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The goal of this course is to discuss some generalities on complex linear representation
theory of finite groups, the theory of symmetric functions, and how this connects with the
symmetric groups. At the end we’ll discuss a bit about explicit constructions of irreducible
representations of symmetric groups and polynomial functors. Some references are [Se] for
representation theory, [J] and [FH] for symmetric groups in particular, [Sta] and [Mac] for
symmetric functions.
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1. Linear representations of finite groups

1.1. Definitions. Let G be a finite group. The identity element will be called 1G. A (linear)
representation of G over a field k is a homomorphism

ρV : G→ GL(V )

for some k-vector space V , where GL(V ) is the group of invertible linear operators on V .
Equivalently, giving a representation is the same as giving a linear action of G on V , i.e., a
function G × V → V which we think of as a multiplication g · v for g ∈ G and v ∈ V such
that:

• g · (v + v′) = g · v + g · v′,
• (gg′) · v = g · (g′ · v),
• 1G · v = v, and
• g · (λv) = λ(g · v) for any λ ∈ k.

The multiplication is obtained by setting g · v = ρV (g)(v). We will always assume that V is
finite-dimensional.

We will generally take the perspective that V “is” the representation, and the information
ρV is implicit but not always mentioned. So properties of a representation such as dimension,
being nonzero, etc. come from the vector space V .

Let V and V ′ be two representations of G. A linear map f : V → V ′ is G-equivariant if
for all g ∈ G, we have

f ◦ ρV (g) = ρV ′(g) ◦ f,
or more compactly: f(g · v) = g · f(v) for all v ∈ V . An isomorphism is a G-equivariant
map which is invertible; if an isomorphism exists we write V ∼= V ′.

Example 1.1.1. (1) For any vector space V we can define ρV (g) to be the identity on
V . This is clearly a representation. When dimV = 1, this is called the trivial
representation.

(2) Let X be a finite set with a G-action. Recall this means that we have a function
G × X → X denoted (g, x) 7→ g · x such that 1G · x = x for all x ∈ X, and
g · (g′ · x) = (gg′) · x for all g, g′ ∈ G and x ∈ X. Let V = k[X] be the k-vector space
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with basis {ex | x ∈ X} and define ρV by ρV (g)ex = eg·x. This is the permutation
representation of X.

A special case of a group action is when X = G and g · x = gx is given by the
group operation. In that case, k[G] is called the regular representation. �

Lemma 1.1.2. All of the eigenvalues of ρ(g) are roots of unity.
If k is algebraically closed and has characteristic 0, then ρ(g) is diagonalizable for all

g ∈ G.

Proof. Let λ be an eigenvalue of ρ(g) with eigenvector v. Then ρ(g)|G| = 1 but also ρ(g)|G|v =
λ|G|v, so λ|G| = 1.

Consider the Jordan normal form of ρ(g), which recall is an upper-triangular matrix whose
diagonal entries are the eigenvalues of ρ(g) and whose superdiagonal (the entries in positions
(i, i + 1)) are either 0 or 1. Then ρ(g) is diagonalizable if and only if the superdiagonal is
0. Furthermore, if any of those entries are 1, then no positive power of ρ(g) is equal to the
identity, but we know that ρ(g)|G| = 1. �

Remark 1.1.3. The second part can fail in positive characteristic. For instance, let G =

Z/2 = {1, z} and k be a field of characteristic 2. Then ρ(z) =

[
1 1
0 1

]
defines a representation

(since ρ(z)2 is the identity) but ρ(z) is not diagonalizable. �

1.2. Basic operations. Let V and W be representations of G. There are a few basic
operations we will make use of:

• (Direct sum) The direct sum V ⊕W is a representation with multiplication given by
g · (v, w) = (g · v, g · w).
• (Dual) Recall that the dual space V ∗ is the vector space of linear functionals V → k.

It is a representation with multiplication given as follows: if f ∈ V ∗, then g · f is the
functional defined by (g · f)(v) = f(g−1 · v).
• (Tensor product) Recall that the tensor product V ⊗W is a vector space which is

spanned by symbols of the form v⊗w with v ∈ V and w ∈ W subject to the relations
– (v + v′)⊗ w = v ⊗ w + v′ ⊗ w,
– v ⊗ (w + w′) = v ⊗ w + v ⊗ w′,
– λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw) for any λ ∈ k.

Then V ⊗W is a representation of G via g ·
∑

i(vi ⊗ wi) =
∑

i(g · vi)⊗ (g · wi).
• (Hom spaces) We let Hom(V,W ) denote the vector space of linear maps V → W .

This is a representation of G via (g · f)(v) = g · f(g−1 · v). Here we are using both
actions: g−1 · v is the multiplication for V and the other · is the multiplication for
W .
• (Invariants) V G = {v ∈ V | g · v = v for all g ∈ G} is the space of G-invariants and

is clearly a subrepresentation of V .

When V and W are finite-dimensional, we have a natural isomorphism V ∗ ⊗ W →
Hom(V,W ) given by

∑
i fi ⊗ wi 7→ F where F (v) =

∑
i fi(v)wi. Furthermore, this is a

G-equivariant isomorphism (exercise).
It follows from the definitions that Hom(V,W )G is the space of G-equivariant maps V →

W . We will usually denote this by HomG(V,W ).

1.3. Irreducible representations. Recall the following from linear algebra: if V is a vector
space with a subspace W , then a complement of W is another subspace W ′ of V such that
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W ∩W ′ = 0 and W + W ′ = V . In that case, we write V = W ⊕W ′. Complements always
exist but are not unique if W 6= V and W 6= 0. The data of a complement is equivalent to
a projection π : V → V (i.e., a linear map satisfying π2 = π) whose image is W : given a
projection, we define W ′ = kerπ; on the other hand, given W ′, every vector v can be written
uniquely as v1 + v2 where v1 ∈ W and v2 ∈ W ′, and we define π(v) = v1.

A subrepresentation of a representation V is a subspace W ⊆ V such that ρV (g)w ∈ W
whenever g ∈ G and w ∈ W . We can then define a homomorphism ρW : G → GL(W ) by
ρW (g) = ρV (g)|W .

If f : V → V ′ is G-equivariant, then ker f is a subrepresentation of V and image f is a
subrepresentation of V ′.

Lemma 1.3.1. Suppose that the characteristic of k is either 0 or is p > 0 and that p does
not divide |G|. Then given a subrepresentation W ⊆ V , there exists a subrepresentation
U ⊆ V which is a complement of W , i.e., V = W ⊕ U .

Proof. First pick an arbitrary complement W ′ of W . This gives a projection π : V → V .
Define a new linear map ψ : V → V by

ψ =
1

|G|
∑
g∈G

ρV (g) ◦ π ◦ ρV (g)−1.

Note that ρV (h) ◦ ψ ◦ ρV (h)−1 = ψ for any h ∈ G: by the above formula we have

ρV (h) ◦ ψ ◦ ρV (h)−1 =
1

|G|
∑
g∈G

ρV (h) ◦ ρV (g) ◦ π ◦ ρV (g)−1ρV (h)−1

=
1

|G|
∑
g∈G

ρV (hg) ◦ π ◦ ρV (hg)−1

The last sum is just the sum for ψ except indexed differently: do the change of variables
g 7→ h−1g. In particular, this means that ψ is G-equivariant.

Next, we claim that ψ2 = ψ and has image W . Pick v ∈ V . Then π(ρV (g)−1v) ∈ W since
π has image W . Since W is a subrepresentation, ρV (g)(π(ρV (g)−1v)) ∈ W as well, so ψ(v)
is a sum of elements in W , and hence belongs to W . If v ∈ W , then ρV (g)−1v ∈ W , and so
π(ρV (g)−1v) = ρV (g)−1v since π2 is the identity on W . This gives

ψ(v) =
1

|G|
∑
g∈G

ρV (g)(ρV (g)−1(v)) =
1

|G|
|G|v = v.

So we take U = kerψ and conclude that U is another complement W . Since ψ is G-
equivariant, U is a subrepresentation of V . �

A nonzero representation V is irreducible if it has no nonzero subrepresentations other
than itself. A representation which is not irreducible is called reducible.

Example 1.3.2. Any 1-dimensional representation is automatically irreducible. An exam-
ple of a reducible representation would be to take V = k2 and have all g act by the identity.
In that case, any 1-dimensional subspace of V is a nonzero subrepresentation. This ex-
ample also shows that the complement found above is not unique: for any 1-dimensional
subrepresentation of V , any other 1-dimensional subspace gives a complement which is also
a subrepresentation. �
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Theorem 1.3.3 (Schur’s lemma). Let V and W be nonzero irreducible representations of G
and let ϕ : V → W be G-equivariant.

(1) Either ϕ is an isomorphism, or ϕ = 0.
(2) Suppose k is algebraically closed. If V = W , then ϕ is a scalar multiple of the identity.

Proof. (1) kerϕ is a subrepresentation of V . Since V is irreducible, this means that kerϕ = 0
or kerϕ = V . In the second case, ϕ = 0. In the first case, ϕ is injective and so the image
of ϕ is nonzero. Since W is irreducible and imageϕ is a subrepresentation, this means that
imageϕ = W . So ϕ is also surjective, so we conclude that ϕ is an isomorphism.

(2) Let λ be an eigenvalue of ϕ. Then ϕ−λ · idV is G-equivariant, and has nonzero kernel.
In particular, it must be the 0 map by (a). �

Example 1.3.4. Take k = R the field of real numbers and G = Z/4 = {1, z, z2, z3} and V =

R2. Then ρ(z) =

[
0 −1
1 0

]
uniquely determines a representation (since ρ(z)4 is the identity).

Furthermore, this is an irreducible representation (any 1-dimensional subrepresentation must
be an eigenspace for ρ(z) but they are not realizable over R). Since G is abelian, ρ(z)
commutes with all ρ(g) and so in particular, ρ(z) : V → V is a G-equivariant map which is
not a scalar multiple of the identity. The problem is that if we extend our scalars to C, then
V is no longer irreducible. �

The previous example prompts a definition: we say that V is absolutely irreducible if it
remains irreducible upon enlarging the field of coefficients. Actually it suffices to know that
it remains irreducible upon enlarging to the algebraic closure k of k. We won’t go much into
the details of subtleties of non-algebraically closed fields, though.

Theorem 1.3.5 (Maschke). Suppose that the characteristic of k is either 0 or is p > 0 and
that p does not divide |G|. Every finite-dimensional representation of G is a direct sum of
irreducible subrepresentations.

Furthermore, this decomposition is unique in the following sense: if V = V1 ⊕ · · · ⊕ Vr
and V = V ′1 ⊕ · · · ⊕ V ′s are two decompositions of V into irreducible subrepresentations, then
r = s and there exists a permutation σ of 1, . . . , r so that Vi ∼= V ′σ(i) for all i.

The empty direct sum is the 0 vector space, so in the proof, we assume that dimV > 0.

Proof. Induction on dimension of V . If dimV = 1, then V must be irreducible. Otherwise,
if dimV > 1 and V is not irreducible, pick a nonzero subrepresentation W ⊂ V with
W 6= V . By the previous result, we can find a subrepresentation U ⊂ V so that V = W ⊕U .
But dimW < dimV and dimU < dimV , so by induction, both W,U are direct sums of
irreducible subrepresentations.

For the second statement, consider the identity map on V . By Schur’s lemma, the com-
ponent maps Vi → V ′j of the identity are either 0 or isomorphisms. Let W1, . . . ,Wa be all of
the Vi which are isomorphic to V1 and let W ′

1, . . . ,W
′
b be all of the V ′j which are isomorphic

to V1. We conclude that the restriction of the identity to W1 ⊕ · · · ⊕Wa → W ′
1 ⊕ · · · ⊕W ′

b

must be an isomorphism since the Wi have 0 maps to all other V ′j . This means that a = b;
remove these summands from V and repeat to get the desired conclusion. �

1.4. Characters. Now we assume that k = C.
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The character of ρ is the function χρ : G → C defined by χρ(g) = Tr(ρ(g)) where Tr
denotes the trace of a linear operator. This is constant on conjugacy classes of G:

χρ(hgh
−1) = Tr(ρ(h)ρ(g)ρ(h)−1) = Tr(ρ(g)) = χρ(g).

We’ll also write χV if V is the vector space of the representation. Since ρ(1G) is the identity,
we have χρ(1G) = dimV .

We’ll use the following fact many times: the trace of a linear operator is the sum of its
eigenvalues.

Recall that an algebraic integer is a complex number α which is the solution to a
monic polynomial with integer coefficients, i.e., there exist integers c0, . . . , cn−1 so that
αn +

∑n−1
i=0 ciα

i = 0. The following results are standard results in algebra, and we will
not repeat their proofs:

Proposition 1.4.1. (1) The set of algebraic integers is a subring of the complex numbers:
they are closed under addition, subtraction, and multiplication.

(2) Every rational number which is an algebraic integer is in fact an integer.

An important example of algebraic integers are roots of unity: these are the solutions to
the equations zn − 1 = 0 for some n.

Note that algebraic integers could be imaginary, for example,
√
−1 is an algebraic integer.

Proposition 1.4.2. For any g ∈ G and representation V , χV (g) is an algebraic integer.

Proof. All of the eigenvalues of ρ(g) are roots of unity, which are algebraic integers. Since
χV (g) is the sum of these eigenvalues, it is also an algebraic integer. �

Lemma 1.4.3. Let V be a representation with character χV . Then χV (g−1) = χV (g) and the

character of its dual is given by χV ∗(g) = χV (g) where the bar denotes complex conjugation.

Proof. Let λ1, . . . , λn be the eigenvalues of ρV (g) with eigenvectors v1, . . . , vn. Let f1, . . . , fn
be the dual basis for V ∗. Then fi is an eigenvector with eigenvalue λ−1i for ρV ∗(g) (recall
the action is through g−1). Since the λi are roots of unity, we have λ−1i = λi (recall that
λλ = |λ| for any complex number and roots of unity have absolute value 1). In particular,

χV ∗(g) = χV (g−1) = λ−11 + · · ·+ λ−1n = λ1 + · · ·+ λn = ρV (g). �

Lemma 1.4.4. Let V,W be representations. The character of V ⊕W is given by χV⊕W (g) =
χV (g) + χW (g).

Proof. Let v1, . . . , vn be an eigenbasis for ρV (g) with eigenvalues λ1, . . . , λn and let w1, . . . , wm
be an eigenbasis for ρW (g) with eigenvalues µ1, . . . , µm. Then {(v1, 0), . . . , (vn, 0), (0, w1), . . . , (0, wm)}
is an eigenbasis for V ⊕W with eigenvalues λ1, . . . , λn, µ1, . . . , µm. �

Lemma 1.4.5. Let V,W be representations. The character of V ⊗W is given by χV⊗W (g) =
χV (g)χW (g).

Proof. Let v1, . . . , vn be an eigenbasis for ρV (g) with eigenvalues λ1, . . . , λn and let w1, . . . , wm
be an eigenbasis for ρW (g) with eigenvalues µ1, . . . , µm. Then {vi ⊗ wj}i,j is an eigenba-
sis for ρV⊗W (g) with eigenvalues {λiµj}. So χV⊗W (g) =

∑
i,j λiµj = (

∑
i λi)(

∑
j µj) =

χV (g)χW (g). �

Lemma 1.4.6. Let V = C[X] be a permutation representation on the set X. Then χV (g) =
|{x ∈ X | g · x = x}|.
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Proof. The elements of X give a basis for C[X]. In matrix form ρ(g) becomes a permutation
matrix and the number of 1’s on the diagonal is just the number of elements fixed by g. �

Lemma 1.4.7 (Projection formula). Define ϕ : V → V by

ϕ(v) =
1

|G|
∑
g∈G

g · v.

ϕ is a projection and its image is V G. In particular, dimV G = Tr(ϕ).

Proof. First we prove the image is contained in V G: for any h ∈ G, we have

h · ϕ(v) =
1

|G|
∑
g∈G

hg · v =
1

|G|
∑
g∈G

g · v = ϕ(v).

where in the second equality, we reindexed the sum since {hg | g ∈ G} = {g | g ∈ G}.
On the other hand, given w ∈ V G, we have ϕ(w) = w, and so the image is all of V G.
These two facts imply that ϕ is a projection: ϕ2(v) = ϕ(ϕ(v)) and ϕ(v) ∈ V G which

implies that ϕ2(v) = ϕ(v).
For the last statement, note that the eigenvalues of a projection are either 0 or 1 (since

it’s a root of the polynomial t2 − t) and the multiplicity of 1 is its rank. �

A function G → C which is constant on conjugacy classes is called a class function and
CF(G) is the set of class functions G → C. This is a C-vector space. Define a pairing on
CF(G) by:

(ϕ, ψ)G =
1

|G|
∑
g∈G

ϕ(g)ψ(g)

where the overline means complex conjugation. If we don’t need to specify G, we’ll just
write (, ).

Lemma 1.4.8. (, ) is an inner product on CF(G).

Proof. Let c be the number of conjugacy classes of G and order the conjugacy classes as
γ1, . . . , γc. Then CF(G) ∼= Cc by sending a class function f to (

√
|γ1|f(γ1), . . . ,

√
|γc|f(γc)).

Under this isomorphism, (, ) is 1/|G| times the standard inner product on Cc, and hence is
itself an inner product. �

Lemma 1.4.9. Given two representations V,W , we have dim HomG(V,W ) = (χV , χW ).

Proof. We have HomG(V,W ) = Hom(V,W )G ∼= (V ∗ ⊗W )G. The character of V ∗ ⊗W is

given by χV ∗⊗W (g) = χV (g)χW (g). From the projection formula, for any representation U ,
we have dimUG = 1

|G|
∑

g∈G χU(g). Applying this to U = V ∗ ⊗W , we get

dim(V ∗ ⊗W )G =
1

|G|
∑
g∈G

χV (g)χW (g) = (χW , χV ) = (χV , χW ).

But note that dim(V ∗ ⊗W )G is an integer, so in particular, (χV , χW ) = (χV , χW ). �

A priori, characters are complex-valued. For some special groups, the values never take
imaginary values.

Proposition 1.4.10. Suppose that g is conjugate to g−1 for all g ∈ G. Then χV (g) is a real
number for all g ∈ G and all representations V .
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Proof. χV (g−1) = χV (g), but if they are conjugate, we also have χV (g) = χV (g−1), so
χV (g) ∈ R. �

Proposition 1.4.11. Suppose that for each integer m that is relatively prime to |G|, and
for all g ∈ G, we have that g is conjugate to gm. Then χV (g) is an integer for all g ∈ G and
all representations V .

