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1. Coxeter groups

1.1. Definition and first examples. Let S be a finite set (it is possible to allow S to be
infinite, but we assume this for simplicity). Let m : S × S → Z>0 ∪ {∞} be a function such
that m(s, s) = 1 and m(s, s′) = m(s′, s) ≥ 2 whenever s 6= s′. The data of S and m is
a Coxeter system, and the Coxeter group W associated to this data is the free group
generated by s ∈ S subject to the relations

(ss′)m(s,s′) = 1 if m(s, s′) <∞.
Most importantly, this implies that s2 = 1 for all s ∈ S, so thatW is generated by involutions.
We denote the pair of Coxeter group together with its generators by (W,S) and call |S| the
rank.

We have a sign homomorphism sgn: W → {1,−1} given by sgn(s) = −1 for all s ∈ S.

Example 1.1. If S = {s, t} and m(s, t) <∞, then W has the presentation

W = 〈s, t | s2 = t2 = (st)m = 1〉
and is isomorphic to a dihedral group of order 2m, i.e., the symmetries of a regular n-gon.
If m =∞, then we can think of this as an infinite dihedral group. �

Example 1.2. Let S = {s1, . . . , sn−1} and m(si, sj) = 3 if |i− j| = 1 and 2 otherwise (and
i 6= j). Then we get a surjective homomorphism from W to the symmetric group Sn by
sending si to the transposition (i, i+1). To see this is well-defined, it is enough to know that
(i, i+ 1) and (j, j + 1) commute if |i− j| 6= 1 and that (i, i+ 1)(i+ 1, i+ 2) = (i, i+ 1, i+ 2)
is a 3-cycle (so has order 3). In fact, they are isomorphic, but this is easier to prove after we
develop a few general results. We’ll use this case as a running example and call this Coxeter
system An−1. �

Example 1.3. We will see later that any finite subgroup of GLn(R) generated by reflections
has the structure of a Coxeter group. This includes the previous two cases. �

At the moment, it is unclear that this data is unique, i.e., it could be that different S,m
give isomorphic groups. Our first goal is to construct a faithful matrix representation of W .

1.2. The geometric representation. Let V be the real vector space with basis {αs | s ∈
S}. We define a symmetric bilinear form B on V via

B(αs, αs′) =

{
− cos π

m(s,s′)
if m(s, s′) <∞

−1 if m(s, s′) =∞
.

In particular, the αs are unit vectors with respect to B. For s ∈ S, define σs : V → V by

σs(v) = v − 2B(αs, v)αs.

Note that σs(αs) = −αs.
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Lemma 1.4. For s ∈ S and v, w ∈ V , we have B(v, w) = B(σsv, σsw).

Proof. We have

B(σsv, σsw) = B(v − 2B(αs, v)αs, w − 2B(αs, w)αs)

= B(v, w)− 2B(αs, w)B(v, αs)− 2B(αs, v)B(αs, w) + 4B(αs, v)B(αs, w)B(αs, αs)

= B(v, w)

since B is symmetric and B(αs, αs) = 1. �

Lemma 1.5. For s, t ∈ S, σsσt has order m(s, t).

Proof. If s = t, then

σ2
s(v) = σs(v − 2B(αs, v)αs)

= v − 2B(αs, v)αs + 2B(αs, v)αs = v.

so σ2
s = 1 (and clearly σs 6= 1).

Now assume s 6= t and set m = m(s, t). Let U be the span of {αs, αt}.
First consider the case m <∞. For a general element v = csαs + ctαt ∈ U , we have

B(v, v) = c2s − 2csct cos(π/m) + c2t

= c2s − 2csct cos(π/m) + c2t (cos2(π/m) + sin2(π/m))

= (cs − ct cos(π/m))2 + (ct sin(π/m))2.

Since m ≥ 2, we have sin(π/m) > 0. Hence, the last quantity is positive if ct 6= 0. If ct = 0,
then B(v, v) = c2s, so we see that B|U is positive definite, and in particular nondegenerate.
Let U⊥ = {v ∈ V | B(αs, v) = B(αt, v) = 0}. Then U ∩U⊥ = 0 since B|U is nondegenerate,
and U + U⊥ = V by generalities on bilinear forms. In particular, the matrix of σsσt with
respect to this block decomposition has an identity component on U⊥, and so it suffices to
show that its order on U is m.

Since

B(αs, αt) = − cos(π/m) = cos(π − π/m),

the angle between αs and αt is θ = π−π/m, and hence we have an isometry between U and
R2 (with the standard inner product) such that αs 7→ (1, 0) and αt 7→ (cos θ, sin θ). Under

this isomorphism, σs becomes

[
−1 0
0 1

]
and σt becomes (using the double-angle formulas)[

1− 2 cos2 θ −2 cos θ sin θ
−2 cos θ sin θ 1− 2 sin2 θ

]
=

[
− cos(2θ) − sin(2θ)
− sin(2θ) cos(2θ)

]
.

