Math 251C, Spring 2020
Homework 1
(1) (a) Let $\mathbf{C}^{\times} \cong \mathbf{G L}_{1}(\mathbf{C})$ be the group of nonzero complex numbers under multiplication. Show that every 1-dimensional rational representation $\rho: \mathbf{C}^{\times} \rightarrow \mathbf{C}^{\times}$must be $\rho(z)=z^{d}$ for some integer d.
(b) Conclude that every weight of a rational $\mathbf{G L}_{n}(\mathbf{C})$-representation is of the form $\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}}$ for integers μ_{1}, \ldots, μ_{n} where $\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$ means diagonal matrix with the entries x_{1}, \ldots, x_{n}.
(2) (a) A complete flag of V is a sequence of subspaces $V_{1} \subset V_{2} \subset \cdots \subset V_{n}=V$ where $\operatorname{dim} V_{i}=i$. Show that Borel subgroups $B \subset \mathbf{G L}(V)$ are in bijection with complete flags.
(b) Show that maximal tori $T \subset \mathbf{G L}(V)$ are in bijection with direct sum decompositions $V=L_{1} \oplus \cdots \oplus L_{n}$ where $\operatorname{dim} L_{i}=1$.
(3) As representations of $\mathbf{G L} L_{n}(\mathbf{C})$, find all of the highest weight vectors in $\mathbf{C}^{n} \otimes \mathbf{C}^{n}$ and $\mathbf{C}^{n} \otimes \mathbf{C}^{n} \otimes \mathbf{C}^{n}$.
(4) Let $U=\left\{(u, t) \mid u \in \mathbf{C}^{n \times n}, t \in \mathbf{C}\right\}$ be the vector space of pairs consisting of an $n \times n$ matrix and complex number. Define an action of $\mathbf{G L}_{n}(\mathbf{C}) \times \mathbf{G} \mathbf{L}_{n}(\mathbf{C})$ on U by

$$
(g, h) \cdot(u, t)=\left(\left(g^{-1}\right)^{T} u h^{-1},(\operatorname{det} g)(\operatorname{det} h) t\right) .
$$

Let $X=Z(t$ det $u-1)$. Show that X is closed under the action of $\mathbf{G L}_{n}(\mathbf{C}) \times \mathbf{G L}_{n}(\mathbf{C})$, that $\mathbf{C}[X]$ is a multiplicity-free representation, and determine which representations appear.
(5) Let $U=\left(\mathbf{C}^{n} \otimes \mathbf{C}^{m}\right)^{*}$ as in the example on generic matrices.
(a) Define $X_{\leq r}=\{u \in U \mid \operatorname{rank} u \leq r\}$ where the rank is in the sense of matrices. Show that this is Zariski closed and that it is closed under the action of $\mathbf{G L} \mathbf{L}_{n}(\mathbf{C}) \times$ $\mathbf{G L}_{m}(\mathbf{C})$. Show that these are all of the Zariski closed subsets closed under the action of $\mathbf{G L}_{n}(\mathbf{C}) \times \mathbf{G L}_{m}(\mathbf{C})$.
(b) Determine the structure of the coordinate ring $\mathbf{C}\left[X_{\leq r}\right]$ as a representation.
(c) Let $I_{\leq r}$ be the ideal of all polynomials in $\mathbf{C}[U]$ that are identically 0 on $X_{\leq r}$. Determine the structure of $I_{\leq r}$ as a representation and find generators for it as an ideal.
(d) Repeat the first 3 steps when U is the space of symmetric matrices and when U is the space of skew-symmetric matrices.