Proof. Since χV (g) is an algebraic integer, it will suffice to show that it is a rational number
by Proposition 1.4.1. The proof is similar to the previous result, but uses a little bit of Galois
theory: let L be the field generated by Q and a primitive |G|th root of unity ω. For every m
that is relatively prime to |G|, there is an automorphism σm of L determined by replacing ω
by ωm, and an element of L is in Q if and only if it is fixed by all of these automorphisms.

From the previous results, we know that χV (g) ∈ L for all g ∈ G and all representations
V . Furthermore, σm(χV (g)) = χV (gm) since the trace of an mth power of a linear operator
is the sum of the mth powers of its eigenvalues, so our assumption together with the Galois
theory above implies that χV (g) ∈ Q for all g ∈ G and representations V . �

1.5. Classification of representations.

Lemma 1.5.1. Let ρ : G → GL(V ) be a representation and f ∈ CF(G) a class function.
Define

ρf =
∑
g∈G

f(g)ρ(g).

If V is irreducible, then ρf = λ · idV where

λ =
|G|

dimV
(f, χV )G.

Proof. Pick h ∈ G. Then

ρ(h)ρfρ(h)−1 =
∑
g∈G

f(g)ρ(hgh−1) =
∑
g∈G

f(hgh−1)ρ(hgh−1) = ρf

where the second equality follows from f ∈ CF(G) and the third equality follows since
conjugation of h is a permutation of the elements of G. This implies that ρf commutes with
all h ∈ G and hence is a scalar by Schur’s lemma.

To determine λ, we have

dim(V )λ = Tr(ρf ) =
∑
g∈G

f(g) Tr(ρ(g)) =
∑
g∈G

f(g)χV (g) = |G|(f, χV )G. �

Theorem 1.5.2. • The characters of the irreducible representations form an orthonor-
mal basis for CF(G). In particular, the number of isomorphism classes of irreducible
representations of G is equal to the number of conjugacy classes of G.
• If two representations have the same character, then they are isomorphic.

Proof. Let V,W be irreducible. By Schur’s lemma, dim HomG(V,W ) is 0 if V 6∼= W and is
1 if V ∼= W . In particular, (χV , χW ) = 0 if V 6∼= W and is 1 if V ∼= W . So if V1, V2, . . .
are pairwise non-isomorphic irreducible representations, then χV1 , χV2 . . . are orthonormal.
In particular, they are linearly independent. Next, we need to show that they span CF(G).
Let f be a function in the orthogonal complement of the span of the χVi . By Lemma 1.5.1,
ρf (notation used there) is 0 for all irreducible ρ, and hence for all representations ρ since
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Maschke’s theorem implies every representation is a direct sum of irreducibles. Now consider
the regular representation C[G] of G. In that case we have

0 = ρf (e1G) =
∑
g∈G

f(g)eg.

Since the eg are a basis, this implies that f(g) = 0 for all g ∈ G, i.e., that f = 0. So CF(G)
is spanned by the χVi .

Since the dimension of the space of class functions is the number of conjugacy classes of
G, we see that this is also the number of irreducible representations of G. Let V1, . . . , Vc be
a complete list of irreducible representations of G up to isomorphism.

Next, given a representation V , we have V ∼= V ⊕m1
1 ⊕ · · · ⊕ V ⊕mcc for some non-negative

integers m1, . . . ,mc (the multiplicities). Again, by Schur’s lemma and the previous result,
mi = (χVi , χV ). If W is another representation, it is isomorphic to V if and only if the
corresponding multiplicities agree with m1, . . . ,mc. Hence if χV = χW , then V ∼= W . �

Corollary 1.5.3. The multiplicity of an irreducible representation V in the regular repre-
sentation C[G] is dimV .

Proof. The multiplicity is given by (χV , χC[G]). Note that χC[G](1G) = |G| and χC[G](g) = 0
for g 6= 1G. In particular,

(χV , χC[G]) =
1

|G|
χV (1G)|G| = χV (1G) = dimV. �

Corollary 1.5.4. Let V1, . . . , Vc be the irreducible representations of G with dimensions
d1, . . . , dc. Then d21 + · · ·+ d2c = |G|.
Proof. The dimension of C[G] is |G| and it contains Vi with multiplicity di, so |G| =

∑c
i=1 d

2
i .
�

Corollary 1.5.5. If G is abelian, Then all irreducible representations are 1-dimensional.

Proof. The conjugacy classes of abelian groups are singletons, so there are c = |G| many
conjugacy classes. The only solution to c = d21 + · · · + d2c where the di are positive integers
are d1 = · · · = dc = 1. �

1.6. Examples.

1.6.1. Direct products. Suppose we are given two groups G1, G2 and representations ρ1, ρ2
on vector spaces V1, V2. Then G1 ×G2 has a linear action on V1 ⊗ V2 by

(g1, g2) ·
∑
i

v(1)i ⊗ v(2)i =
∑
i

g1 · v(1)i ⊗ g2 · v(2)i.

Hence we get a representation ρ1 ⊗ ρ2 of G1 ×G2. Its character is given by

χρ1⊗ρ2(g1, g2) = χρ1(g1)χρ2(g2).

This is the external tensor product of representations. To emphasize that it is a represen-
tation of the direct product, we will write V1 � V2. Here are some facts which are left as
exercises:

(1) If V,W are irreducible, then so is V �W .
(2) Let V1, . . . , Vn and W1, . . . ,Wm be complete lists of irreducible representations (up

to isomorphism) of G1 and G2, respectively. Then {Vi �Wj} is a complete list of
irreducible representations (up to isomorphism) of G1 ×G2.
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1.6.2. Abelian groups. We saw in Corollary 1.5.5 that all irreducible representations of abelian
groups are 1-dimensional. We will completely describe them starting with cyclic groups
G = Z/m. Let ω be a primitive mth root of unity, i.e., ωm = 1 but ωn 6= 1 for all n < m.
For a concrete example, we can take exp(2πi/m). For 0 ≤ i ≤ m−1, define a homomorphism
ρi : Z/m→ GL1(C) by ρi(g) = ωig. These are all irreducible representations (since they are
1-dimensional), they are not isomorphic to each other (their characters are all different), and
there are m of them, which is the number of conjugacy classes of Z/m, so we have described
all of them.

A general finite abelian group is isomorphic to a direct product of Z/m for various m, so
we can construct all of the irreducible representations using the previous example.

1.6.3. Dihedral groups. For n ≥ 3, let Dn be the symmetries of a regular n-gon. Then
|Dn| = 2n and we will use without proof that when n is odd, there are (n+ 3)/2 conjugacy
classes, and when n is even, there are (n+ 6)/2 conjugacy classes.

Actually, if we center the regular n-gon at the origin in the plane, then each element of
Dn (rotation or reflection) is a linear operator, so we get a representation ρ : Dn → GL2(R),
which is called the reflection representation. We can then extend the coefficients to C; I’ll
leave it as an exercise to show that the result is an irreducible representation. There is also
a 1-dimensional representation which sends g to the determinant of ρ(g) under the reflection
representation. We call this the sign representation.

For concreteness, consider D5, which has 4 conjugacy classes and size 10. So it has 4
irreducible representations, let d1, . . . , d4 be their dimensions. We know that d21 + d22 +
d23 + d24 = 10, and so we must have di ≤ 2 for all i. The only solution is {1, 1, 2, 2}. We
know three examples: the trivial representation, the sign representation, and the reflection
representation. Since the reflection representation is real-valued, it is isomorphic to its dual.
So that doesn’t create a new representation. Furthermore, we can create a 2-dimensional
representation by tensoring the reflection representation with the sign representation, is it
new? Turns out it is not – but we will stop with any further calculations.

1.6.4. Symmetric groups. A large portion of this course will be devoted to working out the
characters of the symmetric groups Sn. We will content ourselves now with some basic facts
and small examples. First, |Sn| = n!. The conjugacy classes are easy to describe:

Lemma 1.6.1. Two permutations are conjugate if and only if they have the same cycle type
decomposition. Hence, the conjugacy classes of Sn are naturally indexed by partitions of n,
and the number of irreducible representations of Sn is the partition number p(n)

Proof. if (i1, i2, . . . , ik) denotes the cycle i1 7→ i2 7→ · · · 7→ ik 7→ i1, then we can use the
identity

τ(i1, i2, . . . , ik)τ
−1 = (τ(i1), τ(i2), . . . , τ(ik)). �

Every character is integer-valued: this amounts to showing that for every permutation σ,
and every m coprime to n!, then σm and σ have the same cycle type. Note that m being
coprime to n! means it is coprime to every i = 1, . . . , n. If c1 · · · cr = σ is the decomposition
into disjoint cycles, then σm = cm1 · · · cmr . Furthermore, if ci has length i and m is coprime to
i, then cmi is again a cycle of length i. So σ and σm have the same cycle type and are hence
conjugate to one another.

Every Sn has a representation on Cn by sending each σ to the corresponding permutation
operator: ρ(σ)(ei) = eσ(i). This is the permutation representation of Sn. This is not
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irreducible if n > 1: there are two subrepresentations, one spanned by the vector (1, 1, . . . , 1)
and the other given by the subspace {(x1, . . . , xn) | x1 + · · · + xn = 0}. The latter is called
the standard representation of Sn. It is irreducible (exercise). Furthermore, there is also
a 1-dimensional sign representation which sends σ to its sign (which is 1 if σ is even and
−1 if σ is odd; recall that a permutation is even if it is a product of an even number of
transpositions, and odd otherwise).

Let’s consider S3. It has 3 conjugacy classes and 6 elements. We know of 3 representations
already: trivial, sign, and standard, so they are all of them. Let’s compute the characters
(the columns are the partition which counts the cycle lengths of a permutation):

(1, 1, 1) (2, 1) (3)
trivial 1 1 1
sign 1 −1 1

standard 2 0 −1

How to compute the character of the standard? We know that trivial + standard is the
permutation representation and that has character 3, 1, 0 (the number of fixed points of a
permutation by Lemma 1.4.6). Note that if we tensor sign and standard, the character is the
same as standard, so we conclude that sign tensored with standard is isomorphic to standard
again.

Let’s also do S4. It has 5 conjugacy classes and 24 elements. Again, we know of 3
representations: trivial, sign, and standard, which have dimensions 1, 1, 3.

(1, 1, 1, 1) (2, 1, 1) (3, 1) (2, 2) (4)
trivial 1 1 1 1 1
sign 1 −1 1 1 −1

standard 3 1 0 −1 −1

We computed the character of standard in the same way as for S3. This time, sign tensored
with standard gives a different character, so we get another 3-dimensional representation.
Since the sum of the squares of the dimensions is 24, the last representation must be 2-
dimensional. Actually, we can figure out its character from the other 4 since the sum of
the irreducible characters each multiplied by their dimension is the character of the regular
representation.

(1, 1, 1, 1) (2, 1, 1) (3, 1) (2, 2) (4)
sign⊗ standard 3 −1 0 −1 1

2−dim 2 0 −1 2 0

Actually we can construct that last representation as follows. Let X be the set of ways to
write {1, 2, 3, 4} as a union of two 2-element subsets, so X = {12|34, 13|24, 14|23}. Then S4

acts on X and C[X] contains a 1-dimensional representation (the sum of all of the elements).
The complement has the correct character so is the representation we’re looking for.

Using these ad hoc arguments, we will quickly hit a wall, so we’ll need to do something
else to get a general theory for Sn.

1.7. The group algebra. Representations can be recast in the language of modules over
a ring as follows. Let k be a field and G a group. The group algebra, denoted k[G] is the
vector space with basis {eg | g ∈ G} and multiplication egeh = egh. This multiplication is
associative and has a unit e1G .
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We will now show that representations of G over the field k are the same information as
left k[G]-modules. First, suppose we are given a representation ρ : G→ GL(V ). We define
a left k[G]-module structure on G by (

∑
g αgeg)(v) =

∑
g αgρV (g)v. On the other hand, if

M is a left k[G]-module, then in particular it is a vector space over k, and m 7→ eg ·m is
linear operator for all g. Let ρM(g) denote this linear operator. Then ρM : G → GL(M) is
a homomorphism. We omit checking all of the small details, but these two operations are
inverse to each other so we have proven:

Proposition 1.7.1. Representations of G over k can be identified with left k[G]-modules.

Furthermore, we have a built-in notion of homomorphism of left k[G]-modules. It is
routine to check that this is the same as G-equivariant maps between representations under
the above correspondence.

1.8. Restriction and induction. Given a subgroup H ⊆ G, any representation ρ of G
becomes a representation of H by restricting the map. This is called the restriction of ρ,
and is denoted ResGHρ. In fact, restriction makes sense for any class functions.

On the other hand, given a representation ρ : H → GL(V ), one can define the induced
representation IndGHV which is a representation of G. This is conceptually clearest to define
using tensor products. First, as before, V is a left k[H]-module. Second, k[G] can be made
into a right k[H]-module via g · h = gh for g ∈ G and h ∈ H. We can then define the tensor
product over k[H]: k[G] ⊗k[H] V . More generally, if R is a (not necessarily commutative)
ring and M is a right R-module and N is a left R-module, then M⊗RN is the abelian group
spanned by symbols m⊗ n with m ∈M and n ∈ N subject to the relations:

• (m+m′)⊗ n = m⊗ n+m′ ⊗ n,
• m⊗ (n+ n′) = m⊗ n+m⊗ n′,
• vr ⊗ w = v ⊗ rw for any r ∈ R.

In general, there is no further structure on R. In our case, we can make k[G]⊗k[H] V into a
left k[G]-module by g · (

∑
i egi⊗ vi) =

∑
i eggi⊗ vi. Note that the tensor product will be a k-

vector space. If v1, . . . , vn is a basis for V and g1, . . . , gr are representatives for the left cosets
G/H, then a basis for IndGHV is {egi ⊗ vj}, so in particular, dim(IndGHV ) = |G/H| dimV .

To compute g · (egi ⊗ vj), first find k so that ggi ∈ gkH. Then g−1j ggi ∈ H, and we have

g · (egi ⊗ vj) = egk · (g−1k ggi)⊗ vj = egk ⊗ g−1k ggi · vj.

Then express g−1k ggi · vj as a linear combination of v1, . . . , vn using the action of H on V .

Example 1.8.1. Let X be a set with a transitive G-action, i.e., for all x, y ∈ X, there exists
g ∈ G so that gx = y. Pick any point x ∈ X and let H be its stabilizer. Then the left action
of G on G/H is the same as the action of G on X under the identification gH 7→ gx. Hence
k[G/H] ∼= k[X]. Furthermore, we can identify k[G/H] with IndGHk where k is the trivial
representation of H. �

This construction is transitive in the following sense: if we have 3 groups K ⊆ H ⊆ G,
and a representation V of K, then there is a natural identification

IndGH(IndHKV ) = IndGKV.
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Proposition 1.8.2. For g ∈ G, we have

χIndGHV
(g) =

∑
1≤i≤r

g−1
i ggi∈H

χV (g−1i ggi).

Proof. We use the basis mentioned above and compute the trace of g acting on IndGHV with
respect to it. Consider the subspace egi⊗V which is the span of egi⊗vj for j = 1, . . . , n. We
can think of the matrix for g as a block matrix corresponding to these subspaces. In order
for there to be diagonal entries in this portion of the matrix, we need ggi ≡ gi (mod H),
i.e., g−1i ggi ∈ H. In that case, for v ∈ V , we have

g · egi ⊗ v = egi ⊗ (g−1i ggi)v,

so that the corresponding block matrix in the diagonal is ρV (g−1i ggi), and its trace is
χV (g−1i ggi). We sum over all of these traces to get the trace of g acting on IndGHV . �

The above formula can be extended to make sense for any class function, namely, we define

(IndGHχ)(g) =
∑
1≤i≤r

g−1
i ggi∈H

χ(g−1i ggi),

so that we get a linear function IndGH : CF(H)→ CF(G). The important fact is:

Theorem 1.8.3 (Frobenius reciprocity). Given ϕ ∈ CF(H) and ψ ∈ CF(G), we have

(IndGHϕ, ψ)G = (ϕ,ResGHψ)H .

Proof. Let g1, . . . , gr be coset representatives for G/H. Then

(IndGHϕ, ψ)G =
1

|G|
∑
g∈G

∑
1≤i≤r

g−1
i ggi∈H

ϕ(g−1i ggi)ψ(g) =
1

|G|
∑
g∈G

∑
1≤i≤r

g−1
i ggi∈H

ϕ(g−1i ggi)ψ(g−1i ggi)

where the last equality follows from conjugation-invariance of ψ. Now, the inputs are actually
elements of H. How many times does a particular h ∈ H appear, i.e., how many g, gi satisfy
g−1i ggi = h? In fact, for each i, there is exactly one g since we can rewrite the relation as
g = gihg

−1
i . Hence the sum becomes

r

|G|
∑
h∈H

ϕ(h)ψ(h).

But r = |G/H|, so the above simplifies to (ϕ,ResGHψ)H . �

A proof can be given using formal properties of tensor products.

2. Constructing symmetric group representations

2.1. Partitions. A partition of a nonnegative integer n is a sequence λ = (λ1, . . . , λk) such
that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 and λ1 + · · ·+λk = n. We will consider two partitions the same
if their nonzero entries are the same. It will also be convenient to make the convention that
λi = 0 whenever i > `(λ). And for shorthand, we may omit the commas, so the partition
(1, 1, 1, 1) of 4 can be written as 1111. As a further shorthand, the exponential notation is
used for repetition, so for example, 14 is the partition (1, 1, 1, 1). We let Par(n) be the set
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of partitions of n, and denote the size by p(n) = |Par(n)|. By convention, Par(0) consists of
exactly one partition, the empty one.

Example 2.1.1.

Par(1) = {1},
Par(2) = {2, 12},
Par(3) = {3, 21, 13},
Par(4) = {4, 31, 22, 212, 14},
Par(5) = {5, 41, 32, 312, 221, 213, 15}. �

If λ is a partition of n, we write |λ| = n (size). Also, `(λ) is the number of nonzero entries
of λ (length). For each i, mi(λ) is the number of entries of λ that are equal to i.

It will often be convenient to represent partitions graphically. This is done via Young
diagrams, which is a collection of left-justified boxes with λi boxes in row i.1 For example,
the Young diagram

corresponds to the partition (5, 3, 2). Flipping across the main diagonal gives another parti-
tion λ†, called the transpose. In our example, flipping gives

So (5, 3, 2)† = (3, 3, 2, 1, 1). In other words, the role of columns and rows has been inter-
changed. This is an important involution of Par(n) which we will use later.

We will use several different partial orderings of partitions:

• λ ⊆ µ if λi ≤ µi for all i.
• The dominance order: λ ≤ µ if λ1 + · · · + λi ≤ µ1 + · · · + µi for all i. Note that

if |λ| = |µ|, then λ ≤ µ if and only if λ† ≥ µ†. So transpose is an order-reversing
involution on the set of partitions of a fixed size.
• The lexicographic order: for partitions of the same size, λ ≤R µ if λ = µ, or

otherwise, there exists i such that λ1 = µ1, . . . , λi−1 = µi−1, and λi < µi. This is a
total ordering.