In particular, σsσt is rotation by −2θ, i.e., rotation by 2π/m, so has order m.
Now consider the case m =∞ so that B(αs, αt) = −1. Set u = αs + αt. Then B(u, αs) =

B(u, αt) = 0, so that σs(u) = σt(u) = u. Thus,

σsσtαs = σs(αs + 2αt) = −αs + 2αt + 4αs = 2u+ αs

which means (σsσt)
k(αs) = 2ku+ αs, so σsσt has infinite order. �

Corollary 1.6. We have a unique homomorphism σ : W → GL(V ) given by σ(s) = σs for
all s ∈ S.
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Example 1.7. Consider the Coxeter system An−1. We saw before that W surjects onto the
symmetric group. Consider the geometric realization; let αi = αsi . Then

B(αi, αj) =


−1/2 if |i− j| = 1

1 if i = j

0 else

.

Consider the hyperplane in Rn (with standard basis e1, . . . , en) of vectors whose coordinate
sum is 0. We have an isometry with V and this hyperplane which sends αi to (ei−ei+1)/

√
2.

It is convenient to multiply the inner product by 2, so that we can simply take ei − ei+1. If
we extend the action of W to all of Rn by acting trivially on e1 + · · ·+ en, then σi is simply
the matrix which swaps ei and ei+1, so we see immediately that the image is the symmetric
group Sn. �

1.3. The geometric representation is faithful. Our next goal is to show that σ is in-
jective. We need a few ingredients for that. First, we introduce the length function
` : W → Z≥0. For w ∈ W , we let `(w) be the minimum number n such that there exists an
expression w = s1s2 · · · sn for si ∈ S. By convention, `(1) = 0. If `(w) = n, then any n-tuple
(s1, . . . , sn) ∈ Sn such that w = s1 · · · sn is a reduced expression for w.

The following properties follow from the definition:

Lemma 1.8. For all w,w′ ∈ W , we have

(1) `(w) = `(w−1),
(2) `(w) = 1 if and only if w ∈ S,
(3) `(ww′) ≤ `(w) + `(w′),
(4) `(ww′) ≥ `(w)− `(w′),
(5) For all s ∈ S, we have `(ws), `(sw) ∈ {`(w)− 1, `(w) + 1}.

Proof. (1) s1 · · · sr is a reduced expression for w if and only if sr · · · s1 is a reduced
expression for w−1.

(2) Clear
(3) Multiply reduced expressions for w and w′ to get a (not necessarily reduced) expres-

sion for ww′.
(4) From (3), `(ww′) + `(w′−1) ≥ `(w) and from (1), `(w′−1) = `(w′).
(5) The inequality `(w)− 1 ≤ `(ws) ≤ `(w) + 1 follows from the above points. The sign

homomorphism tells us that `(ws) 6= `(w). The proof for `(sw) is the same. �

Our next task is to understand `(ws) compared to `(w). For that, we need the notion of
roots. Define the root system of W to be

Φ = {w(αs) | w ∈ W, s ∈ S}.
The elements are called roots. A root α is positive (notation: α > 0) if it is a non-negative
linear combination of the αs, and it is negative (notation: α < 0) if it is a non-positive
linear combination of the αs. The set of positive roots is Φ+ and the set of negative roots
is Φ−. At the moment, there could be roots which are neither positive nor negative, but we
will prove that such roots don’t exist. In other words, we will show that every root is either
positive or negative.

Example 1.9. We consider the case of a finite dihedral group W , i.e., S = {s, t} and
m = m(s, t) <∞. From the previous proof, the geometric representation of W is isometric
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to R2 with the standard inner product in such a way that αs = (1, 0) and αt = (cos θ, sin θ)
with θ = π − π/m. Then the roots are precisely the points (cos(jπ/m), sin(jπ/m)), which
we can think of as the vertices of a regular 2m-gon. We will use the following observation
later: if 0 ≤ j < m, then (cos(jπ/m), sin(jπ/m)) is a non-negative linear combination of αs
and αt (by convexity), and otherwise it is a non-positive linear combination of them.

Furthermore, there are 2m elements of W , and each one is an alternating product of s
and t of length ≤ m. All such expressions are different except the two length m expressions
are the same since (st)m = 1. Since we’ll need it later, we claim that if w has no reduced
expression ending in s, then w(αs) > 0. Such an element is either of the form (st)k or t(st)k

for 0 ≤ k < m/2. From the proof of Lemma 1.5, st is rotation by 2π/m, so rotating (1, 0)
less than m/2 times gives a positive root. Reflecting any of these points across the line
perpendicular to αt can again be seen to give a positive root. �

Finally, given a subset I ⊂ S, we let WI ⊂ W be the subgroup generated by the elements
of I and we let `I be the length function on WI with respect to the generators I, i.e., for
w ∈ WI , `I(w) is the minimal number of elements of I needed to generate w. (We will see
later that this is nothing more than the restriction of ` to WI , but at the moment this is not
clear, so we need to distinguish them.)

