
the differential equation means finding a function f such that substituting y = f(x) makes
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the above equality true. Associated to the equation above we have a linear transformation

L : C
n(J) → C

0(J)

L(f) = f (n) + P1f
(n−1) + · · ·+ Pnf

since L(f + g) = L(f) + L(g) and L(cf) = cL(f) for any real number c. Alternatively, we
are trying to find some f such that L(f) = R. The derivative operator will be denoted by
D, i.e., D(f) = f ′, so we can write L = Dn + P1D

n−1 + · · ·+ Pn.
The equation L(y) = 0 is called the homogeneous equation of the differential equation

above, and L(y) = R is the nonhomogeneous equation when R is not the zero function.
The solutions to L(y) = 0 is the nullspace of L (by definition). We will use the word

kernel in place of nullspace, and denote it by kerL. As you have seen, kerL is a subspace
of C n(J).

5.2. Existence-uniqueness of solutions. Throughout this section, we keep the notation
from the previous section.

Theorem 5.1. Pick x0 ∈ J and let k0, . . . , kn−1 be real numbers. Then there is exactly one
function y = f(x) such that L(y) = 0 and f (i)(x0) = ki for i = 0, . . . , n− 1.

The conditions f (i)(x0) = ki are called the initial conditions. The proof is discussed in
Chapter 7 of Apostol, so we will postpone it until we discuss that material. Using it, we can
prove the dimensionality theorem:

Theorem 5.2 (Dimensionality theorem). dimkerL = n.

Proof. Pick x0 ∈ J . The previous theorem tells us that each f ∈ kerL is determined by
the n numbers f(x0), f

′(x0), . . . , f
(n−1)(x0). In particular, the linear map kerL→ Rn which

sends f to this n-tuple is an isomorphism of vector spaces. �

Corollary 5.3. If u1, . . . , un ∈ C n(J) are linearly independent elements of kerL, then every
f ∈ kerL has a unique expression

f = c1u1 + · · ·+ cnun

for some real numbers c1, . . . , cn.

Proof. Since dim kerL = n, any collection of n linearly independent elements is a basis. �

Now consider the original problem of finding solutions for L(f) = R.

Corollary 5.4. Let u1, . . . , un be a basis for kerL and let y1 satisfy L(y1) = R. Then all
solutions to L(f) = R can be uniquely written in the form

y1 + c1u1 + · · ·+ cnun

for real numbers c1, . . . , cn, and all such expressions are solutions.

Proof. Let y satisfy L(y) = R. Then L(y−y1) = 0, so y−y1 ∈ kerL and hence y−y1 can be
written uniquely as a linear combination of the u1, . . . , un. Conversely, L(y1 + c1u1 + · · · +
cnun) = L(y1) = R since c1u1 + · · ·+ cnun ∈ kerL. �

Hence to solve the differential equation L(f) = R, there are two parts. First, we find a
basis for kerL. Second, we find a single solution to L(f) = R. In this case, we call y1 a
particular solution, and y1 + c1u1 + · · ·+ cnun the general solution. We now discuss how to
do the first step in a special case.
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5.3. The constant-coefficient case. The simplest case to consider is when all of the func-
tions Pi are constant. To emphasize that they are constants, we will write ai instead of Pi.
In that case, we call L a constant-coefficient operator.

Given a constant-coefficient operator A = Dn+a1D
n−1+· · ·+an, we define its character-

istic polynomial pA(t) = tn+ a1t
n−1 + · · ·+ an. We now work with infinitely differentiable

functions, i.e., the space C ∞(J). Note that a constant-coefficient operator A defines a linear
map C ∞(J) → C ∞(J). In that case, it makes sense to compose two constant-coefficient
operators A,B, and we have AB = BA, i.e., they commute.

Theorem 5.5. Let A,B be constant-coefficient operators. Then

(1) pA(t) = pB(t) if and only if A = B,
(2) pA+B = pA + pB,
(3) pAB = pApB,
(4) pcA = cpA for any real number c.

Proof. Certainly pA = pB implies that A = B. Conversely, suppose that A = B, i.e.,
A(f) = B(f) for all f ∈ C ∞(J). In particular, consider f(x) = erx for some real number
r. Then A(f) = pA(r)e

rx and B(f) = pB(r)e
rx which means that pA(r) = pA(r) for all real

numbers r, so pA(t) and pB(t) are the same polynomial.
The other properties follow from the definitions, and the proof is omitted. �

The polynomial pA(t) can be factored as a product of linear factors over the complex
numbers (by the fundamental theorem of algebra). Note that if λ is a root of pA(t), then
so is its complex conjugate λ (since the coefficients of pA(t) are real), so the non-real roots
of pA(t) come in complex conjugate pairs. Note that (t− λ)(t− λ) has real coefficients. So
we conclude that any pA(t) can always be factored as a product of linear polynomials and
quadratic polynomials all with real coefficients. Furthermore, we may assume that all of the
quadratic polynomials have no real solutions, which is equivalent to its discriminant being
negative (recall the discriminant of at2 + bt+ c is b2 − 4ac).
Every polynomial is the characteristic polynomial of some constant-coefficient operator,

so we can write the factorization as

pA(t) = pA1
(t) · · · pAk

(t)

where each Ai is either a first-order or second-order differential equation. Note that this
implies an identity

A = A1 · · ·Ak.
Theorem 5.6. Suppose we have a factorization of a constant-coefficient operator as a prod-
uct of other constant-coefficient operators

A = A1 · · ·Ak.
Then kerAi ⊆ kerA for all i = 1, . . . , k.

Proof. Since constant-coefficient operators commute, for any i we can write A = BAi where
B is the product of the Aj where j 6= i. If f ∈ kerAi, then we have A(f) = B(Ai(f)) =
B(0) = 0, so f ∈ kerA. �

We now solve the homogeneous equation of the general constant-coefficient operator. We
first factor

pA(t) = pA1
(t)m1 · · · pAk

(t)mk
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where the pAi
are all distinct polynomials with leading coefficient 1, which are either linear,

or quadratic with no real roots. The mi are positive integers, called the multiplicities of
the pAi

. We first solve the cases pAi
(t)mi and then combine the answers.