The following lemma will be useful, so we isolate it here.

Lemma 2.1.2. Let aλ,µ be a set of integers indexed by partitions of a fixed size n. Assume
that aλ,λ = 1 for all λ and that aλ,µ 6= 0 implies that µ ≤ λ (dominance order). For any
ordering of the partitions, the matrix (aλ,µ) is invertible (i.e., has determinant ±1).

The same conclusion holds if instead we assume that aλ,λ† = 1 for all λ and that aλ,µ 6= 0
implies that µ ≤ λ†.

1In the English convention (which is the one that we will use), row i sits above row i+ 1, in the French
convention, it is reversed. There is also the Russian convention, which is obtained from the English
convention by rotating by 135 degrees counter-clockwise.
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Proof. Note that if µ ≤ λ, then µ ≤R λ (lexicographic order): suppose that λ1 = µ1, . . . , λi =
µi but λi+1 6= µi+1. Using the dominance order, λ1 + · · · + λi+1 > µ1 + · · · + µi+1, so we
conclude that λi+1 > µi+1.

Now write down the matrix (aλ,µ) so that both the rows and columns are ordered by
lexicographic ordering. Then this matrix has 1’s on the diagonal and is lower-triangular. In
particular, its determinant is 1, so it is invertible. Any other choice of ordering amounts to
conjugating by a permutation matrix, which only changes the sign of the matrix.

In the second case, write down the matrix (aλ,µ) with respect to the lexicographic ordering
λ(1), λ(2), . . . , λ(p(n)) for rows, but with respect to the ordering λ(1)†, λ(2)†, . . . , λ(p(n))†

for columns. This matrix again has 1’s on the diagonal and is upper-triangular, so has
determinant 1. If we want to write down the matrix with the same ordering for both rows
and columns, we just need to permute the columns which changes the determinant by a sign
only. �

2.2. Tabloids. Let n be a positive integer and λ = (λ1, . . . , λr) a partition of n. A λ-
tableau is a filling of the boxes of the Young diagram with the numbers 1, . . . , n, each
appearing exactly once. The symmetric group Sn acts on the set of tableaux by permuting
values. Given λ-tableaux t1, t2, we write t1 ∼ t2 if t2 is obtained from t1 by rearranging the
entries within each row. For example:

1 2 3
4 5

∼ 3 2 1
5 4

Then ∼ is an equivalence relation, and we define a λ-tabloid to be an equivalence class of
λ-tableaux. Given a λ-tableau t, we let {t} denote its equivalence class. This set also carries
an action of Sn. The action is transitive and the stabilizer of a fixed λ-tabloid is isomorphic
to Sλ1 ×Sλ2 × · · · ×Sλr .

Lemma 2.2.1. Let λ, µ be partitions of n. Let t1 be a λ-tableau and t2 be a µ-tableau.
Suppose that for every i, the numbers from the ith row of t2 belong to different columns of
t1. Then λ ≥ µ (dominance order).

Proof. There are µ1 entries in the first row of t2. If they are in different columns of t1, then
λ has at least µ1 many columns, i.e., λ1 ≥ µ1. Next, there are µ2 entries in the second row of
t2 which are also in different columns of t1. Then delete all of the entries from t1 that don’t
come from the first two rows of t2 and shift all of the entries to the top. They must then
occupy the first two rows, so that λ1 +λ2 ≥ µ1 +µ2. More generally, if we do this procedure
for the entries in the first i rows of t2, we conclude that λ1 + · · · + λi ≥ µ1 + · · · + µi. In
particular, λ ≥ µ. �

2.3. Specht modules. At first, we will work over an arbitrary field k and later assume that
it is of characteristic 0 to get stronger results. Keep the notation from the previous section.

We let Mλ denote the permutation representation of Sn on λ-tabloids. From the above
discussion, Mλ ∼= IndSn

Sλ1×···×Sλr
k.

Let t be a λ-tableau. Let Ct ⊂ Sn be the subgroup of permutations which preserve the
set of entries in each column of t. Define the signed column sum κt ∈ k[Sn] by

κt =
∑
σ∈Ct

sgn(σ)σ.
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Note that κt depends on the tableau and if t′ ∼ t, we do not necessarily have equality of
their signed column sums. Define the polytabloid et ∈Mλ by

et = κt · {t}.

Example 2.3.1. Let t = 1 2 3
4 5

. Then

et = 1 2 3
4 5

− 4 2 3
1 5

− 1 5 3
4 2

+ 4 5 3
1 2

. �

Define Sλ to be the k-linear span of the et. This is called the Specht module.

Example 2.3.2. If λ = (n), then there is only one λ-tabloid, so that S(n) = M(n) = k is the
trivial representation.

Now consider λ = (n− 1, 1). Then there are n λ-tabloids since the only relevant datum is
which number goes in the second row. Let xi be the λ-tabloid where i appears in the second
row. So M(n−1,1) = kn is the permutation representation of Sn. Then for a tableau with i
in the second row and j in the first entry of the first row, we have et = xj − xi. We see that
S(n−1,1) is the subspace of kn consisting of linear combinations of tabloids whose coefficients
sum to 0. �

Lemma 2.3.3. Sλ is a Sn-subrepresentation of Mλ. Furthermore, it is generated, as a
k[Sn]-module, by et for any tabloid t.

Proof. For any σ ∈ Sn and λ-tableau t, we have σCtσ
−1 = Cσt and hence σκtσ

−1 = κσt,
which means that

σ · et = σκt{t} = κσtσ{t} = κσt{σt} = eσt.

Hence Sn preserves the subspace Mλ and we see that given any et, we can generate all of
the others using Sn. �

Lemma 2.3.4. Let λ, µ be partitions of n. Let t1 be a λ-tableau and let t2 be a µ-tableau.
Suppose that κt1{t2} 6= 0. Then λ ≥ µ. Furthermore, if λ = µ, then κt1{t2} = ±et1.

Proof. We will use Lemma 2.2.1. Let a, b be numbers in the same row of t2. Then (1 −
(a, b)){t2} = 0. Suppose that a, b are in the same column of t1. Then (a, b) ∈ Ct1 , so pick
coset representatives σ1, . . . , σk for Ct1/{1, (a, b)}. Then

κt1 =
k∑
i=1

sgn(σi)σi · (1− (a, b)),

and so κt1{t2} = 0. In particular, if κt1{t2} 6= 0, then a, b must be in different columns of t1.
Using Lemma 2.2.1, we conclude that λ ≥ µ.

If we further know that λ = µ, then we claim there is a permutation σ ∈ Ct1 so that
σ{t2} = {t1}. To see this, note that for every pair a, b in the same row of t1, we have shown
that they are in different columns of t2. Hence, we can pick σ so that it moves a, b both to
the corresponding row. In particular, κt1{t2} = κt1σ

−1{t1} = sgn(σ−1)κt1{t1} = ±et1 . �

Corollary 2.3.5. Pick u ∈Mλ and a λ-tableau t. Then κtu is a scalar multiple of et.

Proof. u is a linear combination of tabloids {t′}. From the previous lemma, κt{t′} is either
0 or ±et, so the claim follows. �
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Define a symmetric bilinear form 〈, 〉 on Mλ by making the tabloids an orthonormal basis:

〈{t1}, {t2}〉 =

{
1 if t1 ∼ t2

0 else

and extending linearly. It is immediate that this is an Sn-invariant form, i.e., 〈σv1, σv2〉 =
〈v1, v2〉 for any v1, v2 ∈Mλ.

Lemma 2.3.6. For u, v ∈Mλ and a λ-tableau t, we have

〈κtu, v〉 = 〈u, κtv〉.

Proof. Using that Ct is a subgroup and that sgn(σ) = sgn(σ−1), we have

〈κtu, v〉 =
∑
σ∈Ct

sgn(σ)〈σu, v〉 =
∑
σ∈Ct

sgn(σ)〈u, σ−1v〉 = 〈u, κtv〉. �

Given a subspace V ⊆ Mλ, we define the orthogonal complement V ⊥ = {v ∈ Mλ |
〈v, w〉 = 0 for all w ∈ V }.

Theorem 2.3.7 (Submodule theorem). If U ⊆ Mλ is a subrepresentation, then either
Sλ ⊆ U or U ⊆ (Sλ)⊥.

Proof. Pick u ∈ U . By Corollary 2.3.5, κtu is a scalar multiple of et. If there exists u and t
so that this multiple is nonzero, then et ∈ U . Since et generates Sλ as a k[Sn]-module, we
conclude that Sλ ⊆ U .

Otherwise, we are in the situation that κtu = 0 for all u ∈ U and all λ-tableau t. Then
we have

0 = 〈κtu, {t}〉 = 〈u, κt{t}〉 = 〈u, et〉
for all λ-tableau t. This means that u ∈ (Sλ)⊥ so that U ⊆ (Sλ)⊥. �

Corollary 2.3.8. Sλ/(Sλ∩ (Sλ)⊥) is either 0, or absolutely irreducible, i.e., irreducible after
any enlargement of the field of coefficients.

Proof. The submodule theorem tells us that any subrepresentation of Sλ must either be all
of Sλ or be contained in Sλ ∩ (Sλ)⊥. In particular, Sλ/(Sλ ∩ (Sλ)⊥) is either 0 or irreducible.
Now we use the following fact (left to exercises): given any finite-dimensional vector space
V with a basis v1, . . . , vm with a symmetric bilinear form 〈, 〉, the dimension of V/V ⊥ is the
rank of the Gram matrix (〈vi, vj〉)i,j=1,...,m. In our setting, V = Sλ and 〈, 〉 is the restriction of
the form from Mλ. In this case, we take our basis to be a maximal size linearly independent
set of polytabloids. In that case, the values 〈vi, vj〉 are all integers (or elements in Z/p), and
in particular, the rank of the matrix is not affected by enlarging the field, and hence the
intersection Sλ ∩ (Sλ)⊥ does not increase in dimension. �

Theorem 2.3.9. If k is a field of characteristic 0, then Sλ is an irreducible representation
of Sn.

Proof. It suffices to prove this when k = Q from the previous corollary. In that case, 〈, 〉
is an inner product, i.e., 〈u, u〉 > 0 whenever u 6= 0. This means that U ∩ U⊥ = 0 for any
subspace U of Mλ, and in particular, Sλ/(Sλ ∩ (Sλ)⊥) = Sλ is either 0 or irreducible. But it
is not 0 since each et is a nonzero element. �
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Hence have associated with each partition λ of n an irreducible representation Sλ of
Sn. Furthermore, all of these representations can be constructed over Q. From our previous
discussion, we know that the number of partitions of n is the same as the number of conjugacy
classes of Sn. So if we can show that Sλ 6∼= Sµ whenever λ 6= µ, then we have constructed
all of the isomorphism types of irreducible representations of Sn.

Lemma 2.3.10. Let k be a field of characteristic 0. Suppose that there is a nonzero Sn-
equivariant homomorphism θ : Sλ →Mµ. Then λ ≥ µ.

Proof. Let t be a λ-tableau. Then θ(et) 6= 0 since Sλ is generated under the Sn-action by et
and θ 6= 0. In particular, θ(et) = θ(κt{t}) = κtθ({t}). The last term is a sum of elements of
the form κt{t′} where t′ is a µ-tableau, so at least one of them must be nonzero, and so by
Lemma 2.3.4, λ ≥ µ. �

Corollary 2.3.11. Let k be a field of characteristic 0. If λ 6= µ, then Sλ 6∼= Sµ.

Proof. Suppose that Sλ ∼= Sµ. Then we have a nonzero homomorphism θ : Sλ → Mµ by
composing the isomorphism with the inclusion Sµ ⊆Mµ. Then Lemma 2.3.10 tells us that
λ ≥ µ. On the other hand, we also have a nonzero homomorphism Sµ →Mλ by using the
inverse isomorphism, and so µ ≥ λ. This implies that λ = µ. �

Hence we have given a construction for all of the irreducible representations of Sn up to
isomorphism. But there are many basic things we cannot easily deduce from this construc-
tion, for example, what is the dimension of Sλ. Since the polytabloids et span Sλ, it suffices
to find a maximal set of them which is linearly independent. We describe how to do this
next.

2.4. Garnir relations and standard tableaux. As we have seen, the polytabloids et are
linearly dependent in general. Our goal is to systematically construct linear dependencies
which allow us to conclude that a particular subset of et form a basis for Sλ.

Let λ be a partition and let t be a λ-tableau. Let X be a subset of values of the boxes in
the ith column of t and let Y be a subset of values of the boxes in the (i+ 1)th column of t.
Let SX denote the group of permutations that permute the elements of X but leave all other
elements fixed, and similarly define SY and SX∪Y . Pick coset representatives σ1, . . . , σk for
SX∪Y /(SX ×SY ).

We define the Garnir element to be

GX,Y =
k∑
j=1

sgn(σj)σj.

Example 2.4.1. Let t = 1 2
3 4
5

, X = {3, 5}, Y = {2, 4}. To define coset representatives for

SX∪Y /SX×SY , we write them as w(3)w(5)w(2)w(4), and we can assume that w(2) < w(4)
and w(3) < w(5). The representatives we get are

2345, 2435, 2534, 3425, 3524, 4523

and
GX,Y et = −e 1 4

2 5
3

+ e 1 3
2 5
4

− e 1 3
2 4
5

− e 1 2
3 5
4

+ e 1 2
3 4
5

− e 1 2
4 3
5

. �
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Theorem 2.4.2 (Garnir relations). If |X ∪ Y | > λ†i , then GX,Y et = 0.

Proof. The identity only involves integer coefficients, so it will suffice to prove that it holds
when k = Q (we can reduce the coefficients modulo p to see its validity in Fp). Define

α =
∑

σ∈SX×SY

sgn(σ)σ, β =
∑

σ∈SX∪Y

sgn(σ)σ.

Recall that Ct is the subgroup of Sn that preserves the columns of t. Since |X ∪ Y | > λ†i ,
for every τ ∈ Ct, there are always two values from the boxes of X ∪ Y that are in the same
row of τt. In particular, we have β{τt} = 0 (let ρ be the transposition swapping these two
elements, then σ 7→ σρ gives a sign-reversing bijection on SX∪Y such that σ{τt} = σρ{τt}).
In particular, βet = βκt{t} = 0.

Next, α is a factor of κt. To be precise, SX × SY is a subgroup of Ct, so if we pick
coset representatives, then their signed sum multiplied by α gives κt. Similarly, β = GX,Y α.
Also, for any σ ∈ SX ×SY , we have sgn(σ)σκt = κt since multiplication by σ permutes the
elements of Ct and hence does not affect the sum. So

0 = βκt{t} = |X|!|Y |!GX,Y κt{t}.
Since k = Q, we can divide by |X|!|Y |! to see that GX,Y et = 0. �

A tableau t is standard if the numbers increase left to right in each row, and top to bottom
in each column. In that case, we say that et is a standard polytabloid and that {t} is a
standard tabloid. Our goal now is to show that the standard polytabloids form a basis for
Sλ.

We define a total ordering on λ-tabloids as follows: {t1} < {t2} if for some i:

(1) When j > i, j is in the same row of {t1} and {t2},
(2) i is in a higher row of {t1} than in {t2}.

In our proof, we will also make use of a column-analogue of tabloids. Namely, if t is a
tableau, then [t] denotes the set of all tableaux which have the same values in each column
as t (though possibly in a different order). We define an ordering [t1] < [t2] just as above
with “row” replaced by “column”.

Theorem 2.4.3. The set of standard λ-polytabloids is a basis for Sλ.

Proof. First we establish linear independence. Let t be a standard tableau. Then for any
σ ∈ Ct, we have {t} > {σt}. Let t1, . . . , tr be distinct standard tableaux such that {t1} <
· · · < {tr} and suppose c1et1 + · · ·+ cretr = 0. Then {tr} is the largest tabloid appearing in
any of these terms, so cr = 0. By induction, we deduce that in fact all ci = 0.

Next, we show that every polytabloid et can be written as a linear combination of standard
ones. Note that it suffices to do this for one et per column equivalence class since σet =
sgn(σ)et whenever σ ∈ Ct. So we will prove the statement by descending induction on the
total ordering of column equivalence classes. The largest column equivalence class is obtained
by putting the numbers 1, . . . , n by first filling up the first column in order with 1, . . . , λ†1,

then the next λ†2 entries in order in the next column, etc. This is a standard tableau, so
there is nothing to prove in the base case.

Now let t be a general non-standard tableau. By induction, we assume that for all t′ such
that [t′] > [t], we have et′ is a linear combination of standard polytabloids. We may also
assume that t is increasing going top to bottom in each column since σet = sgn(σ)et for any
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σ ∈ Ct. Since t is not standard, for some i and j, we have tj,i > tj,i+1. Let X be the set
of values in the ith column of t in rows j and below, and let Y be the set of values in the
(i+ 1)th column of t in rows j and above. Pick coset representatives σ1, . . . , σk to define the
Garnir element GX,Y , and choose them so that σ1 is the identity element representing the
identity coset. Then by Theorem 2.4.2, we have GX,Y et = 0, i.e., that

et = −
k∑
r=1

sgn(σr)eσrt.

By our choice of X, Y , we have

t1,i+1 < t2,i+1 < · · · < tj,i+1 < tj,i < tj+1,i < · · · < tλ†i ,i
.

Hence each non-identity σr is simply moving smaller numbers to later columns, which means
that [σrt] > [t] so each eσrt is a linear combination of standard polytabloids. By induction,
we conclude that et is a linear combination of standard polytabloids. �

Corollary 2.4.4. The dimension of Sλ is the number of standard tableaux of shape λ. In
particular, it does not depend on the field k.

We will later see how to get useful formulas for the number of standard tableaux. The next
question is how to compute the characters of the Specht modules Sλ. It turns out it is much
better to do this via an indirect method. We will use this as excuse to discuss symmetric
functions.

3. Symmetric functions

3.1. Definitions. Let x1, . . . , xn be a finite set of indeterminates. The symmetric group
Sn acts on Z[x1, . . . , xn], the ring of polynomials in n variables and integer coefficients, by
substitution of variables:

σ · f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

The ring of symmetric polynomials is the set of fixed polynomials:

Λ(n) := {f ∈ Z[x1, . . . , xn] | σ · f = f for all σ ∈ Sn}.
This is a subring of Z[x1, . . . , xn].