Theorem 1.10. Pick w ∈ W and s ∈ S. If `(ws) > `(w), then w(αs) is a positive root. If
`(ws) < `(w), then w(αs) is a negative root.

Proof. The second statement follows from the first statement by using ws in place of w.
We prove the first statement by induction on `(w). If `(w) = 0, there is nothing to prove,

so assume `(w) > 0 and pick t ∈ S such that `(wt) < `(w). Then t 6= s, and we let I = {s, t}.
Define

A = {(x, xI) ∈ W ×WI | w = xxI , `(w) = `(x) + `I(xI)}.
Note that (wt, t) ∈ A, so A 6= ∅. Pick (v, vI) ∈ A so that `(v) is minimized. Then
`(v) ≤ `(wt) = `(w) − 1. We claim that `(vs) > `(v) (and then by the same argument, we
will also have `(vt) > `(v)). If not, then

`(w) ≤ `(vs) + `(svI) = (`(v)− 1) + `(svI)

≤ (`(v)− 1) + `I(svI)

≤ (`(v)− 1) + (`I(vI) + 1) = `(v) + `I(vI) = `(w).

So then all of the inequalities must be equalities. In particular, (vs, svI) ∈ A, which contra-
dicts the choice of (v, vI), and hence the claim is proven.

Hence by induction, v(αs) and v(αt) are positive roots. We claim that vI(αs) is a non-
negative linear combination of αs and αt. This will finish the proof.

First, a reduced expression for vI is an alternating product of s and t. It must end in t (if
it ends in s, then since `(w) = `(v) + `(vI) and w = vvI , we would have `(ws) < `(w)), and
so `I(vIs) > `I(vI).

Let m = m(s, t). To prove the claim, we consider whether m is finite or not. If m is finite,
the claim follows from Example 1.9. So assume m = ∞. We have vI = (st)k or t(st)k for
some k. As shown in the previous proof, (σsσt)

k(αs) = (2k+ 1)αs + 2kαt, which has positive
coefficients. Next,

σt(σsσt)
k(αs) = σt((2k + 1)αs + 2kαt) = (2k + 1)αs + (2k + 2)αt. �

Corollary 1.11. Φ = Φ+ q Φ− and Φ− = −Φ+.
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Proof. The first claim follows from the fact that `(ws) 6= `(w). For the second, if α = w(αs)
is a root, then −α = ws(αs) is also a root. �

Corollary 1.12. σ : W → GL(V ) is faithful, i.e., kerσ is trivial.

Proof. Suppose not and pick w ∈ kerσ with `(w) > 1. We can find s ∈ S such that
`(ws) < `(w). By the theorem, w(αs) = αs is a negative root, which is a contradiction. �

Example 1.13. Together with our previous examples, this gives a proof that the Coxeter
group of the An−1 Coxeter system is isomorphic to Sn. In particular, Sn has the following
presentation:

Sn
∼= 〈s1, . . . , sn−1 | s2i = 1, (sisi+1)

3 = 1, (sisj)
2 = 1 if |i− j| > 1〉. �

1.4. Parabolic subgroups. Previously, for I ⊆ S we defined WI ⊆ W to be the subgroup
generated by I. We could also consider the Coxeter group W I generated by I with the
function m restricted to I × I. It is clear that we have a surjective map W I → WI , and
a priori this may have a kernel (in principle, allowing extra generators S \ I and relations
could cause certain elements to be the same). Fortunately, this does not happen:

Lemma 1.14. The map W I → WI is an isomorphism.

Proof. The subspace VI of V generated by {αs | s ∈ I} is canonically identified with the geo-
metric representation of W I . So the map σI : W I → GL(VI) factors through WI . However
we know that σI is injective, so W I → WI must also be injective. �

We call WI a parabolic subgroup. From the above, it is also a Coxeter group. Here are
some other important properties:

Theorem 1.15. (1) Pick I ⊆ S. If w = s1 · · · sr is a reduced expression (with si ∈ S)
for w ∈ WI , then si ∈ I for all i. In particular, `I = `|WI

.
(2) For subsets I, J ⊆ S, we have WI ∩WJ = WI∩J and WI∪J is the subgroup generated

by WI and WJ .
(3) S is a minimal generating set for W , i.e., no proper subset of S generates W .

Proof. (1) We prove this by induction on `(w). The base case is clear. Otherwise, assume
r > 0 and let s = sr. By Theorem 1.10, w(αs) is a negative root. Since w ∈ WI , we have an
expression w = t1 · · · tp with tj ∈ I. Hence

w(αs) = t1 · · · tp(αs) = αs +

p∑
j=1

cjαtj

just using what the formula for generators in the geometric representation looks like. If s /∈
{t1, . . . , tp}, then this contradicts that all coefficients of w(αs) are negative, so we conclude
that s ∈ I and hence ws ∈ WI as well. By induction, we conclude that s1, . . . , sr−1 ∈ I.

