Math 264C, Spring 2021
Homework 1
(1) Let W be the group of $n \times n$ signed permutation matrices, i.e., $n \times n$ matrices with exactly one nonzero entry in each row and column, and that entry can be 1 or -1 . (So $|W|=2^{n} n!$.)
(a) The adjacent transpositions can be completed to a set of Coxeter generators for W by adding 1 element. Find such an element and describe the length function with respect to these generators.
(b) What is the longest element in W ?
(c) Which elements are reflections?
(d) Using the adjacent transpositions in (a), the symmetric group \mathfrak{S}_{n} is a parabolic subgroup of W. Describe the minimal length coset representatives.
(2) Let V be the geometric representation of (W, S) and let $R=\operatorname{Sym}(V)=\mathbf{R}\left[\alpha_{s} \mid s \in S\right]$ be the ring of polynomials in the α_{s}.
(a) For $s \in S$ and $f \in R$, show that $f-s f$ is divisible by α_{s}. In particular, we can define $\partial_{s}: R \rightarrow R$ by

$$
\partial_{s}(f)=\frac{f-s f}{\alpha_{s}}
$$

(b) Show that $\partial_{s}^{2}=0$.
(c) For $s, t \in S$ where $m(s, t) \leq 3$, show that $\partial_{s} \partial_{t} \partial_{s} \cdots=\partial_{t} \partial_{s} \partial_{t} \cdots$ where each side is a product of size $m(s, t)$.
[This holds in general as long as $m(s, t)<\infty$, but requires a lot more effort.]
(3) Given a permutation $\sigma \in \mathfrak{S}_{n}$, define $r_{\sigma}(p, q)=|\{i \leq p \mid \sigma(i) \leq q\}|$. Show that $\sigma \leq \tau$ (Bruhat order) if and only if $r_{\sigma}(p, q) \geq r_{\tau}(p, q)$ for all p, q.
(4) Let $W=\mathfrak{S}_{n}$ and $W_{P}=\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}$.
(a) For a minimal length coset representative $\sigma \in W^{P}$, we have $\sigma(1)<\cdots<\sigma(k)$ and $\sigma(k+1)<\cdots<\sigma(n)$. For $\sigma, \tau \in W^{P}$, show that $\sigma \leq \tau$ (Bruhat order) if and only if $\sigma(i)<\tau(i)$ for $i=1, \ldots, k$.
(b) Consider integer sequences λ (partitions) such that $n-k \geq \lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0$. Define $\lambda \subseteq \mu$ if $\lambda_{i} \leq \mu_{i}$ for all i. Show that W^{P} is order-isomorphic to partitions (with our restrictions).