Lemma 5.7. Given a real number r, the functions u1(x) = erx, u2(x) = xerx, · · · , um(x) =
xm−1erx form a basis for ker((D − r)m).

Proof. First, we show that (D − r)mui(x) = 0 for i = 1, . . . ,m. We have

(D − r)xierx = (xi−1erx + rxierx)− rxierx = xi−1erx.

From this, we see that (D − r)m(xierx) = 0 if 0 ≤ i ≤ m− 1.
Now we claim that u1, . . . , um are linearly independent. Suppose that there are real num-

bers c1, . . . , cm such that

c1u1 + · · · cmum = 0.

Divide by erx to get c1 + c2x + · · · + cmx
m−1 = 0. This is true for all x, which implies

that c1 + c2x + · · · + cmx
m−1 is the zero polynomial, i.e., all ci = 0, which proves linear

independence.
Finally, the dimensionality theorem implies that dim ker(D − r)m = m, so these linearly

independent elements must form a basis. �

Lemma 5.8. Suppose that b2 − 4c < 0 and let α + iβ and α − iβ be the complex solutions
to t2 + bt+ c = 0. For j = 1, . . . ,m, define

uj(x) = xj−1eαx cos(βx), vj(x) = xj−1eαx sin(βx).

Then u1, . . . , um, v1, . . . , vm is a basis for ker(D2 + bD + c)m.

Proof. While this can be done without using complex numbers, it is easier if we take advan-
tage of a few identities:

eix = cos(x) + i sin(x), cos(x) =
1

2
(eix + e−ix), sin(x) =

1

2i
(eix − e−ix).

Adapting the previous result, a basis for ker(D − (α + iβ))m is given by

e(α+iβ)x, xe(α+iβ)x, . . . , xm−1e(α+iβ)x.

Similarly, for ker(D − (α− iβ))m, a basis is given by

e(α−iβ)x, xe(α−iβ)x, . . . , xm−1e(α−iβ)x.

Next, we have

e(α+iβ)x = eαx(cos(βx) + i sin(βx)),

so

xjeαx cos(βx) =
1

2
(xje(α+iβ)x + xje(α−iβ)x),

xjeαx sin(βx) =
1

2i
(xje(α+iβ)x − xje(α−iβ)x).

So uj, vj ∈ ker(D2 + bD+ c)m. We’ll omit the check that these are linearly independent (I’ll
outline one way in homework). Given that fact, they form a basis by the dimensionality
theorem. �
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For the general case, we take the bases for each ker(Ami

i ) and combine them to get a set
of solutions for ker(A). In fact, these solutions are all linearly independent. We won’t prove
this for the sake of avoiding heavy amounts of notation, but one way to do it would be to
argue that if a linear combination with coefficients ci were 0, then the corresponding Taylor
series of the linear combination also has to be 0. Then one uses that the Taylor series of a
sum is the sum of the corresponding Taylor series, and this will force all of the ci to be 0
(there are other ways to do it).

Example 5.9. Suppose that

pA(t) = (t+ 4)2(t− 3)3(t2 − 2t+ 5)2.

The roots of t2 − 2t+ 5 are 1± 2i, so a basis for ker(D2 − 2t+ 5)2 is given by

ex cos(2x), xex cos(2x), ex sin(2x), xex sin(2x).

Hence a basis for kerA is these 4 functions together with the following 5 functions:

e−4x, xe−4x, e3x, xe3x, x2e3x. �

5.4. Finding a particular solution. We return to the general problem of a linear differ-
ential equation (not necessarily constant-coefficient). Recall that our equations is

y(n) + P1(x)y
(n−1) + · · ·+ Pn(x)y = R(x).

Suppose we find a basis u1, . . . , un for kerL. Define the Wronskian to be the following
n× n matrix whose (i, j) entry is the (i− 1)st derivative of uj:

W (x) =




u1(x) u2(x) · · · un(x)
u′1(x) u′2(x) · · · u′n(x)
...

u
(n−1)
1 (x) u

(n−1)
2 (x) · · · u

(n−1)
n (x)


 .

Theorem 5.10. W (x) is invertible for all x ∈ J .

Proof. Pick c ∈ J . Suppose that we have a solution W (c)α = 0 for some column vector
α = (α1, . . . , αn). Set f(x) = α1u1(x) + · · · + αnun(x). Multiplying out W (c)α = 0 shows
that f(c) = f ′(c) = · · · = f (n−1)(c) = 0. But f ∈ kerL, and has the same initial conditions
as the zero function, so the existence-uniqueness theorem implies f is the zero function.
Since the ui are linearly independent, we conclude that α1 = · · · = αn = 0, so the only
solution to W (c)α = 0 is α = 0. This implies that W (c) is invertible. �

In particular, we can define W (x)−1 for all x ∈ J .
In what follows, the integral of a column vector is the column vector we get from taking

the integral of each entry.

Theorem 5.11. Pick c ∈ J . Let v1(x), . . . , vn(x) be the entries of the column vector

v(x) =

ˆ x

c

W (t)−1




0
...
0

R(t)


 dt.

Here, the integral of a column vector means take the integral of each entry. Then y1 =
v1(x)u1(x) + · · ·+ vn(x)un(x) is a solution to the differential equation L(f) = R.
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Proof. Take the derivative of v(x) to get

v′(x) = W (x)−1




0
...
0

R(x)


 ,

or equivalently,

W (x)v′(x) =




0
...
0

R(x)


 .