(2) These immediately follow from (1).
(3) Suppose a proper subset I generates W , i.e., W = WI and pick s ∈ S \ I. Then since

s ∈ WI , from (1) we must have that s ∈ I, which is a contradiction. �

1.5. More on roots.

Lemma 1.16. For every s ∈ S, σs preserves the set Φ+ \ {αs}. Similarly, σs preserves the
set Φ− \ {−αs}.
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Proof. Pick α ∈ Φ+ with α 6= αs. By Lemma 1.4, B(α, α) = 1, and so α is not a scalar
multiple of αs. Hence we have

α =
∑
i∈S

ciαi

where ci ≥ 0 for all i and ct > 0 for some t 6= s. So the coefficient of αt in s(α) is still ct,
and so s(α) is not a negative root. By Corollary 1.11, s(α) ∈ Φ+. But also s(α) 6= αs since
it has a positive coefficient for αt.

The second statement follows from Φ− = −Φ+. �

Theorem 1.17. For every w ∈ W , `(w) = |{α ∈ Φ+ | w(α) < 0}|.

Proof. We prove the statement by induction on `(w). This is clear if `(w) = 0, so assume
`(w) > 0 and pick s ∈ S such that `(ws) = `(w)− 1. By Theorem 1.10, we have w(αs) < 0.
In particular, ws(αs) > 0. If α ∈ Φ+ \ {αs}, then s(α) ∈ Φ+ \ {αs} by the previous lemma.
This shows that

{α ∈ Φ+ | w(α) < 0} = {αs} q {α ∈ Φ+ | ws(α) < 0}.
By induction, the size of the last set is `(ws) = `(w) − 1, so the statement of the theorem
holds for w. �

Example 1.18. For the Coxeter system An−1, we have identified its geometric realization
with the action of Sn on Rn (more precisely, the zero sum hyperplane) by permutations.
The positive roots are ei − ej for i < j while the negative roots are ei − ej for i > j. Hence
for w ∈ Sn, a positive root ei − ej becomes a negative root if and only if w(i) > w(j). A
pair (i, j) such that i < j and w(i) > w(j) is an inversion of w, and so `(w) is the number
of inversions: `(w) = |{i < j | w(i) > w(j)}|. �

Given a root α = w(αs), we define sα = wsw−1.

Lemma 1.19. σ(sα)(v) = v − 2B(v, α)α and hence the definition of sα only depends on α
and not the choice of s, w. Furthermore, sα = s−α and for α, β ∈ Φ+, we have sα = sβ if
and only if α = β.

Proof. For the first statement, write α = w(αs). Then

wsw−1(v) = w(w−1v − 2B(w−1v, αs)αs) = v − 2B(v, α)α,

where in the second equality we used Lemma 1.4. Since σ is injective (Corollary 1.12), we
see that a different choice of w, s would lead to the same element sα.

The equality sα = s−α is obvious from the formula for σ(sα). Now suppose that sα = sβ.
Since B(β, β) = 1, we have −β = sβ(β) = sα(β) = β − 2B(α, β)α, and so β = B(α, β)α.
However, β and α are both unit vectors which means β = ±α. Since they both assumed to
be positive roots, they must be equal. �

We call the elements sα reflections, and we let T denote the set of all reflections. From
above, T is the union of the conjugacy classes containing the elements of S, and T is in
natural bijection with the set of positive roots Φ+.

Note that sgn(t) = −1 for any t ∈ T , so `(wt) 6= `(w) for all w ∈ W .

Example 1.20. For Sn, the reflections are the transpositions (i, j). �

We now generalize Theorem 1.10.
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Theorem 1.21. Pick w ∈ W and t ∈ T . Then `(wt) > `(w) if and only if w(αt) is a
positive root.

Proof. We first prove that `(wt) > `(w) implies that w(αt) > 0 by induction on `(w).
If `(w) = 0 there is nothing to show, so assume `(w) > 0 and pick s ∈ S such that
`(sw) = `(w)− 1. Then we have

`(swt) ≥ `(wt)− 1 > `(w)− 1 = `(sw).

So by induction, sw(αt) > 0. If w(αt) < 0, then by Lemma 1.16, we must have w(αt) = −αs.
But then αt = w−1s(αs), which means t = (w−1s)s(sw) = w−1sw and hence wt = sw. In
particular, `(wt) > `(w) > `(sw) gives a contradiction. So we conclude that w(αt) > 0.

