Math 264C, Spring 2021

Homework 1

- (1) Let W be the group of $n \times n$ signed permutation matrices, i.e., $n \times n$ matrices with exactly one nonzero entry in each row and column, and that entry can be 1 or -1. (So $|W| = 2^n n!$.)
 - (a) The adjacent transpositions can be completed to a set of Coxeter generators for W by adding 1 element. Find such an element and describe the length function with respect to these generators.
 - (b) What is the longest element in W?
 - (c) Which elements are reflections?
 - (d) Using the adjacent transpositions in (a), the symmetric group \mathfrak{S}_n is a parabolic subgroup of W. Describe the minimal length coset representatives.
- (2) Let V be the geometric representation of (W, S) and let $R = \text{Sym}(V) = \mathbf{R}[\alpha_s \mid s \in S]$ be the ring of polynomials in the α_s .
 - (a) For $s \in S$ and $f \in R$, show that f sf is divisible by α_s . In particular, we can define $\partial_s \colon R \to R$ by

$$\partial_s(f) = \frac{f - sf}{\alpha_s}.$$

- (b) Show that $\partial_s^2 = 0$.
- (c) For $s, t \in S$ where $m(s, t) \leq 3$, show that $\partial_s \partial_t \partial_s \cdots = \partial_t \partial_s \partial_t \cdots$ where each side is a product of size m(s, t).

[This holds in general as long as $m(s,t) < \infty$, but requires a lot more effort.]

- (3) Given a permutation $\sigma \in \mathfrak{S}_n$, define $r_{\sigma}(p,q) = |\{i \leq p \mid \sigma(i) \leq q\}|$. Show that $\sigma \leq \tau$ (Bruhat order) if and only if $r_{\sigma}(p,q) \geq r_{\tau}(p,q)$ for all p,q.
- (4) Let $W = \mathfrak{S}_n$ and $W_P = \mathfrak{S}_k \times \mathfrak{S}_{n-k}$.
 - (a) For a minimal length coset representative $\sigma \in W^P$, we have $\sigma(1) < \cdots < \sigma(k)$ and $\sigma(k+1) < \cdots < \sigma(n)$. For $\sigma, \tau \in W^P$, show that $\sigma \leq \tau$ (Bruhat order) if and only if $\sigma(i) < \tau(i)$ for $i = 1, \ldots, k$.
 - (b) Consider integer sequences λ (partitions) such that $n k \ge \lambda_1 \ge \cdots \ge \lambda_k \ge 0$. Define $\lambda \subseteq \mu$ if $\lambda_i \le \mu_i$ for all *i*. Show that W^P is order-isomorphic to partitions (with our restrictions).