We will also treat the case n =∞. Let x1, x2, . . . be a countably infinite set of indetermi-
nates. Let S∞ be the group of all permutations of {1, 2, . . . }. Consider the ring R of power
series in x1, x2, . . . of bounded degree (this notation R is just for this discussion and we will
not refer to it again later). Hence, elements of R can be infinite sums, but only in a finite
number of degrees. Then S∞ acts on R, and we define the ring of symmetric functions

Λ := {f ∈ R | σ · f = f for all σ ∈ S∞}.
Again, this is a subring of R. Write πn : Λ → Λ(n) for the homomorphism which sets
xn+1 = xn+2 = · · · = 0.

Remark 3.1.1. (For those familiar with inverse limits.) There is a ring homomorphism
πn+1,n : Λ(n + 1) → Λ(n) obtained by setting xn+1 = 0. Furthermore, Λ(n) =

⊕
d≥0 Λ(n)d

where Λ(n)d is the subgroup of homogeneous symmetric polynomials of degree d. The map
πn+1,n restricts to a map Λ(n+ 1)d → Λ(n)d; set

Λd = lim←−
n

Λ(n)d.
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Then

Λ =
⊕
d≥0

Λd.

Note that we aren’t saying that Λ is the inverse limit of the Λ(n) as rings; the latter object
includes infinite sums of unbounded degree. The correct way to say this is that Λ is the
inverse limit of the Λ(n) as graded rings. �

Example 3.1.2. Here are some basic examples of elements in Λ (we will study them more
soon):

pk :=
∑
i≥1

xki

ek :=
∑

i1<i2<···<ik

xi1xi2 · · ·xik

hk :=
∑

i1≤i2≤···≤ik

xi1xi2 · · ·xik . �

Sometimes, we want to work with rational coefficients instead of integer coefficients. In
that case, we’ll write ΛQ or Λ(n)Q to denote the appropriate rings.

3.2. Monomial symmetric functions. Given an infinite sequence (α1, α2, . . . ) with finitely
many nonzero entries, we use xα as a convention for

∏
i≥1 x

αi
i . Given a partition λ =

(λ1, λ2, . . . ), define the monomial symmetric function by

mλ =
∑
α

xα

where the sum is over all distinct permutations α of λ. This is symmetric by definition. So
for example, m1 =

∑
i≥1 xi since all of the distinct permutations of (1, 0, 0, . . . ) are integer

sequences with a single 1 somewhere and 0 elsewhere. By convention, m0 = 1. Some other
examples:

m1,1 =
∑
i<j

xixj

m3,2,1 =
∑
i,j,k

i 6=j, j 6=k, i 6=k

x3ix
2
jxk.

In general, m1k = ek and mk = pk.

Theorem 3.2.1. As we range over all partitions, the mλ form a basis for Λ.

Proof. They are linearly independent since no two mλ have any monomials in common.
Clearly they also span: given f ∈ Λ, we can write f =

∑
α cαx

α and cα = cβ if both are
permutations of each other, so this can be rewritten as f =

∑
λ cλmλ where the sum is now

over just the partitions. �

Corollary 3.2.2. Λd has a basis given by {mλ | |λ| = d}, and hence is a free abelian group
of rank p(d) = |Par(d)|.

Theorem 3.2.3. Λ(n)d has a basis given by {mλ(x1, . . . , xn) | |λ| = d, `(λ) ≤ n}.
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3.3. Elementary symmetric functions. Recall that we defined

ek =
∑

i1<i2<···<ik

xi1xi2 · · ·xik .

For a partition λ = (λ1, . . . , λk), define the elementary symmetric function by

eλ = eλ1eλ2 · · · eλk .
Note eλ ∈ Λ|λ|.

Since the mµ form a basis for Λ (Theorem 3.2.1), we have expressions

eλ =
∑
µ

Mλ,µmµ.

We can give an interpretation for these change of basis coefficients as follows. Given an (in-
finite) matrix A with finitely many nonzero entries, let row(A) = (

∑
i≥1A1,i,

∑
i≥1A2,i, . . . )

be the sequence of row sums of A, and let col(A) be the sequence of column sums of A. A
(0, 1)-matrix is one whose entries are only 0 or 1.

Lemma 3.3.1. Mλ,µ is the number of (0, 1)-matrices A with row(A) = λ and col(A) = µ.

Proof. To get a monomial in eλ, we have to choose monomials from each eλi to multiply.
Each monomial of eλi can be represented by a subset of {1, 2, . . . } of size λi, or alternatively,
as a sequence (thought of as a row vector) of 0’s and 1’s where a 1 is put in each place of the
subset. Hence, we can represent each choice of multiplying out a monomial by concatenating
these row vectors to get a matrix A. By definition, row(A) = λ and col(A) = µ where the
monomial we get is xµ. �

Corollary 3.3.2. Mλ,µ = Mµ,λ.

Proof. Take the transpose of each (0, 1)-matrix to get the desired bijection. �

Theorem 3.3.3. If Mλ,µ 6= 0, then µ ≤ λ†. Furthermore, Mλ,λ† = 1. In particular, the eλ
form a basis of Λ.

Proof. Suppose Mλ,µ 6= 0. Then there is a (0, 1)-matrix A with row(A) = λ and col(A) = µ.
Now let A′ be obtained from A by left-justifying all of the 1’s in each row (i.e., move all of
the 1’s in row i to the first λi positions). Note that col(A′) = λ†. Also, the number of 1’s in
the first i columns of A′ is at least as many as the number of 1’s in the first i columns of A,
so λ†1 + · · ·+λ†i ≥ µ1 + · · ·+µi, i.e., λ† ≥ µ. Moreover, if µ = λ†, A′ is the only (0, 1)-matrix
with row(A′) = λ and col(A′) = λ†.

The second statement follows from Lemma 2.1.2. �

Theorem 3.3.4. The set {eλ(x1, . . . , xn) | λ1 ≤ n, |λ| = d} is a basis of Λ(n)d.

Proof. If λ1 > n, then eλ1(x1, . . . , xn) = 0, so eλ(x1, . . . , xn) = 0. Hence under the map
πn : Λ → Λ(n), the proposed eλ span the image. The number of such eλ in degree d is
|{λ | λ1 ≤ n, |λ| = d}|, which is the same as |{λ | `(λ) ≤ n, |λ| = d}| via the transpose †,
and this is the rank of Λ(n)d, so the eλ form a basis. �

Remark 3.3.5. The previous two theorems say that the elements e1, e2, e3, . . . are alge-
braically independent in Λ, and that the elements e1, . . . , en are algebraically independent
in Λ(n). This is also known as the “fundamental theorem of symmetric functions”. �



NOTES FOR MATH 202B 23

3.4. The involution ω. Since the ei are algebraically independent, we can define a ring
homomorphism f : Λ→ Λ by specifying f(ei) arbitrarily.2 Define

ω : Λ→ Λ

by ω(ei) = hi, where recall that hk =
∑

i1≤···≤ik xi1 · · ·xik .

Theorem 3.4.1. ω is an involution, i.e., ω2 = 1. Equivalently, ω(hi) = ei.

Proof. Consider the ring Λ[[t]] of power series in t with coefficients in Λ. Define two elements
of Λ[[t]]:

E(t) =
∑
n≥0

ent
n, H(t) =

∑
n≥0

hnt
n.(3.4.2)

Note that E(t) =
∏

i≥1(1 + xit) (by convention, the infinite product means we have to
choose 1 all but finitely many times; if you multiply it out, the coefficient of tn is all ways
of getting a monomial xi1 · · ·xin with i1 < · · · < in and each one appears once, so it is en)
and that H(t) =

∏
i≥1(1− xit)−1 (same as for E(t) but use the geometric sum (1− xit)−1 =

1 +
∑

d>0 x
d
i t
d).

This implies that E(t)H(−t) = 1. The coefficient of tn on the left side of this identity is∑n
i=0(−1)n−ieihn−i. In particular, that sum is 0 for n > 0. Now apply ω to that sum and

multiply by (−1)n to get
n∑
i=0

(−1)ihiω(hn−i) = 0.

This shows that
∑

n≥0 ω(hn)tn = H(−t)−1 = E(t), so ω(hn) = en. �

Furthermore, we can define a finite analogue of ω, the ring homomorphism ωn : Λ(n) →
Λ(n), given by ωn(ei) = hi for i = 1, . . . , n.

Theorem 3.4.3. ω2
n = 1, and ωn is invertible. Equivalently, ωn(hi) = ei for i = 1, . . . , n.

Proof. In Λ, we have expressions hi =
∑
|λ|=i ci,λeλ. We know that ω(hi) = ei, so we also get

ei =
∑
|λ|=i ci,λω(eλ).

Using the first relation, we also get ωn(πn(hi)) =
∑
|λ|=i ci,λωn(πn(eλ)). By definition,

ωn(πn(eλ)) = πn(ω(eλ)) when λ1 ≤ n. This condition is guaranteed if i ≤ n, so we can
rewrite it as ωn(πn(hi)) =

∑
|λ|=i ci,λπn(ω(eλ)). Finally, applying πn to the second relation

above, we get πn(ei) =
∑
|λ|=i ci,λπn(ω(eλ)), so we conclude that πn(ei) = ωn(πn(hi)), as

desired. �

3.5. Complete homogeneous symmetric functions. For a partition λ = (λ1, . . . , λk),
define the complete homogeneous symmetric functions by

hλ = hλ1 · · ·hλk .

Theorem 3.5.1. The hλ form a basis for Λ.

Proof. Since ω is a ring homomorphism, ω(eλ) = hλ. Now use the fact that the eλ form a
basis (Theorem 3.3.3) and that ω is an isomorphism (Theorem 3.4.1). �

2Every element is uniquely of the form
∑

λ cλeλ; since f is a ring homomorphism, it sends this to∑
λ cλf(eλ1

)f(eλ2
) · · · f(eλ`(λ)).
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Again, we can write hλ in terms of mµ:

hλ =
∑
µ

Nλ,µmµ

and give an interpretation for the coefficients. This is similar to Mλ,µ: the Nλ,µ is the number
of matrices A with non-negative integer entries such that row(A) = λ and col(A) = µ (not
just (0, 1)-matrices). The proof is similar to the Mλ,µ case. However, it does not satisfy any
upper-triangularity properties, so it is not as easy to see directly (without using ω) that the
hλ are linearly independent.

Theorem 3.5.2. h1, . . . , hn are algebraically independent generators of Λ(n), and the set
{hλ(x1, . . . , xn) | λ1 ≤ n, |λ| = d} is a basis of Λ(n)d.

Proof. Follows from Theorem 3.3.4 and Theorem 3.4.3. �

3.6. Power sum symmetric functions. Recall we defined

pk =
∑
n≥1

xkn.

For a partition λ = (λ1, . . . , λk) (here we assume λk > 0), the power sum symmetric
functions are defined by

pλ = pλ1 · · · pλk .

We can write the pλ in terms of the mµ:

pλ =
∑
µ

Rλ,µmµ.

Recall the definitions of E(t) and H(t) from (3.4.2):

E(t) =
∑
n≥0

ent
n, H(t) =

∑
n≥0

hnt
n.

Define P (t) ∈ Λ[[t]] by

P (t) =
∑
n≥1

pnt
n−1

(note the unconventional indexing).

Lemma 3.6.1. We have the following identities:

P (t) =
d

dt
logH(t), P (−t) =

d

dt
logE(t).
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Proof. We have

P (t) =
∑
n≥1

∑
i≥1

xni t
n−1

=
∑
i≥1

xi
1− xit

=
∑
i≥1

d

dt
log

(
1

1− xit

)

=
d

dt
log

(∏
i≥1

1

1− xit

)

=
d

dt
logH(t).

The other identity is similar. �

Given a partition λ, recall that mi(λ) is the number of times that i appears in λ. Define

zλ :=
∏
i≥1

imi(λ)mi(λ)!, ελ = (−1)|λ|−`(λ).(3.6.2)

Theorem 3.6.3. We have the following identities in Λ[[t]]:

E(t) =
∑
λ

ελz
−1
λ pλt

|λ|, H(t) =
∑
λ

z−1λ pλt
|λ|,

en =
∑
|λ|=n

ελz
−1
λ pλ, hn =

∑
|λ|=n

z−1λ pλ.

Proof. From Lemma 3.6.1, we have P (t) = d
dt

logH(t). Integrate both sides (and get the
boundary conditions right using that logH(0) = 0) and apply the exponential map:

H(t) = exp

(∑
n≥1

pnt
n

n

)

=
∏
n≥1

exp

(
pnt

n

n

)
=
∏
n≥1

∑
d≥0

pdnt
nd

ndd!

=
∑
λ

pλt
|λ|

zλ
.

The identity for E(t) is similar. Finally, the second row of identities comes from equating
the coefficient of tn in the first row of identities. �

Theorem 3.6.4. p1, p2, . . . are algebraically independent generators of ΛQ.
p1(x1, . . . , xn), . . . , pn(x1, . . . , xn) are algebraically independent generators of Λ(n)Q and

the set {pλ(x1, . . . , xn) | λ1 ≤ n, |λ| = d} is a basis for Λ(n)Q,d.
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Proof. We just explain the finite variable case, the other being similar. By Theorem 3.6.3,
we have ei(x1, . . . , xn) =

∑
|λ|=i ελz

−1
λ pλ(x1, . . . , xn) for all i. If i ≤ n, then this shows that

p1, . . . , pn are algebra generators for Λ(n)Q since the e1, . . . , en are algebra generators. The
space of possible monomials in the pi of degree d is the number of λ with λ1 ≤ n and |λ| = d,
which is dimQ Λ(n)Q,d, so there are no algebraic relations among them. �

The proof of Corollary 3.6.6 can be adapted to show that ωn(pλ) = ελpλ whenever λ1 ≤ n.

Remark 3.6.5. The pλ do not form a basis for Λ. For example, in degree 2, we have

p2 = m2

p1,1 = m2 + 2m1,1

and the change of basis matrix has determinant 2, so is not invertible over Z. However, they
do form a basis for ΛQ. �

Corollary 3.6.6. ω(pλ) = ελpλ, i.e., the pλ are a complete set of eigenvectors for ω.

Proof. We prove this by induction on λ1. When λ1 = 1, this is clear since p1n = pn1 = en1 = hn1
and ε1n = 1. So suppose we know that ω(pλ) = ελpλ whenever λ1 < n. Apply ω to the
identity

en =
∑
|λ|=n

ελz
−1
λ pλ,

to get

hn =
∑
|λ|=n

ελz
−1
λ ω(pλ).

Every partition satisfies λ1 < n except for λ = (n), so this can be simplified to

hn = εnz
−1
n ω(pn) +

∑
|λ|=n, λ1<n

z−1λ pλ.

Compare this to the identity

hn =
∑
|λ|=n

z−1λ pλ

to conclude that εnz
−1
n ω(pn) = z−1n pn; now multiply both sides by zn. Now given any other

partition with λ1 = n, use the fact that ω is a ring homomorphism, that ελ = ελ1 · · · ελk ,
and that pλ = pλ1 · · · pλk to conclude that ω(pλ) = ελpλ. �

3.7. A scalar product. Define a bilinear form 〈, 〉 : Λ⊗ Λ→ Z by setting

〈mλ, hµ〉 = δλ,µ

where δ is the Kronecker delta (1 if λ = µ and 0 otherwise). In other words, if f =
∑

λ aλmλ

and g =
∑

µ bµhµ, then 〈f, g〉 =
∑

λ aλbλ (well-defined since both m and h are bases). At this
point, the definition looks completely unmotivated. However, this inner product is natural
from the representation-theoretic perspective, which we’ll discuss later.

In our setup, m and h are dual bases with respect to the pairing. We will want a general
criteria for two bases to be dual to each other. To state this criterion, we need to work in
two sets of variables x and y and in the ring Z[[x1, x2, . . . , y1, y2, . . . ]] where the x’s and y’s
are separately symmetric.
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Lemma 3.7.1. Let uλ and vµ be homogeneous bases of Λ (or ΛQ). Then 〈uλ, vµ〉 = δλ,µ if
and only if ∑

λ

uλ(x)vλ(y) =
∏
i,j

(1− xiyj)−1.

Proof. Write uλ =
∑

α aλ,αmα and vµ =
∑

β bµ,βhβ. Pick an ordering of the partitions of a

fixed size. Write A = (aλ,α) and B = (bµ,β) in these orderings. First,

〈uλ, vµ〉 =
∑
γ

aλ,γbµ,γ.

Hence uλ and vµ are dual bases if and only if
∑

γ aλ,γbµ,γ = δλ,µ, or equivalently, ABT = I

where T denotes transpose and I is the identity matrix. So A and BT are inverses of each
other, and so this is equivalent to BTA = I, or

∑
γ aγ,λbγ,µ = δλ,µ. Finally, we have

∑
λ

uλ(x)vλ(y) =
∑
λ

∑
α,β

aλ,αbλ,βmα(x)hβ(y) =
∑
α,β

(∑
λ

aλ,αbλ,β

)
mα(x)hβ(y).

Since the mα(x)hβ(y) are linearly independent, we see that
∑

γ aγ,λbγ,µ = δλ,µ is equivalent

to
∑

λ uλ(x)vλ(y) =
∑

λmλ(x)hλ(y). Now use Proposition 3.7.2 below. �

Proposition 3.7.2. ∑
λ

mλ(x)hλ(y) =
∏
i,j

(1− xiyj)−1.

Proof. We have ∏
i

∏
j

(1− xiyj)−1 =
∏
j

∑
n≥0

hn(y)xnj =
∑
α

hα(y)xα

where the sum is over all sequences α = (α1, α2, . . . ) with finitely many nonzero entries, and
hα(y) = hα1(y)hα2(y) · · · ; finally, grouping together terms α in the same S∞-orbit, the latter
sum simplifies to

∑
λmλ(x)hλ(y), where the sum is now over all partitions λ. �

Corollary 3.7.3. The pairing is symmetric, i.e., 〈f, g〉 = 〈g, f〉.

Proof. The condition above is the same if we interchange x and y, so 〈mλ, hµ〉 = 〈hµ,mλ〉.
Now use bilinearity. �

Proposition 3.7.4. We have∑
λ

z−1λ pλ(x)pλ(y) =
∏
i,j

(1− xiyj)−1.

In particular, 〈pλ, pµ〉 = zλδλ,µ, and pλ is an orthogonal basis of ΛQ.
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Proof. As in the first part of the proof of Theorem 3.6.3, we can write∏
j

∏
i

(1− xiyj)−1 =
∏
j

∑
n≥0

hn(x)ynj

=
∏
j

exp

(∑
n≥1

pn(x)ynj
n

)

= exp

(∑
n≥1

pn(x)pn(y)

n

)

=
∏
n≥1

∑
d≥0

pn(x)dpn(y)d

d!nd

=
∑
λ

z−1λ pλ(x)pλ(y)

where the final sum is over all partitions. �

Corollary 3.7.5. ω is an isometry, i.e., 〈f, g〉 = 〈ω(f), ω(g)〉.

