Math 264C, Spring 2021
Homework 2
(1) Let the alternating group \mathfrak{A}_{n} be the subgroup of \mathfrak{S}_{n} consisting of even permutations. Find a minimal set of generators for $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{H}_{n}}$ and show that they are not algebraically independent.
(2) (a) Let \mathbf{F}_{q} be a finite field with q elements and let $G=\mathbf{G} \mathbf{L}_{n}\left(\mathbf{F}_{q}\right)$ be the group of $n \times n$ invertible matrices with entries in \mathbf{F}_{q}. Let $V=\mathbf{F}_{q}^{n}$ be the space of column vectors, so that we have an action of G on V (this is a representation over \mathbf{F}_{q}) and hence an action on $\operatorname{Sym}(V) \cong \mathbf{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$.
Show that the ring of invariants $\operatorname{Sym}(V)^{G}$ is generated by algebraically independent generators of degrees $q^{n}-q^{n-1}, q^{n}-q^{n-2}, \ldots, q^{n}-1$.
(I have a writeup here: https://concretenonsense.wordpress.com/2011/03/
17/dickson-invariants/. Try to write it up from your own understanding.)
(b) Call a finite-order linear operator A a pseudoreflection if $\operatorname{rank}(A-I)=1$. Show that over a field of positive characteristic, $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is a pseudoreflection. Furthermore, show that every pseudoreflection is either diagonalizable or equal to a block sum of this matrix with the identity with respect to some choice of basis.
(c) Let G be a finite subgroup of $\mathbf{G L}(V)$. A theorem of Serre says that if $\operatorname{Sym}(V)^{G}$ is generated by algebraically independent polynomials, then G is generated by pseudoreflections (we have proven this when the field has characteristic 0) ${ }^{1}$. Verify this theorem for the example in (a) by showing that $\mathbf{G} \mathbf{L}_{n}\left(\mathbf{F}_{q}\right)$ is generated by pseudoreflections.
(3) Consider Theorem 3.24 for $W=\mathfrak{S}_{n}$ acting on \mathbf{C}^{n} (rather than \mathbf{C}^{n-1}). The multiplicity of the eigenvalue 1 of a permutation is the number of cycles, so we get an identity

$$
t(t+1) \cdots(t+n-1)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\# \operatorname{cycles}(\sigma)}
$$

What is the corresponding analogue for the hyperoctahedral group $W\left(\mathrm{~B}_{n}\right)$?
(4) Open ended: investigate one of the items about the Valentiner group https:// en.wikipedia.org/wiki/Valentiner_group and write a short summary explaining it and any relevant terminology (approx. 1 paragraph is fine). Or you can pick a different complex reflection group between numbers 23 and 37 in https: //en.wikipedia.org/wiki/Complex_reflection_group and discuss some aspect not addressed in the lectures.

[^0]
[^0]: ${ }^{1}$ The converse fails: there exist finite groups generated by pseudoreflections in positive characteristic whose ring of invariants is not generated by algebraically independent polynomials.