It will be convenient to treat v as a row vector and u = (u1, . . . , un) and write y1 = v · u.
The above matrix equation says that v′ · u(i) = 0 for i = 0, . . . , n − 2 and v′ · u(n−1) = R.
Now let’s take derivatives of y1.

y′1 = v′ · u+ v · u′ = v · u′,
y′′1 = v′ · u′ + v · u′′ = v · u′′,
...

y
(n−1)
1 = v′ · u(n−2) + v · u(n−1) = v · u(n−1)

y
(n)
1 = v′ · u(n−1) + v · u(n) = R + v · u(n)

Hence, we have

y
(n)
1 + P1y

(n−1)
1 + · · ·+ Pny1 = R + v · (P1u

(n) + · · ·+ Pnu) = R

where the last equality follows from the fact that ui ∈ kerL for each i. �

Example 5.12. Consider the differential equation on J = (−∞,∞)

y′′ − 4y = ex

The characteristic polynomial is t2 − 4 = (t − 2)(t + 2), so a basis for kerL is given by
u1(x) = e2x, u2(x) = e−2x. The Wronskian is

W (x) =

[
e2x e−2x

2e2x −2e−2x

]
,

and its inverse is

W (x)−1 =
1

4

[
2e−2x e−2x

2e2x −e2x
]
.

We’ll take c = 0 and compute

v(x) =
1

4

ˆ x

0

[
2e−2t e−2t

2e2t −e2t
] [

0
et

]
dt =

1

4

ˆ x

0

[
e−t

−e3t
]
dt =

1

4

[
−e−x + 1

(−e3x + 1)/3

]
.

So a particular solution is given by

v1(x)u1(x) + v2(x)u2(x) =
1

4
(1− e−x)e2x +

1

12
(1− e3x)e−2x = −e

x

3
+
e2x

4
+
e−2x

12
,
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and the general solution is

−e
x

3
+
e2x

4
+
e−2x

12
+ c1e

2x + c2e
−2x

where c1, c2 are real numbers. �

Example 5.13. Consider the differential equation

y′ + P (x)y = R(x)

on some integral J . The homogeneous equation can be rewritten as

y′

y
= −P (x).

The left hand side is the logarithmic derivative of y: it is the derivative of ln(y) wherever
y takes positive values. Pick a point c ∈ J . This allows us to write ln(y) = −

´ x

c
P (t) dt.

Set A(x) =
´ x

c
P (t) dt. Then the solution is any scalar multiple of e−A(t). Call this function

u1(x). Then the Wronskian is just a 1× 1 matrix with entry u1(x), so we have

v(x) =

ˆ x

c

R(t)

u1(t)
dt =

ˆ x

c

R(t)eA(t) dt,

and so the general solution is

e−A(t)
ˆ x

c

R(t)eA(t) dt+ αe−A(t)

where α ∈ R. �

6. Systems of differential equations

6.1. Notation. We are now concerned with systems of differential equations with several
unknown functions y1, . . . , yn. We will study the case of first-order equations, and in partic-
ular, systems which consist of n equations of the form

y′1 = p1,1(t)y1 + · · ·+ p1,n(t)yn + q1(t)

...

y′n = pn,1(t)y1 + · · ·+ pn,n(t)yn + qn(t)

where the pi,j(t), q(t) are functions on some given interval J . It will be convenient to write
these in matrix notation. So we set

Y =



y1
...
yn


 , P (t) =

[
pi,j(t)

]n
i,j=1

, Q(t) =



q1(t)
...

qn(t)


 ,

and write our system of equations as

Y ′ = P (t)Y +Q(t).

Remark 6.1. A single nth order differential equation as we considered in the previous
section can be encoded as a system of first order differential equations as follows. Suppose
we’re given the equation

y(n) + P1(t)y
(n−1) + · · ·+ Pn(t)y = R(t).
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Consider the n− 1 equations y′i = yi+1 for i = 1, . . . , n− 1 together with equation

y′n = −P1(t)yn − P2(t)yn−1 − · · · − Pn(t)y1 +R(t)

For any solution to this system, the function y1 gives a solution to our original equation. �

So we will extend the familiar operations of calculus to matrices of functions. Integrals
and derivatives are taken entrywise, meaning that the integral of a matrix is just the matrix
obtained by taking the integral term by term, and similarly for derivatives. We still have
the familiar sum and product rules:

(P +Q)′ = P ′ +Q′, (PQ)′ = P ′Q+ PQ′.

6.2. Matrix exponentials. An important idea is the exponential of an n×n matrix, which
cannot be defined entrywise (for example, we want e0 = In where 0 is the 0 matrix and I is
n× n the identity matrix).

The useful way to define eA, where A an n×n matrix, is to use the Taylor series expansion
of ex:

eA = In +
∑

k≥1

Ak

k!
.

Since this is an infinite sum, we have to first make sense of what it means to converge.
However, we can already see that it satisfies e0 = In.

Definition 6.2. Let (Ck)k≥1 be a sequence of matrices and let c
(k)
ij be the (i, j) entry of

Ck. We say that the infinite sum
∑

k≥1Ck is convergent if each of the sums
∑

k≥1 c
(k)
ij

is convergent for all pairs i, j. In that case, the (i, j) entry of
∑

k≥1Ck is defined to be
∑

k≥1 c
(k)
ij . �

Our goal now is to prove that the sum
∑

k≥1
Ak

k!
is convergent for any square matrix A.

To do that, we introduce the norm of a matrix.

Definition 6.3. Let A be an m×n (real or complex) matrix. The norm of A, denoted ‖A‖,
is defined to be

‖A‖ =
m∑

i=1

n∑

j=1

|ai,j|. �

Theorem 6.4. Let A,B be matrices and c a scalar. The following hold (whenever the sizes
of A,B allow the expressions to make sense):

(1) ‖A+B‖ ≤ ‖A‖+ ‖B‖,
(2) ‖AB‖ ≤ ‖A‖‖B‖,
(3) ‖cA‖ = |c|‖A‖.