Proof. By bilinearity, it suffices to show that this holds for any basis of ΛQ. We pick pλ.
Then

〈ω(pλ), ω(pµ)〉 = ελεµ〈pλ, pµ〉 = ελεµzλδλ,µ
by Corollary 3.6.6 and the previous result. The last expression is the same as zλδλ,µ since
ε2λ = 1, so we see that 〈ω(pλ), ω(pµ)〉 = 〈pλ, pµ〉 for all λ, µ. �

Corollary 3.7.6. The bilinear form 〈, 〉 is positive definite, i.e, 〈f, f〉 > 0 for f 6= 0.

Proof. Assume f 6= 0. Write f =
∑

λ aλpλ with some aλ 6= 0. Then

〈f, f〉 =
∑
λ,µ

aλaµ〈pλ, pµ〉 =
∑
λ

zλa
2
λ.

Since zλ > 0 and a2λ > 0, we get the result. �

4. Schur functions and the RSK algorithm

The goal of this section is to give several different definitions of Schur functions. They are
central in many representation theoretic studies, which we will discuss later.

4.1. Semistandard Young tableaux. Let λ be a partition. A semistandard Young
tableau (SSYT) T is an assignment of positive integers to the Young diagram of λ so
that the numbers are weakly increasing going left to right in each row, and the numbers are
strictly increasing going top to bottom in each column.

Example 4.1.1. If λ = (4, 3, 1), and we have the assignment

a b c d
e f g
h

then, in order for this to be a SSYT, we need to have

• a ≤ b ≤ c ≤ d,
• e ≤ f ≤ g,
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• a < e < h,
• b < f , and
• c < g.

An example of a SSYT is 1 1 3 5
2 3 4
7

. �

The type of a SSYT T is the sequence type(T ) = (α1, α2, . . . ) where αi is the number of
times that i appears in T . We set

xT = xα1
1 x

α2
2 · · · .

Given a pair of partitions µ ⊆ λ, the Young diagram of λ/µ is the Young diagram of λ
with the Young diagram of µ removed. We define a SSYT of shape λ/µ to be an assignment
of positive integers to the boxes of this Young diagram which is weakly increasing in rows
and strictly increasing in columns.

Example 4.1.2. If λ = (5, 3, 1) and µ = (2, 1), then

a b c
d e

f

is a SSYT if

• a ≤ b ≤ c,
• d ≤ e, and
• a < e. �

We define the type of T and xT in the same way.
Given a partition λ, the Schur function sλ is defined by

sλ =
∑
T

xT

where the sum is over all SSYT of shape λ. Similarly, given µ ⊆ λ, the skew Schur function
sλ/µ is defined by

sλ/µ =
∑
T

xT

where the sum is over all SSYT of shape λ/µ. Note that this is a strict generalization of the
first definition since we can take µ = ∅, the unique partition of 0.

We can make the same definitions in finitely many variables x1, . . . , xn if we restrict the
sums to be only over SSYT that only use the numbers 1, . . . , n.

Example 4.1.3. s1,1(x1, x2, . . . , xn) is the sum over SSYT of shape (1, 1). This is the same
as a choice of 1 ≤ i < j ≤ n, so s1,1(x1, . . . , xn) =

∑
1≤i<j≤n xixj = e2(x1, . . . , xn), and by

the same reasoning, s1,1 = e2 in infinitely many variables. More generally, s1k = ek for any
k.

Also, sk = hk since a SSYT of shape (k) is a choice of i1 ≤ i2 ≤ · · · ≤ ik.
For something different, consider s2,1(x1, x2, x3). There are 8 SSYT that of shape (2, 1)

that only use 1, 2, 3:

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3
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From this, we can read off that s2,1(x1, x2, x3) is a symmetric polynomial. Furthermore, it is
m2,1(x1, x2, x3) + 2m1,1,1(x1, x2, x3). �

Theorem 4.1.4. For any µ ⊆ λ, the skew Schur function sλ/µ is a symmetric function.

Proof. We need to check that for every sequence α and every permutation σ, the number
of SSYT of shape λ/µ and type α is the same as the number of SSYT of shape λ/µ and
type σ(α). Since α has only finitely many nonzero entries, we can always replace σ by a
permutation σ′ that permutes finitely many elements of {1, 2, . . . } so that σ(α) = σ′(α).
But then σ′ can be written as a finite product of adjacent transpositions (i, i + 1). So it’s
enough to check the case when σ = (i, i+ 1).

Let T be a SSYT of shape λ/µ and type α. Do the following: take the set of columns
that only contain exactly one of i or i + 1. Now consider just the entries of these columns
that contain i or i + 1. The result is a series of isolated rows. In a given row, if there are
a instances of i and b instances of i + 1, then replace it by b instances of i and a instances
of i + 1. The result is still a SSYT, but the type is now (i, i + 1)(α). This is reversible, so
defines the desired bijection. �

We now focus on Schur functions. Suppose λ is a partition of n. Let Kλ,α be the number
of SSYT of shape λ and type α, this is called a Kostka number. The previous theorem says
Kλ,α = Kλ,σ(α) for any permutation σ, so it’s enough to study the case when α is a partition.
By the definition of Schur function, we have

sλ =
∑
µ`n

Kλ,µmµ.

An important special case is when µ = 1n. Then Kλ,1n is the number of SSYT that use each
of the numbers 1, . . . , n exactly once. Such a SSYT is called a standard Young tableau,
and Kλ,1n is denoted fλ.

Theorem 4.1.5. If Kλ,µ 6= 0, then µ ≤ λ (dominance order). Also, Kλ,λ = 1. In particular,
the sλ form a basis for Λ.

Proof. Suppose that Kλ,µ 6= 0. Pick a SSYT T of shape λ and type µ. Each number k can
only appear in the first k rows of T : otherwise, there is a column with entries 1 ≤ i1 <
i2 < · · · < ir < k where r ≥ k, which is a contradiction. This implies that µ1 + · · · + µk ≤
λ1 + · · ·+ λk, so µ ≤ λ.

The only SSYT of shape λ and type λ is the one that fills row i with the number i.
Now the last statement follows from Lemma 2.1.2. �

Corollary 4.1.6. {sλ | |λ| = d} is a basis for Λd.

Corollary 4.1.7. {sλ(x1, . . . , xn) | |λ| = d, `(λ) ≤ n} is a basis for Λ(n)d.

Proof. Note that if `(λ) > n, there are no SSYT only using 1, . . . , n, so sλ(x1, . . . , xn) = 0.
Hence the set in question spans Λ(n)d. Since Λ(n)d is free of rank equal to the size of this
set, it must also be a basis. �

4.2. RSK algorithm. The RSK algorithm converts a matrix with non-negative integer
entries into a pair of SSYT of the same shape. This has a number of remarkable properties
which we can use to get identities for Schur functions. The basic step is called row insertion,
which we now define.
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Let T be a SSYT of a partition λ, and let k ≥ 1 be an integer. The row insertion, denoted
T ← k, is another tableau defined as follows:

• Find the largest index i such that T1,i−1 ≤ k (if no such index exists, set i = 1).
• Replace T1,i with k and set k′ = T1,i; we say that k is bumping k′. If i = λ1 + 1, we

are putting k at the end of the row, and the result is T ← k.
• Otherwise, let T ′ be the SSYT obtained by removing the first row of T . Calculate
T ′ ← k′ and then add the new first row of T back to the result to get T ← k.

Let I(T ← k) be the set of coordinates of the boxes that get replaced; this is the insertion
path.

Example 4.2.1. Let T = 1 2 4 5 5 6
3 3 6 6 8
4 6 8
7
9

and k = 4.

We list the steps below, each time bolding the entry that gets replaced.

1 2 4 5 5 6← 4
3 3 6 6 8
4 6 8
7
8

= 1 2 4 4 5 6
3 3 6 6 8 ← 5
4 6 8
7
8

= 1 2 4 4 5 6
3 3 5 6 8
4 6 8 ← 6
7
8

= 1 2 4 4 5 6
3 3 5 6 8
4 6 6
7 8
8

The insertion path is I(T ← 4) = {(1, 4), (2, 3), (3, 3), (4, 2)}. �

Proposition 4.2.2. T ← k is a SSYT.

Proof. By construction, the rows of T ← k are weakly increasing. Also by construction, at
each step, if we insert a into row i, then it can only bump a value b with b > a. We claim
that if (i, j), (i + 1, j′) ∈ I(T ← k), then j ≥ j′. If not, then Ti+1,j < Ti,j since otherwise b
would bump the number in position (i+ 1, j) or further left instead of bumping the number
in position (i + 1, j′), but this contradicts that T is a SSYT. In particular, b = Ti,j ≤ Ti,j′
and also Ti+2,j′ > Ti+1,j′ > b, so inserting b into position (i+ 1, j′) preserves the property of
being a SSYT. �

Now we’re ready to give the RSK (Robinson–Schensted–Knuth) algorithm. Let A be an
infinite matrix (whose rows and columns are indexed by positive integers) with non-negative
integer entries (only finitely many of which are nonzero). In examples, we will represent A
by a finite northwestern corner which contains all of its positive entries. Create a multiset
of tuples (i, j) where the number of times that (i, j) appears is Ai,j. Now sort them by
lexicographic order and put them as the columns of a matrix wA with 2 rows.

Example 4.2.3. If A =

2 0 1
0 3 1
0 0 1

, then wA =

(
1 1 1 2 2 2 2 3
1 1 3 2 2 2 3 3

)
. �

Given A, we’re going to create a pair of tableaux (P,Q) by induction as follows. Start with
P (0) = ∅, Q(0) = ∅. Assuming P (t) and Q(t) are defined, let P (t+1) = (P (t)← (wA)2,t+1).
Now P (t+ 1) has a new box that P (t) does not have; add that same box to Q(t) with value
(wA)1,t+1 to get Q(t+ 1). When finished, the result is P (the insertion tableau) and Q (the
recording tableau).



32 STEVEN V SAM

Example 4.2.4. Continuing the previous example, we list P (t), Q(t) in the rows of the
following table.

P (t) Q(t)
1 1

1 1 1 1

1 1 3 1 1 1

1 1 2
3

1 1 1
2

1 1 2 2
3

1 1 1 2
2

1 1 2 2 2
3

1 1 1 2 2
2

1 1 2 2 2 3
3

1 1 1 2 2 2
2

1 1 2 2 2 3 3
3

1 1 1 2 2 2 3
2

The last row has the tableaux P and Q. �

Lemma 4.2.5. P and Q are both SSYT.

Proof. P is built by successive row insertions into SSYT, so is itself a SSYT by Proposi-
tion 4.2.2. The numbers are put into Q in weakly increasing order since the first row of wA
is weakly increasing. Hence the entries of Q are weakly increasing in each row and also in
each column. So it suffices to check no column has repeated entries, and this follows from
the next lemma. �

Lemma 4.2.6. Let T be a SSYT and j ≤ k. Then I(T ← j) is strictly to the left of
I((T ← j) ← k), i.e., if (r, s) ∈ I(T ← j) and (r, s′) ∈ I((T ← j) ← k), then s < s′.
Furthermore, #I(T ← j) ≥ #I((T ← j)← k).

Proof. When inserting k into the first row of T ← j, k must bump a number strictly larger
than itself, so gets put in a position strictly to the right of whatever was bumped by j when
computing T ← j. The numbers j′ and k′ that got bumped by j and k satisfy j′ ≤ k′, so we
can deduce the first statement by induction on the number of rows.

For the second statement, let r = #I(T ← j), so that the last move in computing T ← j
was to add an element to the end of row r. If #I((T ← j)← k) ≥ r, then the bump in row
r happens strictly to the right of row r, which means an element was added to the end, and
hence r = #I((T ← j)← k) in this case. �

Theorem 4.2.7. The RSK algorithm gives a bijection between non-negative integer ma-
trices A with finitely many nonzero entries and pairs of SSYT (P,Q) of the same shape.
Furthermore, j appears in P exactly

∑
iAi,j times, while i appears in Q exactly

∑
j Ai,j

times.

Proof. The last statement is clear from our construction, so it suffices to prove that RSK
gives a bijection. We just give a sketch. First, we can recover wA from (P,Q) as follows:
the last entry in the first row of wA is the largest entry in Q, and it was added wherever the
rightmost occurrence of that entry is. Remove it to get Q′. Now, consider the number in
the same position in P . We reverse the row insertion procedure; whatever pops out at the
end is the last entry in the second row of wA. We can undo the row insertion procedure to
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get this entry out of P and get a resulting P ′. Now repeat to get the rest of the columns of
wA. So the RSK algorithm is injective. We can do this procedure to any pair (P,Q), though
we don’t know it leads to wA for some matrix A; surjectivity amounts to proving this is the
case. We will skip this check, which amounts to reversing some of the arguments presented
above. �

Corollary 4.2.8 (Cauchy identity).∏
i,j

(1− xiyj)−1 =
∑
λ

sλ(x)sλ(y)

where the sum is over all partitions.

Proof. Given a non-negative integer matrix A with finitely many nonzero entries, assign to
it the monomial m(A) =

∏
i,j(xiyj)

Ai,j . The left hand side is then
∑

Am(A) since the Ai,j
can be chosen arbitrarily. Via the RSK correspondence, A goes to a pair of SSYT (P,Q),
and by Theorem 4.2.7, m(A) = xQyP , and so

∑
Am(A) =

∑
λ sλ(x)sλ(y). �

Corollary 4.2.9. The Schur functions form an orthonormal basis with respect to 〈, 〉, i.e.,
〈sλ, sµ〉 = δλ,µ.

Proof. Immediate from the Cauchy identity and Lemma 3.7.1. �

Corollary 4.2.10. We have

hµ =
∑
λ

Kλ,µsλ.

Proof. Write hµ =
∑

λ aλ,µsλ for some coefficients a. By Corollary 4.2.9, aλ,µ = 〈hµ, sλ〉. By
definition, we have sλ =

∑
ν Kλ,νmν . But also by definition and Corollary 3.7.3, 〈hµ,mν〉 =

δµ,ν . Hence, aλ,µ = Kλ,µ. �

An important symmetry of the RSK algorithm is the following, but we omit the proof.

Theorem 4.2.11. If A 7→ (P,Q) under RSK, then AT 7→ (Q,P ). In particular, RSK gives a
bijection between symmetric non-negative integer matrices with finitely many nonzero entries
and the set of all SSYT.

4.3. Dual RSK algorithm. There is a variant of the RSK algorithm for (0, 1)-matrices
called dual RSK. The change occurs in the definition of row insertion: instead of k bumping
the leftmost entry that is > k, it bumps the leftmost entry that is ≥ k. This can be analyzed
like the RSK algorithm, but we will omit this and state its consequences. Below, a tableau
will simply mean an assignment of the positive integers to the boxes of some Young diagram.
Furthermore, if P is a tableau, then P † means the tableau of the transpose of the shape of
P with the obvious correspondence of values.

Theorem 4.3.1. The dual RSK algorithm gives a bijection between (0, 1)-matrices A with
finitely many nonzero entries and pairs (P,Q) where P and Q are tableaux of the same shape,
and P † and Q are SSYT. Furthermore, the type of P is given by the column sums of A and
the type of Q is given by the row sums of A.

Corollary 4.3.2 (Dual Cauchy identity).∏
i,j

(1 + xiyj) =
∑
λ

sλ(x)sλ†(y).
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Lemma 4.3.3. Let ωy be the action of ω on the second copy of Λ in Λ⊗ Λ. Then∏
i,j

(1 + xiyj) = ωy
∏
i,j

(1− xiyj)−1.

Proof. We have

ωy
∏
i,j

(1− xiyj)−1 = ωy
∑
λ

mλ(x)hλ(y)

=
∑
λ

mλ(x)eλ(y)

where the first equality is Proposition 3.7.2 and the second is Theorem 3.4.1. Now we follow
the proof of Proposition 3.7.2:∏

i

∏
j

(1 + xiyj) =
∏
i

∑
n

en(y)xni =
∑
λ

mλ(x)eλ(y).

Combining these two gives the result. �

Corollary 4.3.4. ω(sλ) = sλ†.

Proof. Corollary 4.2.8 yields

ωy
∑
λ

sλ(x)sλ(y) = ωy
∏
i,j

(1− xiyj)−1 =
∏
i,j

(1 + xiyj) =
∑
λ

sλ(x)sλ†(y).

The sλ(x) are linearly independent, so ωy(sλ(y)) = sλ†(y). �

4.4. Determinantal formula. For this section, we will fix a positive integer n. Let α =
(α1, . . . , αn) be a non-negative integer sequence. Define

aα = det(x
αj
i )ni,j=1 = det


xα1
1 xα2

1 · · · xαn1
xα1
2 xα2

2 · · · xαn2
...

...
xα1
n xα2

n · · · xαnn

 .

Note that aα is skew-symmetric: if we permute aα by a permutation σ ∈ Sn, then it changes
by sgn(σ). Let ρ = (n− 1, n− 2, . . . , 1, 0).

Lemma 4.4.1. (a)
∏

1≤i<j≤n(xi−xj) divides every skew-symmetric polynomial in x1, . . . , xn.

(b) aρ =
∏

1≤i<j≤n(xi − xj).

Proof. (a) Let f(x1, . . . , xn) be skew-symmetric and let σ be the transposition (i, j). Then
σf = −f . However, σf and f are the same if we replace xj by xi, so this says that specializing
xj to xi gives 0, i.e., f is divisible by (xi − xj). This is true for any i, j, so this proves (a).

(b) aρ is divisible by
∏

1≤i<j≤n(xi − xj) since it is skew-symmetric. But also note that

both are polynomials of degree 1 + 2 + · · · + (n − 1) =
(
n
2

)
, so they are equal up to some

integer multiple. The coefficient of xn−11 xn−22 · · ·xn−1 for both is 1, so they are actually the
same. �

Define α + β = (α1 + β1, . . . , αn + βn).
Given ν ⊆ λ, let Kλ/ν,µ be the number of SSYT of skew shape λ/ν and type µ.
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Lemma 4.4.2. Let µ, ν be partitions with `(µ) ≤ n and `(ν) ≤ n. Then

aν+ρeµ(x1, . . . , xn) =
∑
λ

Kλ†/ν†,µaλ+ρ.

Proof. Throughout this proof, all symmetric functions are understood to be specialized to
the variables x1, . . . , xn. First, we claim that given a partition µ, the coefficient of xλ+ρ in
aν+ρeµ is Kλ†/ν†,µ. To get a monomial in aρeµ1 · · · eµk , we pick a monomial xβ in aν+ρ and

successively multiply it by monomials xα(1), . . . , xα(k) where xα(i) is taken from eµi . Note that
each partial product aν+ρeµ1 · · · eµr is skew-symmetric, so each of its monomials have distinct
exponents on all of the variables. So, we’re only interested in choosing xα(r+1) so that the
product xβxα(1) · · ·xα(r+1) has all exponents distinct. Since xα(r+1) is a product of distinct
variables, the relative order of the exponents remains the same. Since we’re interested in
the coefficient of xλ+ρ, whose exponents are strictly decreasing, we can only get to this if
β is strictly decreasing and the xα(r+1) is chosen so that the exponents of xβxα(1) · · ·xα(r+1)

are strictly decreasing. The only β that works is ν + ρ, and so the condition is the same as
requiring that γ(r + 1) := ν + α(1) + · · ·+ α(r + 1) is a partition for each r.