To finish, we need to prove that `(wt) < `(w) implies that w(αt) < 0. To do that, we can
use what we have just shown using wt in place of w. �

1.6. Strong exchange condition.

Theorem 1.22. Let w = s1 · · · sr with si ∈ S (not necessarily a reduced expression). Pick t ∈
T such that `(wt) < `(w). Then there exists 1 ≤ j ≤ r such that wt = s1 · · · sj−1sj+1 · · · sr.
If the expression is a reduced expression, then j is unique.

Proof. Write t = sα where α is a positive root. By Theorem 1.21, we have w(α) < 0. In
particular, there exists j such that sjsj+1 · · · sr(α) < 0 and sj+1 · · · sr(α) > 0 (if j = r we
interpret sj+1 · · · sr to be the identity). By Lemma 1.16, sj+1 · · · sr(α) = αsj . Then by
definition, t = (sr · · · sj+1)sj(sj+1 · · · sr) and so

wt = s1 · · · sr(sr · · · sj+1)sj(sj+1 · · · sr) = s1 · · · sj−1sj+1 · · · sr.
Now assume there is i < j satisfying the theorem, so that

wt = s1 · · · si−1si+1 · · · sr = s1 · · · sj−1sj+1 · · · sr.
Cancelling off s1 · · · si−1 from the beginning and sj+1 · · · sr from the end gives si+1 · · · sj =
si · · · sj−1, which implies si · · · sj = si+1 · · · sj−1. In particular, we can reduce the length of
the original expression for w by 2, which means it was not reduced. �

Corollary 1.23. If w = s1 · · · sr is not a reduced expression, then we can find 1 ≤ i < j ≤ r
such that w = s1 · · · si−1si+1 · · · sj−1sj+1 · · · sr. In particular, given any expression for w as
a product of elements of S, it is always possible to remove an even number of the s to get a
reduced expression.

Let I ⊆ S and define W I = {w ∈ W | `(ws) > `(w) for all s ∈ I}.
Proposition 1.24. Given w ∈ W , there is a unique u ∈ W I and v ∈ WI such that w = uv.
Furthermore, `(w) = `(u) + `(v). Moreover, u is the unique element of minimal possible
length in the coset wWI .

Proof. Pick u ∈ wWI of minimal possible length and let v = u−1w ∈ WI . Then u ∈ W I :
if s ∈ I, then us ∈ wWI , and hence by our choice of u, we have `(u) < `(us). Now pick
reduced expressions u = s1 · · · sp and v = s′1 · · · s′q. By Theorem 1.15(1), we have s′i ∈ I for
all i. Suppose that s1 · · · sps′1 · · · s′q is not a reduced expression. Then by Corollary 1.23, it is
possible to delete two of the generators without affecting the product. If one of them is an
si, then we have found a coset representative with smaller length than u, which is a problem.
So then both must be of the form s′i, which contradicts that we picked a reduced expression
for v. Hence `(w) = `(u) + `(v).
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Suppose that u′ ∈ wWI satisfies `(u′) = `(u). Then u′ = uv′ with v′ ∈ WI and the same
argument as above shows that `(u′) = `(u)+`(v′), so in particular, v′ = 1 and u′ = u. Hence
u is the unique element of minimal length in wWI .

Finally suppose there is another u′ ∈ W I such that u′ ∈ wWI with u′ 6= u. By the previous
paragraph, `(u′) − `(u) = r > 0, and we can write u′ = us1 · · · sr with si ∈ I. But then
`(u′sr) < `(u′) which contradicts that u′ ∈ W I . Hence u is unique element of W I ∩wWI . �

Hence, the elements of W I are called minimal length coset representatives.

Example 1.25. Consider the symmetric group case W = Sn. Fix i < n and let I = S\{si}.
Then WI

∼= Si ×Sn−i is the subgroup that preserves the sets {1, . . . , i} and {i+ 1, . . . , n}.
Hence, the minimal length coset representatives are those permutations w that satisfy w(1) <
w(2) < · · · < w(i) and w(i+ 1) < · · · < w(n). This is equivalent to a choice of the i-element
subset {w(1), . . . , w(i)}, which is consistent with the fact that there are n!

i!(n−i)! cosets. Every

parabolic subgroup of Sn is of the form Sn1 × · · · ×Snd
where n1 + · · · + nd = n, and the

description of minimal length coset representatives is similar. �

1.7. Bruhat order. We now introduce a partial ordering on W . Given elements v, w ∈ W ,
write v → w to mean that `(w) > `(v) and v−1w ∈ T . Clearly, → is an antisymmetric
relation; we let ≤ be the partial ordering generated by →, i.e., w′ ≤ w if there exists
w0, . . . , wn such that w′ = w0 → w1 → · · · → wn = w (we allow n = 0 which just says that
w ≤ w). This is the Bruhat order on W . It turns out to have a lot of important uses,
though many are beyond the scope of this course.

Proposition 1.26. Let w′ ≤ w and s ∈ S. Then at least one of the following hold:

(1) w′s ≤ w,
(2) w′s ≤ ws.