Proof. (1) For all i, j, we have |ai,j + bi,j| ≤ |ai,j| + |bi,j|. Add together these inequalities to
get ‖A+B‖ ≤ ‖A‖+ ‖B‖.
(2) The (i, j) entry of AB is

∑
k ai,kbk,j. For each triple i, j, k, the term |ai,k||bk,j| appears

in ‖A‖‖B‖. Furthermore, all of the terms in that product are ≥ 0, so we get

‖AB‖ =
∑

i,j

|
∑

k

ai,kbk,j| ≤
∑

i,j

∑

k

|ai,k||bk,j| ≤ ‖A‖‖B‖.

(3) Follows from the fact that |cai,j| = |c||ai,j|. �
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Theorem 6.5. Let (Ck)k≥1 be a sequence of matrices such that
∑

k≥1 ‖Ck‖ converges. Then∑
k≥1Ck also converges.

Proof. For each (i, j), we have ‖Ck‖ ≥ |c(k)ij |. Recall that a non-negative and bounded

sequence converges – the partial sums
∑N

k=1 |c
(k)
ij | are non-negative and bounded from above

by
∑

k≥1 ‖Ck‖ and hence converge. This means that
∑

k≥1 c
(k)
ij is absolutely convergent, and

hence convergent. �

Corollary 6.6. Let A be an n× n matrix. Then
∑

k≥1A
k/k! converges.

Proof. We set Ck = Ak/k!. Then ‖Ck‖ ≤ ‖A‖k/k!. The sum
∑

k≥1 ‖A‖k/k! is convergent

(and equal to e‖A‖ − 1), and hence
∑

k≥1 ‖Ck‖ is also convergent (it is non-negative and
bounded from above), so by the previous theorem, we are done. �

Now that the sum is well-defined, we can make the definition

eA = In +
∑

k≥1

Ak

k!
.

We will use the convention that A0 = I for any matrix A, so that the sum can be written
more succinctly as

eA =
∑

k≥0

Ak

k!
.

Theorem 6.7. If A and B are n × n matrices which commute, i.e., AB = BA, then
eA+B = eAeB.

Proof. eA+B is the limit of the series
∑

k≥0
(A+B)k

k!
. Let

(
k
i

)
= k!

i!(k−i)! . Since AB = BA, we

can expand (A+B)k using the binomial theorem:

(A+B)k

k!
=

1

k!

k∑

i=0

(
k

i

)
AiBk−i =

k∑

i=0

Ai

i!

Bk−i

(k − i)!
.

If we sum this over k = 0, 1, . . . , we can factor the sum:

eA+B =
∑

k≥0

k∑

i=0

Ai

i!

Bk−i

(k − i)!
=

(
∑

i≥0

Ai

i!

)(
∑

j≥0

Bj

j!

)
= eAeB. �

Corollary 6.8. For any square matrix A, we have eAe−A = I. In particular, eA is invertible.

Proof. A and −A commute with each other, and eA−A = e0 = I. �

6.3. Differential equations satisfied by etA. Let A be a square matrix. Consider the
matrix-valued function

E(t) = etA.

Recall that we define the derivative of a matrix-valued function by taking derivatives in each
entry separately and this satisfies the product rule.

Theorem 6.9. E ′(t) = AE(t).
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Proof. Let c
(k)
ij be the (i, j)-entry of Ak. The (i, j)-entry of E(t) is

∑

k≥0

c
(k)
ij t

k

k!
.

Taking the derivative (which can be done term-by-term since the power series converges in
an interval, namely everywhere), we get

∑

k≥1

c
(k)
ij t

k−1

(k − 1)!
=
∑

k≥0

c
(k+1)
ij tk

k!
.

So we get

E ′(t) =
∑

k≥0

Ak+1tk

k!
= AE(t). �

Theorem 6.10. Let A be an n × n square matrix and let B ∈ Rn be an n-dimensional
column vector. Pick a ∈ R. The differential equation with initial condition

Y ′(t) = AY (t), Y (a) = B

has a unique solution on (−∞,∞), which is Y (t) = e(t−a)AB.

Proof. The derivative of e(t−a)AB is Ae(t−a)AB, so it satisfies the differential equation and
initial condition, so we just have to show that it is the only solution.
Suppose that Z(t) is another solution, i.e., that Z ′(t) = AZ(t) and Z(a) = B. Set

G(t) = e−(t−a)AZ(t). Then

G′(t) = −Ae−(t−a)AZ(t) + e−(t−a)AZ ′(t) = −Ae−(t−a)AZ(t) + e−(t−a)AAZ(t) = 0

where the last equality follows since e−(t−a)AA = Ae−(t−a)A. In particular, G(t) is a constant
matrix (independent of t). In particular, G(t) = G(a) = Z(a) = B. This implies that
Z(t) = e(t−a)AB = Y (t). �

Remark 6.11. Combined with Remark 6.1, this theorem gives a proof of the existence-
uniqueness theorem (Theorem 5.1) in the constant-coefficient case. �

We can use this to solve the constant-coefficient non-homogeneous case as well. Consider
the equation

Y ′(t) = AY (t) +Q(t)

where A is an n×n matrix of scalars and Q(t) is a n-dimensional column vector of functions
which are continuous on an interval J .

Theorem 6.12. Notation as above. Pick a ∈ J . The differential equation with initial
condition

Y ′(t) = AY (t) +Q(t), Y (a) = B,

has a unique solution on J , which is

Y (x) = e(x−a)AB + exA
ˆ x

a

e−tAQ(t) dt.
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Proof. The derivative of our proposed solution is

Ae(x−a)AB + AexA
ˆ x

a

e−tAQ(t) dt+ exAe−xAQ(x),

so it satisfies the differential equation. Also, setting x = a gives B so it also satisfies the
initial condition.