Note then we get a sequence of partitions

ν = γ(0) ⊆ γ(1) ⊆ γ(2) ⊆ · · · ⊆ γ(n) = λ

such that the difference γ(r + 1)/γ(r) only has boxes in different rows, and that conversely,
given such a sequence, we can find a sequence of monomials that corresponds to this. How-
ever, this sequence is also equivalently encoding a labeling of the Young diagram of λ/ν which
is weakly increasing in columns and strictly increasing in rows, i.e., taking the transpose gives
a SSYT of λ†/ν† and type µ. So the claim is proven.

Finally, consider the difference

aν+ρeµ −
∑
λ

Kλ†/ν†,µaλ+ρ.

If λ′ 6= λ, then the coefficient of xλ+ρ in aλ′+ρ is 0, so the coefficient of each xλ+ρ of this
difference is 0. However, any nonzero skew-symmetric function of degree |λ| +

(
n
2

)
has a

monomial of the form xλ+ρ for some partition λ, so we conclude that the difference is 0. �

Corollary 4.4.3. Given a partition λ,

sλ(x1, . . . , xn) =
aλ+ρ
aρ

.

Proof. Again, in this proof, all symmetric functions are understood to be specialized to
x1, . . . , xn. Take ν = ∅ in Lemma 4.4.2 and divide both sides by aρ to get

eµ =
∑
λ

Kλ†,µ

aλ+ρ
aρ

.

However, we also have an expression

eµ =
∑
λ

Kλ†,µsλ

by applying ω to Corollary 4.2.10. The sets {sλ | `(λ) ≤ n} and {eµ | µ1 ≤ n} are both
bases of Λ(n) (by Corollary 4.1.7 and Theorem 3.3.4), so we can invert the matrix (Kλ†,µ)
to conclude that sλ = aλ+ρ/aρ. �
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Remark 4.4.4. (For those familiar with Lie theory.) The formula above is really an instance
of the Weyl character formula for the Lie algebra gln(C) (or actually, sln(C) since it’s
semisimple, but we’ll phrase everything in terms of gln(C) because it’s cleaner). To translate,
first note that we can evaluate determinants by using a sum over all permutations, and in
our case this gives

aα =
∑
σ∈Sn

sgn(σ)σ(xα).

In the context of gln(C), (integral) weights are identified with elements of Zn, while dominant
weights are the weakly decreasing ones. Also, ρ is used here to have the same meaning as
in Lie theory: it is the sum of the fundamental dominant weights. Finally, Sn is the Weyl
group of gln(C), and sλ(x1, . . . , xn) is the character of the irreducible representation with
highest weight λ. Then our formula becomes

sλ(x1, . . . , xn) =

∑
σ∈Sn sgn(σ)σ(xλ+ρ)∑
σ∈Sn sgn(σ)σ(xρ)

which is the Weyl character formula, as might be found in [Hu, §24.3]. �

4.5. Multiplying Schur functions, Pieri rule.

Corollary 4.5.1. sνeµ =
∑

λKλ†/ν†,µsλ.

Proof. By Lemma 4.4.2, we have

aν+ρeµ(x1, . . . , xn) =
∑
λ

Kλ†/ν†,µaλ+ρ

for n ≥ max(`(λ), `(ν)). Divide both sides by aρ and use Corollary 4.4.3 to get the desired
identity in finitely many variables x1, . . . , xn. Since it holds for all n� 0, it also holds when
n =∞. �

Corollary 4.5.2. sνhµ =
∑

λKλ/ν,µsλ.

Proof. Apply ω to Corollary 4.5.1 and use Corollary 4.3.4 to get the desired identity with
ν† and λ† in place of ν and λ. But that’s just an issue of indexing, so we get the desired
identity. �

Theorem 4.5.3. For any f ∈ Λ, we have

〈fsν , sλ〉 = 〈f, sλ/ν〉.

Proof. Both sides of the equation are linear in f , so it suffices to prove this when f ranges
over a particular basis, and we choose hµ. By Corollary 4.5.2, 〈hµsν , sλ〉 = Kλ/ν,µ. This is
the coefficient of mµ in sλ/ν . Since 〈hν ,mµ〉 = δν,µ, we conclude that Kλ/ν,µ = 〈hµ, sλ/ν〉. �

Of particular note is when f = sµ. Since the sλ are a basis, we have unique expressions

sµsν =
∑
λ

cλµ,νsλ,(4.5.4)

and the cλµ,ν are called Littlewood–Richardson coefficients. We will see some special cases
soon and study this in more depth later. Since the sλ are an orthonormal basis, we get

(4.5.5) cλµ,ν = 〈sµsν , sλ〉 = 〈sµ, sλ/ν〉.
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In particular, we also have an identity

sλ/ν =
∑
µ

cλµ,νsµ.

From the definition, we have
cλµ,ν = cλν,µ.

Applying ω to (4.5.4), we get

(4.5.6) cλµ,ν = cλ
†

ν†,µ† .

We can give an interpretation for the Littlewood–Richardson coefficients in the special
case where µ (or ν) has a single part or all parts equal to 1. Say that λ/ν is a horizontal
strip if no column in the skew Young diagram of λ/ν contains 2 or more boxes. Similarly,
say that λ/ν is a vertical strip if no row in the skew Young diagram of λ/ν contains 2 or
more boxes.

Theorem 4.5.7 (Pieri rule). • If µ = (1k), then

cλ(1k),ν =

{
1 if |λ| = |ν|+ k and λ/ν is a vertical strip

0 otherwise
.

In other words,

sνs1k =
∑
λ

sλ

where the sum is over all λ such that λ/ν is a vertical strip of size k.
• If µ = (k), then

cλ(k),ν =

{
1 if |λ| = |ν|+ k and λ/ν is a horizontal strip

0 otherwise
.

In other words,

sνsk =
∑
λ

sλ

where the sum is over all λ such that λ/ν is a horizontal strip of size k.

Proof. Since s1k = ek, we have sνs1k =
∑

λKλ†/ν†,ksλ by Corollary 4.5.1. So cλ
1k,ν

is the

number of SSYT of shape λ†/ν† using k 1’s. There is at most one such SSYT, and it exists
exactly when |λ/ν| = k and no two boxes of λ†/ν† are in the same column, i.e., λ/ν is a
vertical strip.

The proof the second identity is similar, or can be obtained by using ω. �

Example 4.5.8. To multiply sλ by sk, it suffices to enumerate all partitions that we can
get by adding k boxes to the Young diagram of λ, no two of which are in the same column.
For example, here we have drawn all such ways to add 2 boxes to (4, 2):

× × , ×
×

, ×

×

,
× ×

,
×

×

,

× ×

.

So
s4,2s2 = s6,2 + s5,3 + s5,2,1 + s4,4 + s4,3,1 + s4,2,2. �

Recall that for |λ| = n, fλ = Kλ,1n is the number of standard Young tableaux of shape λ.
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Corollary 4.5.9. sn1 =
∑

λ`n f
λsλ.

Proof. The Pieri rule says that to multiply sn1 , we first enumerate all sequences λ(0) ⊂ λ(1) ⊂
λ(2) ⊂ · · · ⊂ λ(n) where |λ(i)| = i. Then the result is the sum of sλ with multiplicity given by
the number of sequences with λ(n) = λ. But such sequences are in bijection with standard
Young tableaux: label the unique box in λ(i)/λ(i−1) with i. �

Theorem 4.5.10. ω(sλ/ν) = sλ†/ν†.

Proof. First, we have

〈sµ† , sλ†/ν†〉 = 〈sµ†sν† , sλ†〉 (Theorem 4.5.3)

= 〈ω(sµsν), ω(sλ)〉 (Corollary 4.3.4)

= 〈sµsν , sλ〉 (Corollary 3.7.5)

= 〈sµ, sλ/ν〉 (Theorem 4.5.3)

= 〈ω(sµ), ω(sλ/ν)〉 (Corollary 3.7.5)

= 〈sµ† , ω(sλ/ν)〉. (Corollary 4.3.4)

The pairing is nondegenerate, so if we fix λ, ν and allow µ to vary, we get sλ†/ν† = ω(sλ/ν). �

4.6. Jacobi–Trudi identity. Corollary 4.5.2 and Corollary 4.5.1 with ν = ∅ explain how
to rewrite the hµ and eµ bases in terms of the Schur basis using Kostka numbers. The
Jacobi–Trudi identities go the other way around. We’ll do something more general with
skew Schur functions though.

Theorem 4.6.1. Pick µ ⊆ λ with `(λ) ≤ n. Set hi = 0 if i < 0. Then

sλ/µ = det(hλi−µj−i+j)
n
i,j=1 = det


hλ1−µ1 hλ1−µ2+1 hλ1−µ3+2 · · · hλ1−µn+n−1
hλ2−µ1−1 hλ2−µ2 hλ2−µ3+1 · · · hλ2−µn+n−2

...
...

hλn−µ1−n+1 hλn−µ2−n+2 hλn−µ3−n+3 · · · hλn−µn



sλ/µ = det(eλ†i−µ
†
j−i+j

)ni,j=1 = det


eλ†1−µ

†
1

eλ†1−µ
†
2+1 eλ†1−µ

†
3+2 · · · eλ†1−µ

†
n+n−1

eλ†2−µ
†
1−1

eλ†2−µ
†
2

eλ†2−µ
†
3+1 · · · eλ†2−µ

†
n+n−2

...
...

eλ†n−µ†1−n+1 eλ†n−µ†2−n+2 eλ†n−µ†3−n+3 · · · eλ†n−µ†n .


Proof. First, note that if we move from n to n+ 1, the determinant does not change because
the new row added is (0, 0, . . . , 0, 1). Fix µ and work in Z[[x1, . . . , xN , y1, . . . , yN ]] where
N ≥ n. We have∑

λ

sλ/µ(x)sλ(y) =
∑
λ

∑
ν

cλµ,νsν(x)sλ(y) (by (4.5.5))

=
∑
ν

sν(x)sν(y)sµ(y) (by (4.5.5))

= sµ(y)
∏
i,j

(1− xiyj)−1 (Corollary 4.2.8)

= sµ(y)
∑
ν

hν(x)mν(y). (Proposition 3.7.2)
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Multiply both sides by aρ(y) to get∑
λ

sλ/µ(x)aλ+ρ(y) = aµ+ρ(y)
∑
ν

hν(x)mµ(y) (Corollary 4.4.3)

=

(∑
σ∈SN

sgn(σ)σ(yµ+ρ)

) ∑
α∈ZN≥0

hα(x)yα


=
∑
σ∈SN

∑
α

sgn(σ)hα(x)yα+σ(µ+ρ).

Now take the coefficient of yλ+ρ. The left hand side gives sλ/µ(x), while the right hand side
gives ∑

σ∈SN

sgn(σ)hλ+ρ−σ(µ+ρ)(x) = det(hλi−µj−i+j)
N
i,j=1.

So we get the desired identity in N variables; let N →∞ to get it in general.
The second identity follows from the first by applying ω. �

Remark 4.6.2. It is possible to give an elegant combinatorial proof of the Jacobi–Trudi
identity by interpreting SSYT as non-crossing lattice paths and using the Gessel–Viennot
method of enumerating non-crossing lattice paths. The interested reader can find this argu-
ment in [Sta, §7.16]. �

5. Representation theory of the symmetric groups

5.1. Symmetric groups. We now focus on the symmetric groups G = Sn. Recall that
in §1.6.4, we showed that all of the characters of its representations are integer-valued. We
define CFn to be the space of rational-valued class functions on Sn. Recall that the pairing
on CFn is given by

(ϕ, ψ)Sn =
1

n!

∑
σ∈Sn

ϕ(σ)ψ(σ)

(there is no complex conjugation since they are rational valued).
First, every permutation σ ∈ Sn has a decomposition as a product of disjoint cycles (a

cycle, denoted (i1, i2, . . . , ik), is the permutation which sends ij to ij+1 for j < k and ik to
i1), and the lengths of these cycles, including cycles of length 1, arranged in decreasing order
gives a partition of n, which we denote t(σ) and call the cycle type.

Recall that for a partition λ, we let mi(λ) denote the number of times that i appears as
an entry, and zλ =

∏
imi(λ)!imi(λ).

Lemma 5.1.1. The conjugacy class assigned to λ has size n!/zλ.

Proof. Given a permutation σ of cycle type λ, we claim that the centralizer of σ has size zλ.
To see this, note that a cycle (i1, i2, . . . , ik) is equal to a cyclic shift (ir, ir+1, . . . , ik, i1, . . . , ir−1).
So any τ that sends a cycle of σ to any cyclic shift of another cycle of the same length is in
the centralizer, and there are zλ such τ . �

Given a partition λ, let 1λ denote the class function which is 1 on all permutations with
cycle type λ and 0 on all other permutations.

Corollary 5.1.2. Given partitions λ, µ of n, we have (1λ, 1µ)Sn = z−1λ δλ,µ.
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Proof. If λ 6= µ, then the definition of the pairing shows that (1λ, 1µ) = 0. Otherwise,
(1λ, 1λ) = 1

n!
c where c is the size of the conjugacy class of cycle type λ, which we just said is

n!/zλ. �

Next, given non-negative integers n,m, we can think of Sn×Sm as a subgroup of Sn+m if
we identify Sn with the subgroup which is the identity on n+1, . . . , n+m and if we identify
Sm with the subgroup which is the identity on 1, . . . , n. Define an induction product

◦ : CFn × CFm → CFn+m

ϕ ◦ ψ = Ind
Sn+m
Sn×Sm(ϕ⊗ ψ).

This turns CF :=
⊕

n≥0 CFn into a commutative ring (though it requires verification). Our
next task is to show that it is isomorphic to ΛQ (which automatically implies that the product
is commutative).

5.2. The characteristic map. The Frobenius characteristic map is the linear function

ch: CFn → ΛQ,n

ch(ϕ) =
1

n!

∑
σ∈Sn

ϕ(σ)pt(σ)

where recall that p is the power sum symmetric function. Alternatively, if we set ϕ(λ) to
be the value of ϕ on any permutation with cycle type λ, then ch(ϕ) =

∑
λ z
−1
λ ϕ(λ)pλ by

Lemma 5.1.1. Put these together to define a linear function

ch:
⊕
n≥0

CFn → ΛQ.

Proposition 5.2.1. ch is an isometry, i.e., given ϕ, ψ ∈ CFn,

(ϕ, ψ)Sn = 〈ch(ϕ), ch(ψ)〉.

Proof. Given that the conjugacy class of λ has size n!/zλ, we have

〈ch(ϕ), ch(ψ)〉 = 〈
∑
λ

z−1λ ϕ(λ)pλ,
∑
µ

z−1µ ψ(µ)pµ〉

=
∑
λ

z−1λ ϕ(λ)ψ(λ)

= (ϕ, ψ)Sn ,

where the second equality is orthogonality of the pλ (Proposition 3.7.4) and the third equality
uses that ϕ, ψ are constant on conjugacy classes. �

Proposition 5.2.2. ch is a ring isomorphism, i.e., given ϕ ∈ CFn and ψ ∈ CFm, we have

ch(ϕ ◦ ψ) = ch(ϕ)ch(ψ).

Proof. For two partitions λ, µ, write λ∪µ for the partition with the combined parts of λ and
µ sorted in order.

We claim that 1λ ◦ 1µ =
zλ∪µ
zλzµ

1λ∪µ. To see this, let ν be any partition of n + m. Then by

Frobenius reciprocity and Corollary 5.1.2,

(Ind
Sn+m
Sn×Sm(1λ ⊗ 1µ), 1ν)Sn+m = (1λ ⊗ 1µ,Res

Sn+m
Sn×Sm1ν)Sn×Sm =

δλ∪µ,ν
zλzµ

.
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Hence 1λ ◦ 1µ = c1λ∪µ where c =
(1λ◦1µ,1λ∪µ)
(1λ∪µ,1λ∪µ)

=
zλ∪µ
zλzµ

.

Next, ch(1λ) = pλ/zλ, so we see that ch(1λ ◦ 1µ) = ch(1λ)ch(1µ). Since the 1λ form a basis
for CF, we conclude that ch is a ring homomorphism. Finally, the 1λ map to a basis for ΛQ,
so we also conclude that it is an isomorphism. �

We now wish to get a more refined statement. Let Rn ⊂ CFn be the Z-submodule of
virtual characters, i.e., integer linear combinations of characters, and set R =

⊕
n≥0Rn.

Our goal is to determine the irreducible characters of Sn.

Proposition 5.2.3. Suppose ϕ1, ϕ2, . . . , ϕp(n) ∈ Rn form an orthonormal basis with respect
to (, )Sn. Then the irreducible characters are ε1ϕ1, ε2ϕ2, . . . , εp(n)ϕp(n) for some choices εi ∈
{1,−1}.

Proof. By definition, the irreducible characters belong to Rn and they form an orthonormal
basis by Theorem 1.5.2. Now write the ϕi as integer linear combinations of the irreducible
characters. These coefficients give an orthogonal matrix (with respect to a positive definite
form) with integer entries. The only orthonormal vectors with integer entries are standard
basis vectors and their negatives, so each row is one of these. Since the matrix is invertible,
we see that the matrix has exactly one nonzero entry in each row and column, and that
entry is ±1. �

With this in mind, the first step is to find an orthonormal basis of Rn. We know that the
Schur functions form an orthonormal basis of Λ, so we define

χλ = ch−1(sλ).

Our goal now is show that χλ ∈ R and that they in fact are the irreducible characters.
Let 1Sn denote the trivial homomorphism Sn → GL1(C) which sends everything to 1.

Its character just assigns 1 to every permutation, so char(1Sn) =
∑

λ 1λ. For every partition
α = (α1, . . . , αk), define

ηα = 1Sα1
◦ · · · ◦ 1Sαk

.

Lemma 5.2.4. ch(ηα) = hα.

Proof. First, ch(1Sn) =
∑

λ z
−1
λ pλ, which, by Theorem 3.6.3, is hn. Now use that ch is a ring

homomorphism. �

Corollary 5.2.5. χλ ∈ R and ch restricts to an isomorphism R→ Λ.