Proof. We first handle the case w′ → w. So w = w′t where t ∈ T and `(w) > `(w′). If s = t,
we’re done, so assume that s 6= t. We consider how `(w′s) compares to `(w′).

If `(w′s) = `(w′)− 1, then we have w′s→ w′ → w and hence w′s ≤ w.
Otherwise, we have `(w′s) = `(w′) + 1. If we pick a reduced expression w′ = s1 · · · sr, then

s1 · · · srsr+1 (sr+1 = s) is a reduced expression for w′s. Let t′ = sts so that ws = (w′s)t′.
We claim that `(w′s) < `(ws). If not, then the strong exchange condition (Theorem 1.22)
implies that there is a unique 1 ≤ j ≤ r + 1 such that s1 · · · sj−1sj+1 · · · sr+1 is a reduced
expression for ws. Since s 6= t, we must have j < r+1, so w = s1 · · · sj−1sj+1 · · · sr. But then
`(w) = r − 1 < `(w′), which contradicts our original assumption, and our claim is proven.
Thus w′s→ ws since (ws)−1(w′s) = sts = t′.

For the general case, there are w0, . . . , wn such that w′ = w0 → w1 → · · · → wn = w.
We handle it by induction on n, where the base case n = 0 is obvious. From what we’ve
shown, we have w′s ≤ w1 or w′s ≤ w1s. In the first case, we use that w1 ≤ w to conclude
that w′s ≤ w. In the second case, we use induction to conclude that w1s ≤ w (and hence
w′s ≤ w) or w1s ≤ ws (and hence w′s ≤ ws). �

Given a product s1 · · · sr, a subword is si1 · · · sip where 1 ≤ i1 < · · · < ip ≤ r.

Theorem 1.27. Let w ∈ W and pick a reduced expression w = s1 · · · sr. Then v ≤ w if and
only if v is a subword of s1 · · · sr. In particular, the number of v below w is finite.

Proof. First suppose that v ≤ w so we have v = w0 → w1 → · · · → wn = w. We show that v
is a subword of s1 · · · sr by induction on n. The base case n = 0 is vacuous, so assume n ≥ 1.
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We have w−1n−1w ∈ T and `(wn−1) < `(w). The strong exchange condition (Theorem 1.22)
and its corollary then implies that there is a subword which is a reduced expression for wn−1.
Hence, by induction on n, some subword of this reduced expression multiplies to v; this in
particular is a subword of s1 · · · sr.

Conversely, suppose we have v = si1 · · · sip where 1 ≤ i1 < · · · < ip ≤ r. We need to show
that v ≤ w, and we proceed by induction on r = `(w). Again, `(w) = 0 is vacuous, so we
assume `(w) > 0. If ip < r, then v is a subword of s1 · · · sr−1 = wsr, and so by induction,
v ≤ wsr. But also wsr → w, so v ≤ w. Otherwise, we have ip = r. Then si1 · · · sip−1 is a
subword of s1 · · · sr−1, so again by induction, vsr ≤ wsr. By Proposition 1.26, we have either
v ≤ w or v ≤ wsr. Since wsr → w, we conclude either way that v ≤ w. �

As a partially ordered set (poset), W satisfies a lot of strong properties. For example, it
is graded: between any two elements v ≤ w, the length of any maximal chain v < x1 < · · · <
xn−1 < w has the same size n = `(w) − `(v) and shellable (definition omitted). We won’t
explore them in this course, but see [BB, §2.7] for a starting point.

Example 1.28. Consider the dihedral group of order 2m with Coxeter generators s, t. For
i = 1, . . . ,m − 1, there are exactly 2 elements of length i, which are alternating products
of s and t. The two alternating products of length m are equal: if m = 2u is even, then
multiplying the relation (st)m = 1 on the right by (ts)u gives (st)u = (ts)u, and if m = 2u+1
is odd, then multiplying the relation (st)m = 1 on the right by (ts)ut gives (st)us = (ts)ut. We
see from the subword description of the Bruhat order that v ≤ w if and only if `(v) < `(w).
This also works if m =∞. �

Recall that for I ⊆ S, WI is a Coxeter group. Hence it has a Bruhat order, in addition to
the restriction of the Bruhat order of W to it. Fortunately these agree:

Corollary 1.29. For I ⊆ S, the restriction of the Bruhat order from W to WI agrees with
the Bruhat order on WI .

