Math 184, Fall 2019

Homework 1

Due: Friday, Oct. 11 by 3:00PM in homework box #2 in basement of AP&M (late homework will not be accepted)

Explanations should be given for your solutions. Use complete sentences.

(1) Prove that every polynomial in x can be written as a linear combination of the polynomials

 $1, 2x - 1, (2x - 1)^2, (2x - 1)^3, (2x - 1)^4, \dots$

- (2) How many ways are there to list the letters of the word MATHEMATICIAN?
- (3) How many integers are there between 10000 and 99999 in which all digits are different?
- (4) Let $n \ge 3$ be an integer. Define the following sets:

 $A = \{S \subseteq [n] \mid 1 \in S \text{ and } 3 \in S\},\$ $B = \{S \subseteq [n] \mid 1 \in S \text{ and } 3 \notin S\},\$ $C = \{S \subseteq [n] \mid 1 \notin S \text{ and } 3 \notin S\},\$ $D = \{S \subseteq [n] \mid |\{1,3\} \cap S| \ge 1\}.$

Find formulas for the size of each set.

- (5) (a) We want to select three subsets A, B, and C of [n] so that $A \subseteq C$ and $B \subseteq C$. How many ways can this be done?
 - (b) We want to select three subsets A, B, and C of [n] so that $A \subseteq C$, $B \subseteq C$, and $A \cap B \neq \emptyset$. How many ways can this be done?
- (6) Fix a positive integer n ≥ 1. Let A₁ be the set of subsets S ⊆ [n] with no consecutive elements, i.e., if i ∈ S, then i + 1 ∉ S. For example, when n = 3, |A₁| = 5 and A₁ is the following set of subsets:
 Ø, {1}, {2}, {3}, {1,3}.

Let A_2 be the set of ways of tiling the $2 \times (n+1)$ rectangle with the shapes: 2×1

rectangle and 1×2 rectangle without any overlaps.

For example, when n = 3, $|A_2| = 5$ and A_2 is the following set of tilings:

Construct a bijection between A_1 and A_2 (and prove that it is a bijection).

You may use the fact, without proving it, that the following configuration never appears in a tiling:

Hint: Consider the column indices where there are horizontal tiles.