Suppose that Z(x) is another solution to the differential equation. Then Y (x) − Z(x) is
a solution to the homogeneous equation (with no Q(t)), and Y (a) − Z(a) = 0. So by the
uniqueness statement in Theorem 6.10, we have Y (x)− Z(x) = 0 (as functions), and hence
Y (x) = Z(x). �

6.4. Calculating matrix exponentials for diagonalizable matrices. If A is diagonal
with diagonal entries λ1, . . . , λn, then Ak is also diagonal with entries λk1, . . . , λ

k
n. In that

case, the matrix exponential is easy to calculate since we just get a diagonal matrix with
entries eλ1 , . . . , eλn .

Next, suppose that A is diagonalizable and write it as CDC−1 where D is diagonal with
entries λ1, . . . , λn. Then (CDC−1)k = CDkC−1, so we get

eA =
∑

k≥0

Ak

k!
=
∑

k≥0

CDkC−1

k!
= C

(
∑

k≥0

Dk

k!

)
C−1 = Cdiag(eλ1 , . . . , eλn)C−1.

Example 6.13. Consider the matrix A =

(
6 −1
2 3

)
. We will skip the computation of

eigenvalues and eigenvectors; the eigenvalues of A are 5 and 4, and for eigenvectors, we can

take

(
1
1

)
and

(
1
2

)
. So we have

A = CDC−1, D =

(
5 0
0 4

)
, C =

(
1 1
1 2

)
, C−1 =

(
2 −1
−1 1

)
.

So we get

eA =

(
1 1
1 2

)(
e5 0
0 e4

)(
2 −1
−1 1

)
=

(
2e5 − e4 −e5 + e4

2e5 − 2e4 −e5 + 2e4

)
. �

Example 6.14. The method above will also work if the eigenvalues are complex. Consider

A =

(
0 −1
1 0

)
. The characteristic polynomial is t2 + 1 so its eigenvalues are i,−i. For

eigenvectors, we can take

(
1
−i

)
and

(
1
i

)
. So we have

A = CDC−1, D =

(
i 0
0 −i

)
, C =

(
1 1
−i i

)
, C−1 =

1

2

(
1 i
1 −i

)
.

So we get

eA =
1

2

(
1 1
−i i

)(
ei 0
0 e−i

)(
1 i
1 −i

)
=

(
cos(1) − sin(1)
sin(1) cos(1)

)
,

where in the last equality, we used the identity eix = cos(x) + i sin(x).
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We can also verify this by hand without using complex numbers. The powers of A happen
to have nice expressions:

A =

(
0 −1
1 0

)
, A2 =

(
−1 0
0 −1

)
, A3 =

(
0 1
−1 0

)
, A4 =

(
1 0
0 1

)
,

and so, in general, A4+k = Ak. We split the sum for eA into the even and odd powers:

eA =
∑

k≥0

A2k

(2k)!
+
∑

k≥0

A2k+1

(2k + 1)!
=
∑

k≥0

1

(2k)!

(
(−1)k 0
0 (−1)k

)
+
∑

k≥0

1

(2k + 1)!

(
0 (−1)k+1

(−1)k 0

)
.

We can recognize those sums as the Taylor series for sin(x) and cos(x) with x = 1, so this
gives another way to get our answer. �

Example 6.15. Unfortunately, not all matrices are diagonalizable, for example consider

A =

(
λ 1
0 λ

)
. Its characteristic polynomial is (t − λ)2, but the eigenspace for λ is only

1-dimensional. Fortunately, this one can be done by hand using the law of exponents. Write

A =

(
λ 0
0 λ

)
+

(
0 1
0 0

)
.

Call these two matrices D and N . Then DN = ND, so we get

eA = eDeN =

(
eλ 0
0 eλ

)(
1 1
0 1

)
=

(
eλ eλ

0 eλ

)

where the calculation of eN follows because N2 = 0. �

Actually, these 3 examples are illustrative of the general situations for 2 × 2 matrices.
Given a 2× 2 matrix A, there are 3 possibilities:

(1) A is diagonalizable with real eigenvalues,
(2) A is diagonalizable with complex eigenvalues,
(3) A is not diagonalizable.

The first two cases are handled the same exact way, so we don’t need to distinguish them
actually. In the third case, the only thing that can go wrong is that the characteristic
polynomial of A has a repeated root, so looks like (t − λ)2, but the λ-eigenspace only has
dimension 1. In general for that case, we can always find an invertible matrix C so that

A = C

(
λ 1
0 λ

)
C−1.

Remark 6.16. Here’s how you find C: first let v be a nonzero eigenvector for A with
eigenvalue λ: Av = λv. Then find another nonzero vector w satisfying the equation Aw =
λw + v. Let C be the matrix whose columns are v and w (in that order). We won’t go into
the details of why this is possible or do these kinds of computations. �

For general n×n matrices A, one can appeal to the existence of Jordan canonical form.
This says that we can find an invertible matrix C (we have to allow the possibility of complex
entries) so that

CAC−1 = D +N

where D is diagonal (possibly complex) and N is nilpotent (i.e., Nn = 0) and DN = ND. In
fact, we can also find these matrices so that N is 0 everywhere except on the superdiagonal
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(the entries in row i and column i + 1 for some i) where the entries are either 0 or 1. We
won’t discuss Jordan canonical form here, you’ll see it in Math 542. But once you have it,
you can compute eA using the ideas from the examples above.

There are some other methods for calculating eA in §7.13 and §7.14 in Apostol, but we
won’t discuss these.

6.5. Proof of uniqueness-existence for linear systems of differential equations. We
now return to our general system of equations

Y ′ = P (t)Y +Q(t), Y (a) = B

where P,Q are continuous on some interval J and a ∈ J . We have already discussed how to
solve this when P (t) is constant and we have a uniqueness-existence theorem for the solution.
Now we discuss this more general situation. A method for obtaining a solution is discussed
in §7.18 of Apostol. We will not go into the details; the formula is rather complicated and I
think it’s a better use of time to discuss the proof of uniqueness-existence since it will involve
some mathematical ideas you likely have not come across yet.

