Math 251C, Spring 2020 Homework 3

- (1) Let R be a commutative ring. A sequence $f_1, \ldots, f_r \in R$ is a regular sequence if:
 - For all *i*, multiplication by *f_i* on *R*/(*f*₁,...,*f_{i-1}*) is injective, i.e., *gf_i* ∈ (*f*₁,...,*f_{i-1}*) implies that *g* ∈ (*f*₁,...,*f_{i-1}*) (for *i* = 1, we interpret (*f*₁,...,*f_{i-1}*) = 0).
 (*f*₁,...,*f_r*) ≠ *R*
 - (a) Now suppose $R = \mathbf{k}[x_1, \dots, x_n]$ is a polynomial ring over a field \mathbf{k} and that each f_i is a homogeneous polynomial of degree d_i . Show that

$$\sum_{d\geq 0} \dim_{\mathbf{k}}(R/(f_1,\ldots,f_r))_d t^d = \frac{\prod_{i=1}^r (1-t^{d_i})}{(1-t)^n}$$

where the subscript denotes the space of degree d homogeneous elements.

- (b) Prove Theorem 2.3.2 (first prove the map is surjective without the regularity assumption, then use dimension counting in each degree to prove injectivity).
- (2) Prove Corollary 2.3.3 using Theorem 2.3.2.
- (3) Prove Proposition 2.3.4 using Theorem 2.3.5.
- (4) This exercise gives generators for $\mathbf{SO}_m(\mathbf{C})$ and outlines a proof that it is connected in the Zariski topology (it easily applies also to the standard Euclidean topology).
 - (a) Let V be an orthogonal space with orthogonal form β and pick a non-isotropic $a \in V$. Define

$$s_a(x) = x - \frac{2\beta(x,a)}{\beta(a,a)}a.$$

Show that $s_a \in O(V)$ and $det(s_a) = -1$. This is called an (orthogonal) reflection.

- (b) The Cartan–Dieudonné theorem states: every element $g \in \mathbf{O}(V)$ is a product of $\leq \dim V$ many reflections. Prove it as follows.
 - (i) If dim $V \leq 2$, do it directly.

Otherwise, dim $V \ge 3$ and we split it into 3 cases.

- (ii) Case 1: g fixes a non-isotropic vector v, (use that g fixes v^{\perp}).
- (iii) Case 2: There is a non-isotropic vector v such that v-g(v) is non-isotropic. Show that $s_{v-q(v)}g$ fixes v and appeal to Case 1.
- (iv) Case 3: Every fixed point of g is isotropic and for every non-isotropic v, v g(v) is isotropic. In that case, prove that
 - v g(v) is isotropic for all $v \in V$. Hint: pick a non-isotropic vector $w \in v^{\perp}$ and use that $\pm v - w$ are non-isotropic.
 - $(1-g)^2 = 0$ and hence det(g) = 1. *Hint: Use that* $\beta(v - g(v), v - g(v)) = 0$ *for all* v *implies that* $\beta(v - g(v), w - g(v)) = 0$ *for all* v.
 - dim V is even.
 Hint: Both the image and kernel of 1 − g are isotropic subspaces and their dimensions add up to dim V.

To finish: for any $w \in V$, $det(s_w g) = -1$ so $s_w g$ must be in either Cases 1 or 2, and hence is a product of $\leq \dim V$ reflections. However, since $\dim V$ is even, it must actually be a product of $\leq \dim V - 1$ reflections.

(c) We show that $\mathbf{SO}_m(\mathbf{C})$ is connected by constructing a path from the identity to any g. It suffices to do it when $g = s_b s_a$ for non-isotropic vectors a, b, since by the last part, every element in $\mathbf{SO}_m(\mathbf{C})$ is a product of an even number of reflections.

Construct a polynomial function $\varphi \colon \mathbf{C} \to \mathbf{C}^m$ such that $\varphi(t)$ is non-isotropic for all t and which contains both a and b in its image. Then the desired path is $\alpha_g \colon \mathbf{C} \to \mathbf{SO}_m(\mathbf{C})$ given by $\alpha_g(t) = s_b s_{\varphi(t)}$.

- (5) Prove the following properties about isotropic subspaces with respect to an orthogonal form:
 - (a) If V is isotropic, then dim $V \leq n$.
 - (b) Given 2 isotropic subspaces V_1, V_2 with dim $V_1 = \dim V_2$, there exists $g \in \mathbf{O}_m(\mathbf{C})$ such that $gV_1 = V_2$. Assuming that either m is odd, or that m is even and dim $V_i < n$, we can actually find $g \in \mathbf{SO}_m(\mathbf{C})$ such that $gV_1 = V_2$. In the exceptional case that m is even and dim $V_i = n$, there are 2 orbits of isotropic subspaces under the action of $\mathbf{SO}_{2n}(\mathbf{C})$. In particular, the span of e_1, \ldots, e_n and $e_1, \ldots, e_{n-1}, e_{n+1}$ are in separate orbits.
 - (c) Every isotropic subspace is contained in an n-dimensional isotropic subspace.
- (6) Prove the Newell–Littlewood product formula for the orthogonal group.