Math 184, Fall 2019
Homework 3
Due: Friday, Nov. 1 by 3:00PM in homework box \#2 in basement of AP\&M (late homework will not be accepted)

Explanations should be given for your solutions. Use complete sentences. Some hints are on the last page.
(1) Evaluate the following sums:
(a) $\sum_{i=0}^{n}\binom{n}{i} \frac{1}{2^{i}}$
(b) $\sum_{i=0}^{n} i\binom{n}{i} 3^{i}$
(2) Fix positive integers n, m, k. Prove that

$$
\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}=\binom{n+m}{k}
$$

(3) Let $n \geq 2$ be an integer.
(a) Prove that

$$
\sum_{i=0}^{n} i\binom{n}{i}(-1)^{i-1}=0
$$

(b) Deduce from (a) that

$$
\sum_{\substack{0 \leq i \leq n \\ i \text { odd }}} i\binom{n}{i}=\sum_{\substack{0 \leq i \leq n \\ i \text { even }}} i\binom{n}{i}
$$

and compute the common value.
(4) (a) Using the multinomial theorem, compare the coefficients of both sides of the equation $(x+y+z)(x+y+z)^{n}=(x+y+z)^{n+1}$ to get a generalization of Pascal's identity for multinomial coefficients.
(b) Do the same thing with k variables for general k.
(5) A "forward path" in the plane is a sequence of steps of the form $(1,0)$ and $(0,1)$.
(a) How many forward paths are there from $(0,0)$ to (a, b) where a, b are non-negative integers?
(b) Let $S_{a, b}$ be the set of integer partitions λ such that $\ell(\lambda) \leq b$ and $\lambda_{1} \leq a$. Find a bijection between $S_{a, b}$ and the set of forward paths from (0,0) to (a, b).
(c) Generalize this definition to d dimensions by only allowing steps which increase one of the coordinates by 1 (so $(1,0,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0,0, \ldots, 1)$). How many forward paths are there from $(0,0, \ldots, 0)$ to $\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ where a_{1}, \ldots, a_{d} are non-negative integers?

Hints:

5b: Draw a rectangle with endpoints $(0,0),(a, 0),(a, b),(0, b)$. Think of a forward path as splitting this rectangle into two pieces and consider the portion above the path.