Here is the formal statement:

Theorem 6.17. Let J be an (open) interval. Let A(t) be an n×n matrix of functions which
are continuous on J . Pick a ∈ J and let B ∈ Rn be a column vector. Then the system of
differential equations with initial condition

Y ′(t) = A(t)Y (t), Y (a) = B

has exactly one solution on J .

First, we have to show that some solution exists, and we will produce one using Picard’s
method of successive approximations. The idea is to start with some proposed solution, and
try to successively improve it. For example, first start with the constant Y0(t) = B. This
generally won’t be a solution unless A(t) is identically 0. In any case, we substitute Y0 into
Y in the right hand side of the equation to get

Y ′(t) = A(t)B, Y (0) = B

However the left hand side does not involve Y anymore, so this is something easy to solve
using first-year calculus, the answer is

Y1(x) = B +

ˆ x

a

A(t)B dt.

Now we substitute Y1 into the right hand side to get

Y ′(t) = A(t)Y1(t), Y (0) = B,

which we can again solve:

Y2(x) = B +

ˆ x

a

A(t)Y1(t) dt,

and so on... so we define Yi+1(x) = B +
´ x

a
A(t)Yi(t) dt in general. Here we are thinking of

the sequence Y0, Y1, Y2, . . . as approximations of the actual solution which get “closer” as we
do more steps.
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Example 6.18. Consider the constant-coefficient case Y ′(t) = AY (t) with Y (0) = B. Take
J = (−∞,∞) and a = 0. If we use the idea above, our functions are

Y0(t) = B,

Y1(t) = B +

ˆ x

0

AB dt = B + xAB,

Y2(t) = B +

ˆ x

0

A(B + tAB) dt = B + xAB +
x2

2
A2B,

Y3(t) = B +

ˆ x

0

A(B + xAB +
x2

2
A2B) dt = B + xAB +

x2

2
A2B +

x3

6
A3B,

and in general we would get Ym(t) =
∑m

i=0
xi

i!
AiB. Taking the limit m → ∞, we get

Y (t) = eAB, which we’ve already seen is the solution. �

Fortunately, this works in general! Here’s the statement:

Theorem 6.19. Notation as above. Define a function Y : J → R by

Y (x) = lim
k→∞

Yk(x)

for x ∈ J . Then

(1) For all x ∈ J , the limit above exists.
(2) Y is a continuous function.
(3) Y (x) = B +

´ x

a
A(t)Y (t) dt for all x ∈ J . In particular, Y (a) = B.

(4) Y is differentiable, and Y ′(x) = A(x)Y (x) for all x ∈ J .

Proof. (1) First rewrite Yk as a telescoping sum:

Yk(x) = Y0(x) +
k−1∑

m=0

(Ym+1(x)− Ym(x)).

It is enough to show that the telescoping sum converges for all x when k → ∞. To do that,
we will show that the infinite sum of norms

∑

m≥0

‖Ym+1(x)− Ym(x)‖

converges for all x. So pick a specific value of x. The functions in the entries of A(t) are
continuous on the closed interval whose endpoints are a to x, so they are bounded. Let M
be a value which bounds the sum of all of these functions on this closed interval. Then we
claim that

‖Ym+1(x)− Ym(x)‖ ≤ ‖B‖M
m+1|x− a|m+1

(m+ 1)!
.

We will prove this by induction on m. When m = 0, we have

‖Y1(x)− Y0(x)‖ =

∥∥∥∥
ˆ x

a

A(t)B dt

∥∥∥∥ ≤ ±
ˆ x

a

‖A(t)‖‖B‖ dt ≤ ±
ˆ x

a

M‖B‖ dt ≤ ‖B‖M |x− a|,

where we use that the absolute value of an integral is bounded from above by the integral
of the absolute value and the sign is + if a < x and − if a > x.
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For the induction step with m > 0, we have

‖Ym+1(x)− Ym(x)‖ =

∥∥∥∥
ˆ x

a

A(t)(Ym(t)− Ym−1(t)) dt

∥∥∥∥

≤ ±
ˆ x

a

‖A(t)‖‖Ym(t)− Ym−1(t)‖ dt

≤ ±
ˆ x

a

M‖B‖M
m|t− a|m
m!

dt

≤ ‖B‖M
m+1|x− a|m+1

(m+ 1)!
,

where in the third line we used the induction hypothesis and again the sign is + if a < x
and − if a > x. This proves the induction step, so the claim is proven.

Next, we have

∑

m≥0

‖Ym+1(x)− Ym(x)‖ ≤ ‖B‖
∑

m≥0

(M |x− a|)m+1

(m+ 1)!
= ‖B‖(eM |x−a| − 1),

so the sum on the left converges since it has all non-negative terms and is bounded from
above.

(2) We will skip the proof of (2). This is discussed in §7.21 in Apostol, but relies on the
notion of uniform convergence which we have not discussed, and is covered in a later course
(Math 521).

(3) Consider the equations

Yk+1(x) = B +

ˆ x

a

A(t)Yk(t) dt.

Take the limit of both sides and exchange the integral with the limit (this requires an appeal
to uniform convergence to justify, so we omit it) to get

Y (x) = B +

ˆ x

a

A(t)Y (t) dt.

If we take x = a, the right side just becomes B, so Y (a) = B.
(4) Since Y is continuous on J , the integrand A(t)Y (t) is also continuous on J , so the

function
´ x

a
A(t)Y (t) dt is differentiable by the first fundamental theorem of calculus (applied

to each term of the matrix). Adding constants from B doesn’t affect that. Finally, taking
derivatives then yields Y ′(x) = A(x)Y (x). �

Proof of Theorem 6.17. We have just constructed a solution, so it remains to show that there
can only be one solution. Let Y (x) and Z(x) both be solutions to the differential equation
with initial condition.

Using the differential equation, we have

Z ′(t)− Y ′(t) = A(t)(Z(t)− Y (t)).