Proof. We have ηα ∈ R and sλ = det(hλi−i+j)
n
i,j=1 by the Jacobi–Trudi identity (Theo-

rem 4.6.1). This expresses the Schur function as an integer linear combination of hα, so χλ

is also an integer linear combination of the ηα and hence χλ ∈ R.
Since the sλ form an orthonormal basis of Λ and ch is an isometry, we conclude that up

to a sign, the χλ are the irreducible characters by Proposition 5.2.3. In particular, every
element of R is an integer linear combination of the χλ. Since ch sends them to a basis of
Λ, we get the second statement. �

Finally, we have to determine which of χλ and −χλ is actually the irreducible character.
To do this, we evaluate on the identity element of Sn. The trace of the identity element is
the dimension of the representation, so we just need to determine if this evaluation is positive
or negative. It will turn out that χλ(1) > 0, and more generally, the Murnaghan–Nakayama
rule, to be studied next, will determine the evaluation at any permutation.
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5.3. Murnaghan–Nakayama rule. Given partitions λ, µ, let χλ(µ) denote the evaluation
of χλ on any permutation with cycle type µ. Then by definition,

χλ =
∑
µ

χλ(µ)1µ.

Applying the characteristic map, we get

sλ =
∑
µ

z−1µ χλ(µ)pµ.

So to determine these evaluations, we need to determine how the Schur functions can be
written in terms of the power sum symmetric functions. More generally, given ν ⊆ λ, define

χλ/ν = ch−1(sλ/ν),

so that

(5.3.1) sλ/ν =
∑
µ

z−1µ χλ/ν(µ)pµ.

We will first study the inverse problem of expressing the p’s in terms of the Schur functions
and get what we want using the scalar product.

Define a border strip to be a connected skew diagram with no 2×2 subdiagram. (Sharing
only a corner is not considered connected, so 21/1 is not connected.) Here is an example
border strip:

The height of a border strip B is denoted ht(B), and is the number of rows minus 1. In the
example above, the height is 5.

Theorem 5.3.2. Given a positive integer r, we have

sµpr =
∑
λ

(−1)ht(λ/µ)sλ

where the sum is over all λ such that µ ⊆ λ and λ/µ is a border strip of size r.

Proof. It suffices to prove this in n variables where n � 0. Recall the definition of the
determinant aα = det(x

αj
i )ni,j=1 where α = (α1, . . . , αn) is any sequence of non-negative

integers. Recall ρ = (n−1, n−2, . . . , 1, 0). Let εj be the sequence with a single 1 in position
j and 0’s elsewhere. By Corollary 4.4.3, we have sλ = aλ+ρ/aρ.

We have

aµ+ρpr = (
∑
σ∈Sn

sgn(σ)xσ(µ+ρ))(
n∑
j=1

xrj) =
n∑
j=1

∑
σ∈Sn

sgn(σ)xσ(µ+ρ+rεj) =
n∑
j=1

aµ+ρ+rεj ,

where in the second equality, we multiply xσ(µ+ρ) by xrσ(j) to get xσ(µ+ρ+rεj).

Next, aα = −aβ if β = (α1, . . . , αi−2, αi, αi−1, αi+1, . . . , αn), i.e., β is obtained from α by
swapping two consecutive entries. In particular, aα+ρ = −aγ+ρ where γ = (α1, . . . , αi−2, αi−
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1, αi−1 + 1, αi+1, . . . , αn) and also aα+ρ = 0 if α + ρ has any repeating entries. We say that
γ is obtained by a shifted transposition at position i− 1.

Suppose that µ + rεj + ρ has no repeating entries. Note that µ + rεj/µ is a border strip
of size r and height 0 (µ + rεj may not be a partition, but we will draw its diagram in the
expected way). If µ + rεj is not a partition, then replace it by the shifted transposition at
position j − 1. What happens in rows j − 1 and j is that (µj−1, µj + r) gets replaced by
(µj + r − 1, µj−1 + 1). This is a new shape that contains µ and the complement is a border
strip with two rows, the first of length µj+r−1−µj−1 and the second of length µj−1+1−µj.
If this is a partition, we stop, otherwise we apply another shifted transposition at position
j − 2, and so on.

The end result is a new partition containing µ whose complement is a border strip. The
height of this border strip is precisely the number of shifted transpositions we applied, and
all border strips arise in this way by taking j to be the row index of the last row of the
border strip (we will not go into detail on this). Hence we get the formula

n∑
j=1

aµ+ρ+rεj =
∑
λ

(−1)ht(λ/µ)aλ+ρ

where the sum is over all λ containing µ such that λ/µ is a border strip of size r and `(λ) ≤ n.
If n ≥ `(µ) + r, this accounts for all possible border strips. Now divide both sides by aρ to
get the desired identity. �

Example 5.3.3. s1p4 = s5 − s3,2 + s2,2,1 − s15 corresponding to the following border strips:

× × × × × ×
× ×

×
× ×
×

×
×
×
×

In the notation of the proof, these come from a1+ρ+4εj for j = 1, 2, 3, 5. �

Given a sequence of non-negative integers α = (α1, . . . , αk), a border-strip tableau of
shape λ/µ and of type α is a sequence of partitions µ = λ0 ⊆ λ1 ⊆ · · · ⊆ λk = λ such that
λi/λi−1 is a border strip of size αi. The height of this tableau is the sum of the heights of
the border strips λi/λi−1 (empty border strips have height 0, rather than −1).

Corollary 5.3.4.

sµpα =
∑
λ

∑
T

(−1)ht(T )sλ

where the inner sum is over all border-strip tableaux T of shape λ/µ and type α. In particular,

pα =
∑
λ

∑
T

(−1)ht(T )sλ

where the inner sum is over all border-strip tableaux T of shape λ and type α.

Corollary 5.3.5. χλ/ν(µ) =
∑

T (−1)ht(T ) where the sum is over all border-strip tableaux T
of shape λ/ν and type µ.
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Proof. By (5.3.1) and orthogonality properties of the pµ, we get

χλ/ν(µ) = 〈sλ/ν , pµ〉
= 〈sλ, pµsν〉 (Theorem 4.5.3)

=
∑
T

(−1)ht(T ) (Corollary 4.2.9)

where the sum is the one we want. �

Corollary 5.3.6. Let n = |λ/µ|. Then χλ/µ(1n) = fλ/µ, the number of standard Young
tableaux of shape λ/µ. In particular, χλ(1|λ|) > 0, so χλ is the character of the symmetric
group S|λ| of an irreducible representation of dimension fλ.

Proof. By definition, a border-strip tableau of type (1n) is the same as a standard Young
tableau, and its height is always 0. The last statement follows from the discussion at the
end of the previous section. �

Corollary 5.3.7. The Littlewood–Richardson coefficient cλµ,ν is non-negative.

Proof. Recall that sνsµ =
∑

λ c
λ
µ,νsλ. Applying ch−1, this becomes χν ◦ χµ =

∑
λ c

λ
µ,νχ

λ.
The induction of the character of a representation is again the character of a representation,
so the right hand side is the character of a representation. Since every character is a non-
negative sum of the irreducible ones, and the χλ are the irreducible characters, we conclude
that cλµ,ν ≥ 0. �

A natural followup: since cλµ,ν is a non-negative integer, is it the cardinality of some
combinatorially meaningful set? We will give some constructions of such sets coming from
tableaux later.

Finally, we match up the characters we found with the Specht modules.

Proposition 5.3.8. χλ is the character of the Specht module Sλ.

Proof. We do this by descending induction on the set of partitions of a fixed size n under
dominance order. The base case is λ = (n). Since hn =

∑
λ z
−1
λ pλ by Theorem 3.6.3, we see

that χ(n)(µ) = 1 for all µ and hence χ(n) is the trivial character. We also know that S(n) is
the trivial representation, so these match up.

The base case implies that ch−1(hλ) is the character of Mλ ∼= IndSn
Sλ1×···Sλr

C. Now suppose

that we have proven the result for all partitions that dominate λ. By Lemma 2.3.10, if there
is a Specht module Sµ which is a direct summand of Mλ, then µ ≥ λ. On the other hand,
we have hλ = sλ +

∑
µ>λKµ,λsµ. By the induction hypothesis, for any µ appearing in the

sum, we have that χµ is the character of Sµ. Hence, χλ must be the character of some Specht
module which is a summand of Mλ but is not isomorphic to Sµ for any µ > λ. But the only
one satisfying this condition is Sλ. �

6. Combinatorial formulas

6.1. Standard Young tableaux. Given a partition λ = (λ1, . . . , λk) of n, recall that fλ

is the number of standard Young tableaux of shape λ. We gave a representation-theoretic
interpretation in terms of symmetric groups: fλ = χλ(1n) is the dimension of an irreducible
representation. Our goal now is to give some formulas for fλ.
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Theorem 6.1.1. Pick k ≥ `(λ) and define `i = λi + k − i. Then

fλ =
n!

`1! · · · `k!
∏

1≤i<j≤k

(`i − `j).

Proof. From §5.3, we have

pµ =
∑
λ

χλ(µ)sλ.

Now work in k variables x1, . . . , xk. Recall from §4.4 that sλ = aλ+ρ/aρ. Multiply both sides
above by aρ to get

aρpµ =
∑
λ

χλ(µ)aλ+ρ.

If λ, λ′ are partitions, the coefficient of xλ+ρ in aλ′+ρ is δλ,λ′ . In particular, we conclude that
χλ(µ) is the coefficient of xλ+ρ in aρpµ. We’re interested in the case µ = 1n.

First, by definition, we have

aρ = det(xk−ji )ki,j=1 =
∑
σ∈Sk

sgn(σ)x
k−σ(1)
1 · · ·xk−σ(k)k

and

p1n = (x1 + x2 + · · ·+ xk)
n =

∑
i1,...,ik

(
n

i1, . . . , ik

)
xi11 · · ·x

ik
k

where the sum is over all integers i1, . . . , ik ≥ 0 such that i1 + · · ·+ ik = n and(
n

i1, . . . , ik

)
=

n!

i1! · · · ik!

is the multinomial coefficient. Hence the coefficient of xλ+ρ in aρp1n is∑
σ∈Sk

sgn(σ)

(
n

`1 − k + σ(1), . . . , `k − k + σ(k)

)
=
∑
σ∈Sk

sgn(σ)
n!

(`1 − k + σ(1))! · · · (λk − k + σ(k))!

where, by convention, the sum is over σ such that the binomial coefficients make sense (i.e.,
`i + σ(i) ≥ k for all i). Define (x)r = x(x − 1) · · · (x − r + 1) so that (`i − k + σ(i))! =
`i!/(`i)k−σ(i). Then we can further rewrite this as

n!

`1! · · · `k!
∑
σ∈Sk

sgn(σ)
k∏
i=1

(`i)k−σ(i) =
n!

`1! · · · `k!
det


(`1)k−1 (`1)k−2 · · · (`1)2 `1 1
(`2)k−1 (`2)k−2 · · · (`2)2 `2 1

...
...

(`k)k−1 (`k)k−2 · · · (`k)2 `k 1


This determinant is in fact equal to

∏
1≤i<j≤k(`i− `j). To see this, we can either use column

operations and reduce it to the matrix aρ(`1, . . . , `k). Alternatively, replace the `i with
variables xi, and note that (xi− xj) divides the determinant for all i < j and that it has the
same degree and leading coefficient as

∏
1≤i<j≤k(xi − xj). �

We can deduce another nice combinatorial formula from this one using the notion of hook
lengths. Given a box (i, j) in the Young diagram of λ, its hook is the set of boxes to the
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right and below it (including itself). Its hook length h(i, j) is the number of boxes in the
book. Below, we list the hook lengths for the partition (6, 3, 1):

8 6 5 3 2 1
4 2 1
1

Theorem 6.1.2 (Hook length formula). If λ is a partition of n with Young diagram Y (λ),
then

fλ =
n!∏

(i,j)∈Y (λ) h(i, j)
.

Example 6.1.3. Take λ = (6, 3, 1). From the previous example, the hook length formula
gives

f (6,3,1) =
10!

8 · 6 · 5 · 3 · 2 · 4 · 2
= 315.

The formula in Theorem 6.1.1 gives

f (6,3,1) =
10!

8!4!
(8− 1)(8− 4)(4− 1) = 315. �

Proof. Let gλ = n!∏
(i,j)∈Y (λ) h(i,j)

. We will show by induction on the number of columns of λ that

fλ = gλ using the formula fλ = n!
`1!···`k!

∏
1≤i<j≤k(`i − `j) where k = `(λ) and `i = λi + k − i.

If the number of columns is 1, then gλ = 1 and fλ = 1 by its definition as the number of
standard Young tableaux.

In general, let µ be the partition obtained from λ by removing its first column. Note that
the hook lengths in the first column of λ are `1, `2, . . . , `k, but otherwise, the hook lengths
in the other boxes in λ are the hook lengths of the boxes in µ. Hence,

gµ =
(n− k)!

n!
`1 · · · `kgλ.

On the other hand, fµ and fλ satisfy the same relation, so by induction, we conclude that
fλ = gλ. �

Remark 6.1.4. The hook length statistic appears in an ad hoc way in the above derivation.
For a more natural derivation that uses the hook lengths in an essential way, see [GNW]. �

Remark 6.1.5. A natural question: given n, which partition λ maximizes fλ? One might
expect the partition closest to the staircase partition (r, r − 1, . . . , 2, 1) to do this, but this
isn’t right. Note that

∑
λ`n(fλ)2 = n!, so we put a probability measure on the partitions

of n by choosing λ with probability (fλ)2/n!. Represent them by their Young diagram
and normalize so that each box has area 1/n. For the following, we will use the Russian
convention. Work of Logan–Shepp and Vershik–Kerov show that there is a limiting curve
for the boundary of our randomly chosen partition, and even give a formula for it:

Ω(x) =

{
2
π
(x arcsin(x

2
) +
√

4− x2) if |x| ≤ 2

|x| if |x| > 2
.

We plot Ω as the top curve below. The bottom portion is |x| and represents the sides of
other boundaries of the partition.
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−2 −1 0 1 2
0
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2

See [O] for a survey and further references. This also shows that the largest part of a random
partition λ is λ1 ∼ 2

√
n (and symmetrically, `(λ) ∼ 2

√
n). �

6.2. Semistandard Young tableaux. Now we derive a formula for the number of semi-
standard Young tableaux of shape λ using the numbers 1, . . . , k, i.e., for the evaluation
sλ(1, 1, . . . , 1) (k instances of 1). This is the dimension of an irreducible polynomial repre-
sentation Sλ(C

k) of GLk(C).

Theorem 6.2.1.

dim Sλ(C
k) = sλ(1, . . . , 1) =

∏
1≤i<j≤k

λi − λj + j − i
j − i

.

where there are k instances of 1 above.

Proof. Work in finitely many variables x1, . . . , xk and use the determinantal formula in §4.4

sλ(x1, . . . , xk) =
det(x

λj+k−j
i )ki,j=1

det(xk−ji )ki,j=1

.

We can’t evaluate xi = 1 directly since we’d get 0/0, but the following method let’s us get
around that. Let q be a new indeterminate and set xi = qi−1. Then

sλ(1, q, . . . , q
k−1) =

det(qi(λj+k−j))ki,j=1

det(qi(k−j))ki,j=1

.

Now in fact, both determinants become Vandermonde matrices, so we can simplify (see
exercises):

sλ(1, q, . . . , q
k−1) =

∏
1≤i<j≤k(q

λi+k−i − qλj+k−j)∏
1≤i<j≤k(q

k−i − qk−j)
=

∏
1≤i<j≤k

qλj
qλi−λj+j−i − 1

qj−i − 1
.

Now we can set q = 1 in the final expression (either by dividing the polynomials, or using
l’Hôpital’s rule) and get the desired formula. �

Corollary 6.2.2. Keep k fixed. The function n 7→ dim Snλ(C
k) is a polynomial in n whose

degree is the number of pairs i < j such that λi 6= λj.

Remark 6.2.3. (For those who know some algebraic geometry) The function n 7→ dim Snλ(C
k)

is actually the Hilbert function of a projective embedding of a partial flag variety. More
specifically, let 1 ≤ i1 < i2 < · · · < ir be the indices such that λij 6= λij+1. Then the collec-

tion of subspaces F1 ⊂ · · · ⊂ Fr ⊂ Ck where dimFj = ij has the structure of a projective
algebraic variety which admits an embedding into the projective space on Sλ(C

k) giving rise
to the Hilbert function we’re talking about. �
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Given a box (i, j) ∈ Y (λ), define its content to be c(i, j) = j − i.

Theorem 6.2.4 (Hook-content formula).

dim Sλ(C
k) = sλ(1, . . . , 1) =

∏
(i,j)∈Y (λ)

k + c(i, j)

h(i, j)

where there are k instances of 1 above.

Proof. Let n = |λ| and set `i = λi + k− i. Using the formulas for fλ in the previous section,
we have∏
(i,j)∈Y (λ)

k + c(i, j)

h(i, j)
=
fλ

n!

∏
(i,j)∈Y (λ)

(k − i+ j) =
1

`1! · · · `k!
∏

1≤i<j≤k

(`i − `j)
∏

(i,j)∈Y (λ)

(k − i+ j).

Next, note that ∏
(i,j)∈Y (λ)

(k − i+ j) =
k∏
i=1

`i!

(k − i)!
,

so the above simplifies to∏
1≤i<j≤k(`i − `j)

(k − 1)!(k − 2)! · · · 2!
=

∏
1≤i<j≤k

λi − λj − i+ j

j − i
,

and the latter we have shown to be dim Sλ(C
k). �

Corollary 6.2.5. For each partition λ, the function n 7→ dim Sλ(C
n) is a polynomial in n.

The Jacobi–Trudi identity (Theorem 4.6.1) gives yet another formula. It is easy to see
that hn(1, . . . , 1) =

(
n+k−1
n

)
(k 1’s here, and this is the number of monomials of degree n

with k variables).

Theorem 6.2.6. If n ≥ `(λ), then

dim Sλ(C
k) = sλ(1, . . . , 1) = det

((
k + λi − i+ j − 1

k − 1

))n
i,j=1

.

6.3. Littlewood–Richardson coefficients. We have encountered Littlewood–Richardson
coefficients cνλ,µ in several contexts now:

• The multiplication of Schur functions: sλsµ =
∑

ν c
ν
λ,µsν ,

• The expansion of a skew Schur function: sν/µ =
∑

λ c
ν
λ,µsλ,

• The induction of symmetric group characters: χλ ◦ χµ =
∑

ν c
ν
λ,µχ

ν ,

• The restriction of a symmetric group character: Res
Sn+m
Sn×Smχ

ν =
∑

λ,µ c
ν
λ,µ(χλ ⊗ χµ),

We’ll see another instance in the next section. Here we’ll give one way to compute cνλ,µ
(without proof). See [Sta, §7, Appendix 1] for details and more formulas.

