Math 251C, Spring 2020
Homework 2
(1) Show that the dual of an irreducible representation is also irreducible. Compute the highest weight of $\left(\mathbf{S}_{\lambda} \mathbf{C}^{n}\right)^{*}$.

Hint: find an SSYT whose basis vector is invariant under lower triangular matrices
(2) Let $h_{d}\left(x_{1}, \ldots, x_{n}\right)$ be the character of $\operatorname{Sym}^{d} \mathbf{C}^{n}$.
(a) Let q be an indeterminate. Show that

$$
h_{d}\left(1, q, \ldots, q^{n}\right)=h_{d-1}\left(1, q, \ldots, q^{n}\right)+q^{d} h_{d}\left(1, q, \ldots, q^{n-1}\right) .
$$

(b) Define $[n]_{q}=\frac{1-q^{n}}{1-q},[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}$, and $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$.

Show that $h_{d}\left(1, q, \ldots, q^{n}\right)=\left[\begin{array}{c}d+n \\ d\end{array}\right]_{q}$.
(c) Prove the following Hermite reciprocity identity:

$$
\operatorname{Sym}^{d}\left(\operatorname{Sym}^{n}\left(\mathbf{C}^{2}\right)\right) \cong \operatorname{Sym}^{n}\left(\operatorname{Sym}^{d}\left(\mathbf{C}^{2}\right)\right)
$$

as $\mathbf{G L}_{2}(\mathbf{C})$-representations.
Hint: Reduce this to characters and do the substitution $x_{1} \mapsto q, x_{2} \mapsto 1$.
Remark: This is specific to $\mathbf{G L}_{2}(\mathbf{C})$ and false once we move to more variables. The Foulkes conjecture states that the multiplicity of $\mathbf{S}_{\lambda}\left(\mathbf{C}^{n}\right)$ in $\operatorname{Sym}^{d}\left(\operatorname{Sym}^{e}\left(\mathbf{C}^{n}\right)\right)$ is at least its multiplicity in $\operatorname{Sym}^{e}\left(\operatorname{Sym}^{d}\left(\mathbf{C}^{n}\right)\right)$ whenever $d \geq e$.
(d) Let $e_{d}\left(x_{1}, \ldots, x_{n}\right)$ be the character of $\bigwedge^{d} \mathbf{C}^{n}$. Show that

$$
e_{d}\left(1, q, \ldots, q^{n}\right)=q^{\binom{d}{2}}\left[\begin{array}{c}
n+1 \\
d
\end{array}\right]_{q}
$$

and use this to prove $\bigwedge^{d}\left(\operatorname{Sym}^{n} \mathbf{C}^{2}\right)$ is isomorphic (up to a power of determinant) to a composition of symmetric powers.
(3) Show that the complement of the line spanned by Ω in $\Lambda^{2} \mathbf{C}^{2 n}$ is an irreducible $\mathrm{Sp}_{2 n}(\mathbf{C})$ representation.
(4) Prove the properties of isotropic subspaces of $\mathbf{C}^{2 n}$ stated in the notes:
(a) Every 1-dimensional subspace is isotropic.
(b) If V is isotropic, then $\operatorname{dim} V \leq n$.
(c) Given 2 isotropic subspaces V_{1}, V_{2} with $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}$, there exists $g \in$ $\mathbf{S p}_{2 n}(\mathbf{C})$ such that $g V_{1}=V_{2}$.
(d) Every isotropic subspace is contained in an n-dimensional isotropic subspace.
(5) In general, irreducible implies connected, but not the converse. Show that if the space is a group (and the group operations are continuous), then connected does implies irreducible.
(6) This exercise gives generators for $\mathbf{G L}_{n}(\mathbf{C})$ and shows that it is connected in the Zariski topology (it easily applies also to the standard Euclidean topology).
(a) A transvection $E_{i, j ; a}$ is the operator $e_{k} \mapsto e_{k}$ for $k \neq i$, and $e_{i} \mapsto e_{i}+a e_{j}$. Show that every $g \in \mathbf{G} \mathbf{L}_{n}(\mathbf{C})$ can be written as a product of transvections and a diagonal matrix.
(b) Given $g=E_{i_{1}, j_{1} ; a_{1}} \cdots E_{i_{r}, j_{r} ; a_{r}} d$ with d diagonal, define $\alpha_{g}: \mathbf{C} \rightarrow \mathbf{G L}_{n}(\mathbf{C})$ by $\alpha_{g}(t)=E_{i_{1}, j_{1} ; t a_{1}} \cdots E_{i_{r}, j_{r} ; a_{r}} d$. Show that α_{g} is continuous and conclude that every matrix is in the same connected component as a diagonal matrix.
(c) Show that the set of diagonal matrices is connected and conclude that $\mathbf{G L}_{n}(\mathbf{C})$ is connected.
(7) This exercise gives generators for $\mathbf{S p}_{2 n}(\mathbf{C})$ and shows that it is connected in the Zariski topology (it easily applies also to the standard Euclidean topology).
(a) Given $a \in \mathbf{C}^{2 n}$ and $\lambda \in \mathbf{C}$, define