Integrate this from a to x to get

Z(x)− Z(a)− Y (x) + Y (a) =

ˆ x

a

A(t)(Z(t)− Y (t)) dt.
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Since Z(a) = B = Y (a), those terms cancel on the left side. As before, continuous functions
on the closed interval with endpoints x and a are bounded. Let M be a bound for ‖A(t)‖
and let M1 be a bound for ‖Z(t)− Y (t)‖ on this interval. We claim that

‖Z(x)− Y (x)‖ ≤MmM1
|x− a|m
m!

for all integers m ≥ 0. We prove this by induction. The base case m = 0 follows from the
definition of M1. Now we do the induction step and assume it holds for some m > 0. Then
we get

‖Z(x)− Y (x)‖ ≤ ±
ˆ x

a

‖A(t)‖‖Z(t)− Y (t)‖ dt

≤ ±
ˆ x

a

M(MmM1
|t− a|m
m!

) dt

≤Mm+1M1
|x− a|m+1

(m+ 1)!
.

where the sign is + if a < x and − if a > x. This proves the induction step, and hence the
general claim.

Now take the limit as m→ ∞ of both sides of the inequality:

‖Z(x)− Y (x)‖ ≤ lim
m→∞

M1
(M |x− a|)m

m!
.

The limit on the right is 0 (this is a general fact from first-year calculus: limm→∞ |x|m/m! = 0
for any x), so ‖Z(x)− Y (x)‖ = 0, which is only possible if Z(x) = Y (x). �

Finally, we can consider the case when Q(t) is also present. The existence of a solution is
given in §7.18 of Apostol, and uniqueness follows from uniqueness in the homogeneous case
since the difference of any two solutions of the non-homogeneous equation is a solution of
the homogeneous one with the same initial condition as the 0 solution.
Even if this method is impractical to carry out by hand, we see that it has an important

theoretical consequence. However, it can also be used for actual approxiations. Say we only
want to approximate the values of Y (x) at some number x. Then the steps above could be
performed some number of times (the integrals being approximated as well) and we’d get
an approximate solution. To understand how good this approximation actually is, we would
need to study the error terms, which is beyond the scope of what we will discuss.

6.6. Non-linear first-order systems. Thus far, we’ve only talked about linear differential
equations, i.e., they only involve derivatives of our functions, the original functions, and
linear combinations (possibly with functions as our coefficients), but we never multiply them
together. An example of a non-linear differential equation is

y′(t) = t2 + y(t)2.

We won’t really expect to be able to find explicit solutions in general, but it would at the
very least be useful to have uniqueness-existence theorems for these kinds of equations. We
restrict to first-order, meaning we don’t take the derivative more than once. However, we’ll
continue to allow matrix-valued functions. So our general setup is

Y ′(t) = F (t, Y (t)), Y (a) = B



NOTES FOR MATH 376 (SPRING 2018) 57

where Y is an n-dimensional column vector of functions, and F is also an n-dimensional
column vector of functions. This generalizes our previous situation if we take F (t, Y (t)) =
A(t)Y (t). We can try to use Picard’s method of successive approximations in this situation
as well. So we’d define a sequence of column vectors by

Y0(x) = B, Yk+1(x) = B +

ˆ x

a

F (t, Yk(t)) dt (k ≥ 0).

This won’t generally work (the proof before required that we could bound certain terms),
but it will work if we impose some extra conditions.

Again we have a uniqueness-existence theorem (known as the Picard–Lindelöf theorem)
in the presence of some hypotheses. They are a bit technical, so I will point you to §7.23 of
Apostol for the statement. The precise details aren’t going to be super important for us in
this class. What I want to discuss instead is a more general context that this fits into.

6.7. Contractions and Banach fixed-point theorem. Go back to the differential equa-
tion

Y ′(t) = A(t)Y (t), Y (a) = B.

Given a continuous function f : R → Rn, we defined a new function T (f) : R → Rn by
T (f)(x) = B +

´ x

a
A(t)Y (t) dt and repeatedly applied the transformation T to an initial

guess Y0(x) = B. So we obtained a sequence Y0, T (Y0), T
2(Y0), T

3(Y0), . . . and showed that
the limit limk→∞ T k(Y0) exists, and is a solution to the original equation. To put this into a
more general framework, we make some definitions.

Definition 6.20. Let V be a real vector space. A function N : V → R is a norm if it
satisfies the following properties:

(1) N(x) ≥ 0 for all x ∈ V ,
(2) N(cx) = |c|N(x) for all c ∈ R and x ∈ V ,
(3) (Triangle inequality) N(x+ y) ≤ N(x) +N(y) for all x, y ∈ V ,
(4) N(x) = 0 implies x = 0.

A normed vector space is a pair (V,N) where V is a vector space and N is a norm on it.
Usually we just write V instead of (V,N). �

Instead of N(x), we will usually just write ‖x‖. We usually think of ‖x‖ as the “size” of
x, and so ‖x− y‖ can be thought of as the “distance” between x and y.

Example 6.21. (1) V = Rn and ‖x‖ =
√
x21 + · · ·+ x2n. This is the Euclidean norm.

(2) V = Rn and ‖x‖1 = |x1|+ · · ·+ |xn|. When V is the space of matrices of some size,
this is the matrix norm we discussed earlier.

(3) Choose real numbers a < b and let C ([a, b]) be the vector space of continuous func-
tions ϕ : [a, b] → R. The max norm is ‖ϕ‖ = maxa≤x≤b |ϕ(x)|. More generally, we
can consider the space of functions from [a, b] to Rn and define the max norm by
‖ϕ‖ = maxa≤x≤b ‖ϕ(x)‖1. �

Definition 6.22. Let V be a normed vector space.

(1) A sequence x1, x2, · · · ∈ V is a Cauchy sequence if for all ε > 0, there exists N so
that n,m ≥ N implies that ‖xn − xm‖ < ε.

