
Math 202B, Winter 2020
Homework 3
Due: February 19 in class

Please do not look up solutions directly online. You are free to work with other students,
but solutions must be written in your own words. Please cite any sources that you use or
any people you collaborated with.

#7 is meant to show you the basic properties and operations of formal power series. It
is strictly speaking not necessary to know how these are proven, but we will use them in
lecture. So don’t turn in solutions for #7.

(1) Given any finite-dimensional vector space V with a basis v1, . . . , vm and a symmetric
bilinear form 〈, 〉, prove that the dimension of V/V ⊥ is the rank of the Gram matrix
(〈vi, vj〉)i,j=1,...,m.

(2) Find a formula (and prove it) for the number of standard Young tableaux for the
following families of partitions:
(a) (n, 1k) for n ≥ 1
(b) (n, 2)
(c) (challenge) (n, n)

(3) Show that M(n−2,2) ∼= S(n−2,2) ⊕ S(n−1,1) ⊕ S(n) over a field of characteristic 0.

(4) Write the polytabloid et for t =
4 1
3 2

as a linear combination of standard polytabloids.

(5) Let p be a prime dividing n and let k be a field of characteristic p. Let U =
{(x1, . . . , xn) ∈ kn | x1 + · · ·+ xn = 0} and let L be the line spanned by (1, 1, . . . , 1).
Show that U/L is an irreducible Sn-representation.

(6) For this exercise, our field is of characteristic 0.
(a) Show that the sign representation of Sn is isomorphic to the Specht module

S(1n).
(b) Prove that for any finite group G, given an irreducible representation V and a

1-dimensional representation W , the tensor product V ⊗W is also irreducible.
(c) Combining the above, we see that Sλ⊗S(1n) is irreducible, so must be isomorphic

to a Specht module. We will now describe which one.
Let µ = λ† be the transpose partition. Pick a λ-tableau t and let t† be the
λ†-tableau obtained by flipping the values across the diagonal. Let Rt† denote
the row-stabilizer of t†, i.e., the set of σ ∈ Sn such that {σt†} = {t†} and let
ρt† =

∑
σ∈R

t†
σ.

Let u ∈ S(1n) be a nonzero element and recall that every λ†-tabloid is of the form
{σt†} for some σ ∈ Sn (though the choice is not unique). Show that there is a
well-defined Sn-equivariant linear map

ϕ : Mλ† → Sλ ⊗ S(1n), ϕ({σt†}) = σρt†({t} ⊗ u).

(d) Show that ϕ(et†) 6= 0. Conclude that Sλ
† ∼= Sλ ⊗ S(1n).

(Hint: First show that ϕ(et†) = (ρtκt{t})⊗u. Then show that 〈ρtκt{t}, {t}〉 6= 0
where 〈, 〉 is the pairing on Mλ.)
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(7) (don’t turn in) This exercise is to familiarize you with formal power series rings. Let
R be a commutative ring with multiplicative identity 1. Let R[[t]] denote the set of
formal linear combinations

∑
n≥0 rnt

n = r0 +r1t+ · · · . These are called formal power
series. Two are equal if and only if the coefficients are all pairwise equal. We define
[tn]

∑
n≥0 rnt

n = rn.
(a) Show that R[[t]] is a commutative ring with the operations∑

n≥0

rnt
n +

∑
n≥0

snt
n =

∑
n≥0

(rn + sn)tn

(
∑
n≥0

rnt
n)(

∑
n≥0

snt
n) =

∑
n≥0

(
n∑
i=0

risn−i)t
n.

(b) Show that
∑

n≥0 rnt
n has a multiplicative inverse if and only if r0 has a multiplica-

tive inverse in R. (If r0 is invertible, the identity (
∑

n≥0 rnt
n)(

∑
n≥0 snt

n) = 1
gives a system of equations for the sn which can be solved by induction.)

(c) If F1(t), F2(t), . . . are formal power series, we say that the sequence converges
to F (t) if for each n, we have [tn]Fi(t) = [tn]F (t) for all but finitely many i. In
that case we write limi→∞ Fi(t) = F (t).
This allows us to define infinite sums as limits of partial sums, i.e.,

∑∞
i=1 Fi(t) =

limj→∞
∑j

i=1 Fi(t) when it exists and also infinite products
∏∞

i=1 Fi(t) = limj→∞
∏j

i=1 Fi(t).
Show that an infinite sum, if it exists, can be rearranged arbitrarily and give the
same value. Show the same for infinite products.
If R also has a notion of convergence, then we can take that into account and
define the limit to be F (t) =

∑
n≥0 (limi→∞[tn]Fi(t)) t

n. This is relevant when
R is the ring of bounded degree power series where convergence is defined by
asking that the coefficient of each term is constant for i � 0. Show that the
rearrangement properties continue to hold for this example.

(d) Let F (t) =
∑

n≥0 fnt
n and G(t) be formal power series such that G(t) has no con-

stant term. Define the composition to be F (G(t)) =
∑

n≥0 fnG(t)n. Explain why
this is well-defined. We define exp(G(t)) = F (G(t)) where F (t) =

∑
n≥0 t

n/n!.
Show that exp(

∑
i≥0 Fi(t)) =

∏
i≥0 exp(Fi(t)) assuming that

∑
i≥0 Fi(t) is well-

defined.
(e) We define derivatives of formal power series in the obvious way: F ′(t) =

∑
n≥1 nfnt

n−1.
All of the familiar rules hold (chain rule, product rule, etc.) Many of the familiar
Taylor series from calculus have analogues in the world of formal power series,
and for the most part they behave exactly like they do in calculus (e.g., log is
the compositional inverse of exp).