$$
T_{a, \lambda}(x)=x+\lambda \omega(x, a) a .
$$

Show that $T_{a, \lambda} \in \mathbf{S p}_{2 n}(\mathbf{C})$. This is called a symplectic transvection. Let $S T$ be the subgroup of $\mathbf{S p}_{2 n}(\mathbf{C})$ generated by symplectic transvections.
(b) Pick $u, v \in \mathbf{C}^{2 n} \backslash 0$. If $\omega(u, v) \neq 0$, we have $T_{v-u, \omega(u, v)^{-1}}(u)=v$. If $\omega(u, v)=0$, show there exists $w \in \mathbf{C}^{2 n}$ so that $\omega(u, w) \neq 0$ and $\omega(v, w) \neq 0$.
Conclude that $S T$ acts transitively on $\mathbf{C}^{2 n} \backslash 0$.
(c) Define (u, v) to be a hyperbolic pair if $\omega(u, v)=1$. Show that $S T$ acts transitively on hyperbolic pairs as follows. Given $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$, there is a symplectic transvection T so that $T\left(u_{1}\right)=u_{2}$. If $\omega\left(v_{2}, T\left(v_{1}\right)\right) \neq 0$, construct another symplectic transvection T^{\prime} such that $T^{\prime}\left(u_{2}\right)=u_{2}$ and $T^{\prime}\left(T\left(v_{1}\right)\right)=v_{2}$. Otherwise, use $\left(u_{2}, u_{2}+T\left(v_{1}\right)\right)$ as an intermediate step using the previous case.
(d) Show by induction on n that $S T=\mathbf{S p}_{2 n}(\mathbf{C})$ as follows. Deduce the case $n=1$ from the previous part.
For $n>1$, given $g \in \mathbf{S p}_{2 n}(\mathbf{C})$, there is a symplectic transvection T such that $T\left(g\left(e_{1}\right)\right)=e_{1}$ and $T\left(g\left(e_{-1}\right)\right)=e_{-1}$. Next, $T g$ acts on $\mathbf{C}^{2 n-2}=\operatorname{span}\left(e_{2}, \ldots, e_{n}, e_{-n}, \ldots, e_{-2}\right)$ and preserves its symplectic form. Let g^{\prime} be the corresponding element of $\mathbf{S} \mathbf{p}_{2 n-2}(\mathbf{C})$. By induction, g^{\prime} is a product of symplectic transvections in $\mathbf{S p}_{2 n-2}(\mathbf{C})$. Use this to show that g is a product of symplectic transvections in $\mathbf{S p}_{2 n}(\mathbf{C})$.
(e) Finally, if $g \in \mathbf{S p}_{2 n}(\mathbf{C})$, write it as a product $T_{a_{1}, \lambda_{1}} \cdots T_{a_{r}, \lambda_{r}}$. Define a function $\alpha_{g}: \mathbf{C} \rightarrow \mathbf{S p}_{2 n}(\mathbf{C})$ by $\alpha_{g}(t)=T_{a_{1}, t \lambda_{1}} \cdots T_{a_{r}, t \lambda_{r}}$. Show that α_{g} is continuous with respect to the Zariski topology. Conclude that g is in the same connected component as the identity matrix and hence $\mathbf{S p}_{2 n}(\mathbf{C})$ is connected.