Let w = w1w2 · · ·wn be a sequence of positive integers and let mi(w) be the number of
wj equal to i. A prefix of w is any subsequence of the form w1w2 · · ·wm for m ≤ n. We
say that w is a lattice permutation (also called Yamanouchi word or ballot sequence) if,
for every prefix v of w, we have mi(v) ≥ mi+1(v) for all i. Given a tableau T , its reverse
reading word is the list of the entries of T in the following order: start with row 1 and list
the entries from right to left, move to row 2 and list the entries from right to left, etc.
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Call a Littlewood–Richardson tableau a SSYT of skew shape whose reverse reading word
is a lattice permutation.

Theorem 6.3.1. cνλ,µ is the number of Littlewood–Richardson tableaux of shape ν/µ and type
λ.

Recall that cνλ,µ = cνµ,λ, so there is a big asymmetry in this description for cνλ,µ. This can
sometimes be a good thing: one set of SSYT may be much easier to describe than the other,
even though they must have the same size. It is also possible to give descriptions that are
symmetric in µ and λ, but we will not discuss that here.

Example 6.3.2. Let λ = (4, 2, 1), µ = (5, 2), ν = (6, 5, 2, 1). Then cνλ,µ = 3; here are all
of the SSYT of shape ν/µ of type λ whose reverse reading words are lattice permutations
together with their reverse reading words:

1
1 1 1

2 2
3

1
1 1 2

1 2
3

1
1 1 2

1 3
2

1111223 1211213 1211312

Alternatively, we could count the number of SSYT of shape ν/λ of type µ whose reverse
reading words are lattice permutations. We list them here:

1 1
1 1 2

1
2

1 1
1 1 2

2
1

1 1
1 2 2

1
1

1121112 1121121 1122111

�

Remark 6.3.3. If λ = (d), then cνλ,µ can be computed by the Pieri rule. In fact, the
description given above directly generalizes this: a SSYT of shape ν/µ of type (d) cannot
have more than one box in a single column. But given any collection of boxes, no two in a
single column, putting a 1 in each box gives a valid SSYT whose reverse reading word is a
lattice permutation. So we conclude that it’s 1 if ν/µ is a horizontal strip and 0 otherwise.

Similarly, if λ = (1d), then consider a SSYT of shape ν/µ of type (1d) whose reverse
reading word is a lattice permutation. The reverse reading word must then be 123 · · · d. But
since it’s a SSYT, no two of these entries can appear in the same row. So we conclude that
it’s 1 if ν/µ is a vertical strip and 0 otherwise. �

7. Polynomial functors

Let k be a field. We have already seen the construction of the tensor product of two vector
spaces V ⊗W . Here we give a few related constructions. We let GL(V ) be the group of
invertible linear operators on V . This is the general linear group. This is an infinite group
if k is an infinite field, and we will study a special class of its representations. The effect
of applying elements of GL(V ) to V is to do a change of basis, and we will construct new
representations out of V using “natural” constructions. Heuristically, natural means that it
does not depend on a choice of basis for V .
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7.1. Basic multilinear algebra. For a positive integer d, let V ⊗d = V ⊗ · · · ⊗ V where
the right hand side contains d instances of V . This space carries a (right) action of the
symmetric group Sd:

σ · (
∑

v1 ⊗ · · · ⊗ vd) =
∑

vσ(1) ⊗ · · · ⊗ vσ(d).

It also carries a (left) action of GL(V ):

g · (
∑

v1 ⊗ · · · ⊗ vd) =
∑

(g · v1)⊗ · · · ⊗ (g · vd).

These actions commute with one another, meaning that g ·(σ ·v) = σ ·(g ·v) for any v ∈ V ⊗d,
g ∈ GL(V ), and σ ∈ Sd.

We define the dth symmetric power Symd V of V to be the quotient of V ⊗d by the
subspace spanned by elements of the form v − σ · v where v ∈ V ⊗d and σ ∈ Sd. The
fact that the actions of GL(V ) and Sd commute on V ⊗d implies that this subspace is a
GL(V )-subrepresentation, and hence Symd V is a GL(V )-representation as well.

Given an element v1⊗· · ·⊗vd, we let v1 · · · vd denote its image in Symd V . For g ∈ GL(V ),
the action is given by g · (v1 · · · vd) = (g · v1) · · · (g · vd). If e1, . . . , en is a basis for V , then
recall that {ei1 ⊗ · · · ⊗ eid | 1 ≤ ij ≤ n} is a basis for V ⊗d. Then it is easy to verify that
{ei1 · · · eid | 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n} is a basis for Symd V , so that its dimension is(
n+d−1

d

)
.

There is a natural “multiplication” map

µ : Symd V ⊗ Syme V → Symd+e V

(v1 · · · vd)⊗ (w1 · · ·we) 7→ v1 · · · vdw1 · · ·we

which is associative in the appropriate sense (note: we are showing the effect on basic
tensors, and for general elements, we must use linearity, i.e., distribute). Most importantly,
the definition of µ does not depend on a choice of basis for V . This means that µ is a
GL(V )-equivariant map.

The dth exterior power
∧d V of V is the quotient of V ⊗d by the subspace spanned by

elements of the form v1 ⊗ · · · ⊗ vd where vi = vj for some i 6= j. As before,
∧d V is a

GL(V )-representation. We let v1 ∧ · · · ∧ vd denote the image of v1 ⊗ · · · ⊗ vd in
∧d V . The

action is given by g · (v1∧ · · · ∧ vd) = (g · v1)∧ · · · ∧ (g · vd). Note that swapping two elements
introduces a sign: v1 ∧ v2 = −v2 ∧ v1 since

0 = (v1 + v2) ∧ (v1 + v2) = v1 ∧ v1 + v1 ∧ v2 + v2 ∧ v1 + v2 ∧ v2 = v1 ∧ v2 + v2 ∧ v1.

Then {ei1 ∧ · · · ∧ eid | 1 ≤ i1 < · · · < id ≤ n} is a basis for
∧d V , so that its dimension is

(
n
d

)
.

There is a natural “multiplication” map

µ :
d∧
V ⊗

e∧
V →

d+e∧
V

(v1 ∧ · · · ∧ vd)⊗ (w1 ∧ · · · ∧ we) 7→ v1 ∧ · · · ∧ vd ∧ w1 ∧ · · · ∧ we
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which is again associative in the appropriate sense. Again, µ is GL(V )-equivariant. We will
also need something dual to multiplication called comultiplication:

∆:
d+e∧

V →
d∧
V ⊗

e∧
V

v1 ∧ · · · ∧ vd+e 7→
∑
I

sgn(I, Ic)vI ⊗ vIc

where the notation is as follows. The sum is over all d-element subsets I of [d + e] =
{1, . . . , d + e}, and Ic is the complement of I. The notation vI means vi1 ∧ · · · ∧ vid where
i1 < i2 < · · · < id are the elements of I, and similarly we define vIc . Finally, sgn(I, Ic) = ±1
and is determined by the equation

sgn(I, Ic)vI ∧ vIc = v1 ∧ · · · ∧ vd+e.

We leave it to an exercise to verify that ∆ is GL(V )-equivariant. Note that there are two

different ways to get from
∧d+e+f V to

∧d V ⊗
∧e V ⊗

∧f V using comultiplication twice. In
fact, they are the same, which we will express by saying that ∆ is coassociative. We can also
apply this d− 1 times to get a map

∧d V → V ⊗d, with the property that the composition

d∧
V → V ⊗d →

d∧
V

(where the second map is the quotient map coming from the definition of
∧d V ) is d! times

the identity. In particular, if the characteristic of k is 0 or larger than d, then
∧d V is a

direct summand of
∧⊗d as GL(V )-representations.

There is also a comultiplication map for symmetric powers, but we will not need it.
Finally, we can extend everything above to d = 0 by declaring that V ⊗0 is the trivial

vector space k.

7.2. Schur functors. We will now use exterior and symmetric powers to build a more
complicated set of natural operations, depending on integer partitions.

Let λ = (λ1, . . . , λr) be a partition of d and set µ = λ† = (µ1, . . . , µs). The Schur functor
SλV is defined to be the image of the following composition:

µ1∧
V ⊗ · · · ⊗

µs∧
V → V ⊗µ1 ⊗ · · · ⊗ V ⊗µs

→ V ⊗λ1 ⊗ · · · ⊗ V ⊗λr

→ Symλ1 V ⊗ · · · ⊗ Symλr V,

where the first map is given by comultiplication, the second map is a certain reordering that
we will explain shortly, and the third map is multiplication.

The reordering is best understood in terms of Young diagrams, which we will illustrate
with an example.

Example 7.2.1. Consider λ = (3, 2) so that µ = (2, 2, 1). Then
∧2 V ⊗

∧2 V ⊗ V is
spanned by elements of the form (v1 ∧ v2) ⊗ (v3 ∧ v4) ⊗ v5. We can record element of V ⊗5

by putting vectors into the boxes of Y (λ). The order we do this in depends: if we write
V ⊗5 = V ⊗µ1 ⊗ · · · ⊗ V ⊗µs , then we will think of these as the columns of Y (λ). On the other
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hand, writing V ⊗5 = V ⊗λ1 ⊗ · · · ⊗ V ⊗λr , we will instead think of these as the rows of the
Y (λ). The map then looks as follows:

(v1 ∧ v2)⊗ (v3 ∧ v4)⊗ v5 7→ v1 v3 v5
v2 v4

− v2 v3 v5
v1 v4

− v1 v4 v5
v2 v3

+ v2 v4 v5
v1 v3

7→ v1v3v5 ⊗ v2v4 − v2v3v5 ⊗ v1v4 − v1v4v5 ⊗ v2v3 + v2v4v5 ⊗ v1v3.�

Since all of the maps are GL(V )-equivariant, we see that Sλ(V ) is a GL(V )-representation.
It follows immediately from the definition that Sλ(V ) = 0 if `(λ) > dimV since the corre-
sponding exterior power

∧µ1 V is 0.

Example 7.2.2. There are two extreme cases that we already know. If λ = (d), then the
map becomes the quotient map V ⊗d → Symd V so that S(d)V = Symd V . On the other

hand, if λ = (1d), then the map becomes the comultiplication map
∧d V → V ⊗d, which is

injective, so S(1d)V =
∧d V . �

Fix a basis e1, . . . , en for V . We would like to find a basis for SλV . Given a tableau T on
Y (λ), we get a vector in

∧µ1 V ⊗ · · · ⊗
∧µs V by taking

(eT1,1 ∧ eT2,1 ∧ · · · ∧ eTµ1,1)⊗ · · · ⊗ (eT1,s ∧ · · · ∧ eTµs,s);
let eT be its image in SλV . Recall that T is semistandard if Ti,j ≤ Ti,j+1 and Ti,j < Ti+1,j

for all i, j where that makes sense.

Theorem 7.2.3. {eT | T is semistandard} is a basis for SλV .

We will omit the proof.
Note that this recovers the bases we described for both Symd V and

∧d V .

7.3. Polynomial representations and characters. Let GLn(C) denote the group of
invertible n× n complex matrices.

A polynomial representation of GLn(C) is a homomorphism ρ : GLn(C) → GL(V )
where V is a C-vector space, and the entries of ρ can be expressed in terms of polynomials
(as soon as we pick a basis for V ).

A simple example is the identity map ρ : GLn(C)→ GLn(C). Slightly more sophisticated
is ρ : GL2(C) → GL(Sym2(C2)). Pick a basis {x, y} for C2. The homomorphism can be
defined by linear change of coordinates, i.e.,

ρ(g)(ax2 + bxy + cy2) = a(gx)2 + b(gx)(gy) + c(gy)2.

If we pick the basis x2, xy, y2 for Sym2(C2), this can be written in coordinates as

GL2(C)→ GL3(C)(
g1,1 g1,2
g2,1 g2,2

)
7→

 g21,1 g1,1g1,2 g21,2
2g1,1g2,1 g1,1g2,2 + g1,2g2,1 2g1,2g2,2
g22,1 g2,1g2,2 g22,2

 .(7.3.1)

More generally, we can define ρ : GLn(C) → GL(Symd(Cn)) for any n, d. Another impor-
tant example uses exterior powers instead of symmetric powers, so we have ρ : GLn(C) →
GL(∧d(Cn)). From the definition, we see that the property of being polynomial is preserved
by taking tensor products, direct sums, subrepresentations, and quotient representations. So
we immediately see that every Schur functor Sλ(C

n) defines a polynomial representation for
GLn(C).
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An important invariant of a polynomial representation ρ is its character: define

char(ρ)(x1, . . . , xn) := Tr(ρ(diag(x1, . . . , xn))),

where diag(x1, . . . , xn) is the diagonal matrix with entries x1, . . . , xn and Tr denotes trace.

Lemma 7.3.2. char(ρ)(x1, . . . , xn) ∈ Λ(n).

Proof. Each permutation σ ∈ Sn corresponds to a permutation matrix M(σ): this is the
matrix with a 1 in row σ(i) and column i for i = 1, . . . , n and 0’s everywhere else. Then

M(σ)−1diag(x1, . . . , xn)M(σ) = diag(xσ(1), . . . , xσ(n)).

Now use that the trace of a matrix is invariant under conjugation:

char(ρ)(x1, . . . , xn) = Tr(ρ(diag(x1, . . . , xn)))

= Tr(ρ(M(σ))−1ρ(diag(x1, . . . , xn))ρ(M(σ)))

= Tr(ρ(M(σ)−1diag(x1, . . . , xn)M(σ)))

= Tr(ρ(diag(xσ(1), . . . , xσ(n))))

= char(ρ)(xσ(1), . . . , xσ(n)). �

Example 7.3.3. • The character of the identity representation is x1 + x2 + · · ·+ xn.
• The character of the representation ρ : GLn(C)→ GL(Symd(Cn)) is

hd(x1, . . . , xn) =
∑

1≤i1≤···≤id≤n

xi1 · · ·xid .

• The character of the representation ρ : GLn(C)→ GL(∧d(Cn)) is

ed(x1, . . . , xn) =
∑

1≤i1<···<id≤n

xi1 · · ·xid .

• More generally, the character of ρ : GLn(C)→ GL(Sλ(C
n)) is

sλ(x1, . . . , xn) =
∑

T semistandard of shape λ

xT . �

Basic operations transform easily on the level of characters:

• If ρi : GLn(C) → GL(Vi) are polynomial representations for i = 1, 2, we can form
the direct sum representation ρ1 ⊕ ρ2 : GLn(C)→ GL(V1 ⊕ V2) via

(ρ1 ⊕ ρ2)(g) =

(
ρ1(g) 0

0 ρ2(g)

)
and

char(ρ1 ⊕ ρ2)(x1, . . . , xn) = char(ρ1)(x1, . . . , xn) + char(ρ2)(x1, . . . , xn).

• If ρi : GLn(C) → GL(Vi) are polynomial representations for i = 1, 2, we can form
the tensor product representation ρ1 ⊗ ρ2 : GLn(C) → GL(V1 ⊗ V2) via (assuming
ρ1(g) is N ×N):

(ρ1 ⊗ ρ2)(g) =


ρ1(g)1,1ρ2(g) ρ1(g)1,2ρ2(g) · · · ρ1(g)1,Nρ2(g)
ρ1(g)2,1ρ2(g) ρ1(g)2,2ρ2(g) · · · ρ1(g)2,Nρ2(g)

...
ρ1(g)N,1ρ2(g) ρ1(g)N,2ρ2(g) · · · ρ1(g)N,Nρ2(g)
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(here we are multiplying ρ2(g) by each entry of ρ1(g) and creating a giant block
matrix) and

char(ρ1 ⊗ ρ2)(x1, . . . , xn) = char(ρ1)(x1, . . . , xn) · char(ρ2)(x1, . . . , xn).

7.4. Re-interpreting symmetric function identities. Here is a summary of some impor-
tant facts whose proofs we will not have time to discuss (see a course on Lie algebras/groups,
for example):

Theorem 7.4.1. (1) Finite-dimensional polynomial representations of GLn(C) are semisim-
ple, i.e., are isomorphic to a direct sum of simple polynomial representations.

(2) Two polynomial representations of GLn(C) are isomorphic if and only if they have
the same character.

(3) The Schur functors Sλ(C
n) for n ≥ `(λ) are irreducible and pairwise non-isomorphic.

Every irreducible polynomial representation of GLn(Cn) is isomorphic to one of them.

With these facts in hand, we can now interpret properties and identities of symmetric
functions into representation theory.

7.4.1. Cauchy identities. In finitely many variables x1, . . . , xn, y1, . . . , ym,
∏

i,j(1−xiyj)−1 is

the character of GLn(C) × GLm(C) acting on Sym(Cn ⊗ Cm) =
⊕

d≥0 Symd(Cn ⊗ Cm).
The Cauchy identity gives a decomposition into Schur functors:

Sym(Cn ⊗Cm) ∼=
⊕
λ

Sλ(C
n)⊗ Sλ(C

m)

where the sum is over all partitions (or just those with `(λ) ≤ min(m,n)).
Similarly,

∏
i,j(1 + xiyj) is the character of GLn(C) × GLm(C) acting on the exterior

algebra
∧•(Cn⊗Cm) =

⊕
d≥0
∧d(Cn⊗Cm). The dual Cauchy identity gives a decomposition

into Schur functors:
•∧

(Cn ⊗Cm) ∼=
⊕
λ

Sλ(C
n)⊗ Sλ†(C

m),

where the sum is over all partitions (or just those with `(λ) ≤ n and λ1 ≤ m).

7.4.2. Pieri and Littlewood–Richardson. From the interpretation of sλ as the character of an
irreducible representation Sλ, and the fact that polynomial representations are direct sums of
irreducible ones, we can reinterpret the Littlewood–Richardson coefficient as the multiplicity
of Sλ in the decomposition of the tensor product of Sµ⊗Sν . From this, it is immediate that
cλµ,ν ≥ 0.

The Pieri rule describes the decomposition of the tensor product of Sν with an exterior
power

∧k, respectively, a symmetric power Symk.
The decomposition of sn1 can be interpreted as a decomposition of the tensor power of a

vector space

(Cd)⊗n =
⊕
λ`n
`(λ)≤d

Sλ(C
d)⊕f

λ

.

Hence the multiplicity space of Sλ(C
d) has dimension fλ.
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Remark 7.4.2 (Schur–Weyl duality). As in the beginning of the section, the space (Cn)⊗d

has commuting actions of GLn(C) and Sd. In particular, we can think of this as an action
of the direct product GLn(C)×Sd.

Since this representation is semisimple for both groups, we can decompose this space as a
sum of irreducible representations of GLn(C)×Sd. In fact, we get the following:

(Cn)⊗d =
⊕
λ`d

`(λ)≤n

Sλ(C
n)⊗ Sλ,

where Sλ(C
n) is the Schur functor and Sλ is the Specht module of Sd. We will not prove

this. �
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