Proof. Pick v, w ∈ WI . By Theorem 1.15, every reduced expression for w uses only generators
from I. Fix one. Then v ≤ w if and only if v is a subword of this expression (Theorem 1.27),
and the truth of this latter condition does not depend on whether we consider v, w as elements
of WI or W . �

Remark 1.30. When W is the Weyl group of a semisimple complex Lie algebra (or more
generally a Kac–Moody algebra), the Bruhat order plays a fundamental role in the theory
of Schubert varieties and controls when one contains another. �

1.8. Fundamental domain. We continue to let V denote the geometric representation of
(W,S). The goal now is to describe a topological space that W acts on together with a
fundamental domain for that action. This will be used to show that W ⊂ GL(V ) is a

discrete subspace (where GL(V ) is given the induced topology from Rn2
), a fact that we

will use later.
Let V ∗ denote the dual space of V ; this has an action of W via (wf)(v) = f(w−1v) for

w ∈ W , f ∈ V ∗ and v ∈ V .
For each s ∈ S, define

Zs = {f ∈ V ∗ | f(αs) = 0},
As = {f ∈ V ∗ | f(αs) > 0},
A′s = {f ∈ V ∗ | f(αs) < 0}.
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The closure As of As is As ∪Zs, we let C =
⋂
s∈S As and D = C =

⋂
s∈S As. In other words,

D = {f | f(αs) ≥ 0 for all s ∈ S}

is the nonnegative orthant.
For each subset I ⊆ S, we define

CI =
⋂
s∈I

Zs ∩
⋂
s/∈I

As = {f ∈ D | f(αs) = 0 if and only if s ∈ S}.

In particular, the CI are disjoint and partition D.
For w ∈ W , define w(D) = {w(x) | x ∈ D}. The union C =

⋃
w∈W w(D) is the Tits cone

of W .

Theorem 1.31. We have the following properties.

(a) Pick w ∈ W and I, J ⊆ S. If w(CI) ∩ CJ 6= ∅, then I = J and w ∈ WI .
(b) The stabilizer of any point of CI is WI .
(c) Every W -orbit in C intersects D in exactly one point.

Proof. (a) We prove the statement by induction on `(w). Since the case `(w) = 0 is obvious,
we assume `(w) > 0 and pick s ∈ S such that `(sw) < `(w). Then `(w−1s) < `(w−1), so
by Theorem 1.10, we see that w−1(αs) is a negative root. In particular, if f ∈ D, then

(wf)(αs) = f(w−1(αs)) ≤ 0, so that wf ∈ A′s, i.e., w(D) ⊂ A
′
s. Hence

w(CI) ∩ CJ ⊂ w(D) ∩D ⊂ A
′
s ∩ As = Zs.

Pick f ∈ w(CI) ∩ CJ (which is nonempty by assumption). Then f ∈ Zs so that f(αs) = 0
which means that s ∈ J by definition of CJ . For any g ∈ Zs, we have

(sg)(v) = g(sv) = g(v − 2B(αs, v)αs) = g(v)

so sg = g. This implies that s(CJ) = CJ and f ∈ sw(CI)∩CJ . By induction, we must have
I = J and sw ∈ WI , and so w ∈ WI .

(b) Pick x ∈ CI . If wx = x, then w(CI) ∩ CI 6= ∅ and so by (a), we have w ∈ WI .
Conversely, from above, each s ∈ I fixes CI , and so the stabilizer of any point of CI is WI .

(c) By definition, every W -orbit in C intersects D in at least one point. Suppose that
f, g ∈ D are in the same W -orbit, i.e., f = w(g). Then f ∈ CJ and g ∈ CI for some subsets
I, J ⊂ S and so w(CI) ∩ CJ 6= ∅. By (a), I = J and w ∈ WI . By (b), w(g) = g, which
means f = g. �

If we pick a basis for V , then we can identify GL(V ) with the set of non-invertible n× n
matrices. The set of all n×n matrices is a Euclidean space of dimension n2, so has a natural
topology. Using this, GL(V ) inherits the subspace topology (the topology we get does not
depend on the choice of basis because a different identification amounts to conjugation by a
change of basis matrix which is a homeomorphism on Rn2

). We note that GL(V )× V → V
given by (g, v) 7→ g(v) is given by linear functions and hence is continuous. Similarly,
GL(V )× V ∗ → V ∗ is continuous.

We say that a subset A of GL(V ) is discrete if the subspace topology on it is discrete, i.e.,
for every x ∈ A, there is an open set U ⊂ GL(V ) such that U ∩ A = {x}.

Corollary 1.32. W ⊂ GL(V ) is a discrete subset.
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Proof. Pick f ∈ C and w ∈ W . The function GL(V ) → V ∗ given by g 7→ gw−1f is
continuous. Since C ⊂ V ∗ is open, its preimage C ′ in GL(V ) is also open. If v ∈ C ′,
then vw−1f ∈ C. By Theorem 1.31(c), we must have vw−1f = f . Since C = C∅, by
Theorem 1.31(b), we have v = w. In particular, for each w ∈ W there is an open set of
GL(V ) which only contains w, and hence the induced topology on W is discrete. �

1.9. Poincaré series. As before (W,S) is a Coxeter group. For any subset U ⊆ W , we
define a formal power series

U(t) =
∑
w∈U

t`(w) =
∑
n≥0

|{w ∈ U | `(w) = n}|tn.

