
Math 251C, Spring 2020
Homework 3

(1) Let R be a commutative ring. A sequence f1, . . . , fr ∈ R is a regular sequence if:
• For all i, multiplication by fi onR/(f1, . . . , fi−1) is injective, i.e., gfi ∈ (f1, . . . , fi−1)

implies that g ∈ (f1, . . . , fi−1) (for i = 1, we interpret (f1, . . . , fi−1) = 0).
• (f1, . . . , fr) 6= R

(a) Now suppose R = k[x1, . . . , xn] is a polynomial ring over a field k and that each
fi is a homogeneous polynomial of degree di. Show that∑

d≥0

dimk(R/(f1, . . . , fr))dt
d =

∏r
i=1(1− tdi)
(1− t)n

where the subscript denotes the space of degree d homogeneous elements.
(b) Prove Theorem 2.3.2 (first prove the map is surjective without the regularity

assumption, then use dimension counting in each degree to prove injectivity).
(2) Prove Corollary 2.3.3 using Theorem 2.3.2.
(3) Prove Proposition 2.3.4 using Theorem 2.3.5.
(4) This exercise gives generators for SOm(C) and outlines a proof that it is connected

in the Zariski topology (it easily applies also to the standard Euclidean topology).
(a) Let V be an orthogonal space with orthogonal form β and pick a non-isotropic

a ∈ V . Define

sa(x) = x− 2β(x, a)

β(a, a)
a.

Show that sa ∈ O(V ) and det(sa) = −1. This is called an (orthogonal)
reflection.

(b) The Cartan–Dieudonné theorem states: every element g ∈ O(V ) is a product of
≤ dimV many reflections. Prove it as follows.

(i) If dimV ≤ 2, do it directly.
Otherwise, dimV ≥ 3 and we split it into 3 cases.

(ii) Case 1: g fixes a non-isotropic vector v, (use that g fixes v⊥).
(iii) Case 2: There is a non-isotropic vector v such that v−g(v) is non-isotropic.

Show that sv−g(v)g fixes v and appeal to Case 1.
(iv) Case 3: Every fixed point of g is isotropic and for every non-isotropic v,

v − g(v) is isotropic. In that case, prove that
• v − g(v) is isotropic for all v ∈ V .
Hint: pick a non-isotropic vector w ∈ v⊥ and use that ±v − w are
non-isotropic.
• (1− g)2 = 0 and hence det(g) = 1.
Hint: Use that β(v − g(v), v − g(v)) = 0 for all v implies that β(v −
g(v), w − g(v)) = 0 for all v.
• dimV is even.
Hint: Both the image and kernel of 1− g are isotropic subspaces and
their dimensions add up to dimV .

To finish: for any w ∈ V , det(swg) = −1 so swg must be in either Cases 1
or 2, and hence is a product of ≤ dimV reflections. However, since dimV
is even, it must actually be a product of ≤ dimV − 1 reflections.
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(c) We show that SOm(C) is connected by constructing a path from the identity
to any g. It suffices to do it when g = sbsa for non-isotropic vectors a, b, since
by the last part, every element in SOm(C) is a product of an even number of
reflections.
Construct a polynomial function ϕ : C→ Cm such that ϕ(t) is non-isotropic for
all t and which contains both a and b in its image. Then the desired path is
αg : C→ SOm(C) given by αg(t) = sbsϕ(t).

(5) Prove the following properties about isotropic subspaces with respect to an orthogonal
form:
(a) If V is isotropic, then dimV ≤ n.
(b) Given 2 isotropic subspaces V1, V2 with dimV1 = dimV2, there exists g ∈ Om(C)

such that gV1 = V2. Assuming that either m is odd, or that m is even and
dimVi < n, we can actually find g ∈ SOm(C) such that gV1 = V2. In the
exceptional case that m is even and dimVi = n, there are 2 orbits of isotropic
subspaces under the action of SO2n(C). In particular, the span of e1, . . . , en and
e1, . . . , en−1, en+1 are in separate orbits.

(c) Every isotropic subspace is contained in an n-dimensional isotropic subspace.
(6) Prove the Newell–Littlewood product formula for the orthogonal group.