(2) A sequence x1, x2, · · · ∈ V converges to x ∈ V if limn→∞ ‖x− xn‖ = 0. �
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Intuitively, a sequence is Cauchy if the points are getting very close to each other as
we go farther out into the sequence. Using the triangle inequality, we can show that any
sequence that converges to some value must be a Cauchy sequence. Furthermore, the triangle
inequality can be used that a sequence has a unique limit, meaning there it cannot converge
to two different points. There are examples of Cauchy sequences that do not converge, but
they will in examples of interest.

Definition 6.23. A normed vector space is complete if every Cauchy sequence converges
to some value. A Banach space is a complete normed vector space. �

The examples of norms mentioned above are all complete, so they all define Banach spaces.
The fact that the max norm is complete is a non-trivial statement which is something we
won’t discuss. While it is not bad to show that a Cauchy sequence under max norm has a
limit to some function, the hard part is to prove that this resulting function is still continuous.

Definition 6.24. Let V,W be Banach spaces. A function f : V → W is a contraction if
there exists a constant c with 0 ≤ c < 1 such that

c‖x− y‖V ≥ ‖f(x)− f(y)‖W
for all x, y ∈ V . (Here the subscript denotes where the norms are computed.) �

In other words, a contraction is a function which shrinks distances between points (but it
is important that it shrinks by a guarenteed ratio, which is the constant c).

Theorem 6.25 (Banach fixed point theorem). Let V be a Banach space. Let f : V → V be
a contraction. Then there exists a unique x ∈ V such that f(x) = x.

This can be proven in a more general context where V only has the notion of distance
but is not necessarily a vector space (“metric spaces”). We will see how this applies to
existence-uniqueness theorems by considering the case when V is the space of continuous
matrix-valued functions on [a, b].

Proof. Let x0 be any point in V , and in general, define xn = f(xn−1) = fn(x0). We claim
that x0, x1, x2, . . . is a Cauchy sequence. Let c be the contraction constant for f . First, we
have

‖xn − xn−1‖ ≤ c‖xn−1 − xn−2‖ ≤ c2‖xn−2 − xn−3‖ ≤ · · · ≤ cn−1‖x1 − x0‖.
By repeatedly using the triangle inequality, for n ≥ m, we have

‖xn − xm‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − xn−2‖+ · · ·+ ‖xm+1 − xm‖.
Combining these two inequalities, we get

‖xn − xm‖ ≤ (cn−1 + cn−2 + · · ·+ cm)‖x1 − x0‖ = cm
1− cn−m

1− c
‖x1 − x0‖ ≤ cm

‖x1 − x0‖
1− c

.

The point is that the last expression can be made arbitrarily small by taking m large enough
since c < 1. Hence this is a Cauchy sequences, so limn→∞ xn exists by completeness, call
the limit x∗. This means that limn→∞ ‖x∗ − xn‖ = 0. Since f is a contraction, we have
limn→∞ ‖f(x∗) − f(xn)‖ ≤ c limn→∞ ‖x∗ − xn‖ = 0, so f(x∗) = limn→∞ f(xn). But this is
the same sequence as before (with x0 missing), so f(x∗) = x∗.

Finally, suppose there is another point z such that f(z) = z. Then ‖z − x∗‖ ≤ c‖z − x∗‖
which implies that ‖z − x∗‖ = 0 (otherwise we could divide and get 1 ≤ c). But this means
z = x∗. �
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6.8. Applications to differential equations. Let V be the space of continuous functions
ϕ : [a, b] → Rn with the max norm

‖ϕ‖ = max
a≤x≤b

(|ϕ1(x)|+ · · ·+ |ϕn(x)|).

We have the differential equation

Y ′(t) = A(t)Y (t), Y (α) = B

where a < α < b. Define a function

T : V → V

T (ϕ)(x) = B +

ˆ x

α

A(t)ϕ(t) dt.

As in the proof of Theorem 6.19, the entries of the function A(t) are bounded on [a, b], so set
M = maxa≤t≤b ‖A(t)‖ (here we take max over matrix norm). Then for two functions ϕ, ψ,
we have

(T (ϕ)− T (ψ))(x) =

ˆ x

α

A(t)(ϕ(t)− ψ(t)) dt,

and so the maximum over all x is then

‖T (ϕ)− T (ψ)‖ ≤ |b− a|M‖ϕ− ψ‖.
If |b − a|M < 1, then T is a contraction. If we make the interval smaller, M will still be
an upper bound for maxt ‖A(t)‖. So to force T to be a contraction, we can pick a closed
interval around α which has length < 1/M .

In that case, the fixed point theorem tells us that there is a unique continuous function Y
(on this smaller interval) such that T (Y ) = Y . This means that

Y (x) = B +

ˆ x

α

A(t)Y (t) dt.

In particular, Y (α) = B, and taking derivatives shows that Y ′(x) = A(x)Y (x), which is what
we wanted. Of course, we want a solution not just on the small interval. To get around this,
we can pick two different intervals whose lengths are < 1/M which contain α. Suppose they
both contain an open interval around α. Then the functions produced by the fixed-point
theorem must agree on this open interval by uniqueness. Hence, we end up with a function
defined on the union of these two intervals. We can keep extending our solution by changing
α to a different value in the union of these two intervals. In this way, we can guarantee a
solution on the whole interval [a, b].

Looking at the more general situation

Y ′(t) = F (t, Y (t)), Y (α) = B

on some interval [a, b], we can mimick the situation and define T : V → V by

T (ϕ)(x) = B +

ˆ x

α

F (t, ϕ(t) dt.

If we want this to be a contraction, we can restrict our attention to functions F that satisfy
the additional condition

‖F (t, ϕ)− F (t, ψ)‖ ≤ c‖ϕ− ψ‖
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for some constant c. Then, as above, we can show that

‖T (ϕ)− T (ψ)‖ ≤ |b− a|c‖ϕ− ψ‖
and shrink our interval so that its length is < 1/c. The fixed point is then the unique solution
on this small interval, and we can extend it in the same way as discussed above.
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