Note that since S is a finite set, the coefficient of tn is always finite. We will primarily be
interested in the case U = W , and for I ⊆ S, the cases U = WI and U = W I , where the
latter is the set of minimal length coset representatives of WI . By Proposition 1.24, we have

W (t) = WI(t)W
I(t).

Lemma 1.33. If W is finite, then there is a unique element w0 of maximal possible length,
and w0 sends every positive root to a negative root.

Proof. First, the number of roots is finite (each one gives a reflection in W and they coincide
if and only if the roots differ by a sign). Let w0 be an element of maximal possible length.
By Theorem 1.10, we must have w0(αs) < 0 for all s ∈ S, and hence w0 sends every positive
root to a negative root. By Theorem 1.17, `(w0) is the number of positive roots. This implies
that w2

0 sends every positive root to a positive root, so w2
0 = 1. Similarly, if w′ is any element

with `(w0) = `(w′), then w′ must also send all positive roots to negative roots. This implies
that w′w0 sends all positive roots to positive roots, and so `(w′w0) = 0, which implies that
w′ = w−10 = w0. �

Given w ∈ W , we define its (right) descent set to be DR(w) = {s ∈ S | `(ws) < `(w)}.
Then W I = {w ∈ W | DR(w) ⊆ S \ I}.

Proposition 1.34. We have∑
I⊆S

(−1)|I|W I(t) =

{
t`(w0) if W is finite

0 otherwise
.

Proof. In the sum above, the contribution of w ∈ W is

t`(w)
∑

I⊆S\DR(w)

(−1)|I| =

{
t`(w) if DR(w) = S

0 otherwise
.

By Theorem 1.10, DR(w) = S if and only if w(αs) < 0 for all s ∈ S, which is equivalent to
w(α) < 0 for every positive root α.

If W is infinite, no such w exists, as `(w) <∞ is the number of positive roots that become
negative under w (Theorem 1.17) and ` is unbounded (since the number of elements of a
given length is finite). Hence

∑
I⊆S(−1)|I|W I(t) = 0 in this case.

If W is finite, then DR(w) = S implies that `(w) is the number of positive roots, which
forces w = w0 by Lemma 1.33. �
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Note that W S(t) = 1. Subtract this term from both sides and divide both sides by W (t)
(using that W (t) = WI(t)W

I(t)) to get∑
I$S

(−1)|I|

WI(t)
=

f(t)

W (t)
(1.35)

where f(t) =

{
t`(w0) − (−1)|S| if W is finite

−(−1)|S| otherwise
.

This allows us to calculate W (t) by induction on |S| as soon as we can determine `(w0)
for W finite. We will do this later.

Example 1.36. If |S| = 0, then W (t) = 1.
If |S| = 1, there is also nothing to do since W ∼= Z/2, so W (t) = 1 + t. Note that this is

consistent with the recursion: 1 = t+1
W (t)

. �

In principle, this almost gives us an algorithm to compute W (t) in general. However, we
need to know when W is finite, and when that happens, how to compute `(w0). From what
we’ve discussed, this is the number of positive roots. We’ll address these questions in the
next section.

Example 1.37. We can compute W (t) for W = Sn by induction on n. For this, we write
permutations in 1-line notation, i.e., w(1)w(2) · · ·w(n). Given such an element, we can insert
n+ 1 in one of n+ 1 places. If we insert it right after w(i), each of (j, n+ 1) for j > i is an
inversion. If we insert at the beginning, then (j, n+ 1) is an inversion for all j. In particular,
we get

Sn+1(t) = Sn(t) · (1 + t+ · · ·+ tn) = Sn(t)
1− tn+1

1− t
=

n∏
i=1

1− ti+1

1− t
. �

2. Finite Coxeter groups

2.1. Group representations. This section is mostly a survey of introductory representa-
tion theory that we will use throughout the course, so it makes more sense to just refer to it
as needed.

Let G be a finite group. The identity element of G will be called 1G or just 1. A (linear)
representation of G over C is a homomorphism

ρV : G→ GL(V )

for some C-vector space V , where GL(V ) is the group of invertible linear operators on V .
Equivalently, giving a representation is the same as giving a linear action of G on V , i.e., a
function G × V → V which we think of as a multiplication g · v for g ∈ G and v ∈ V such
that:

• g · (v + v′) = g · v + g · v′,
• (gg′) · v = g · (g′ · v),
• 1G · v = v, and
• g · (λv) = λ(g · v) for any λ ∈ C.

The multiplication is obtained by setting g · v = ρV (g)(v). We will usually assume that V is
finite-dimensional, or built out of finite-dimensional pieces in a controlled way.
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We will generally take the perspective that V “is” the representation, and the information
ρV is implicit but not always mentioned. So properties of a representation such as dimension,
being nonzero, etc. come from the vector space V .

Let V and V ′ be two representations of G. A linear map f : V → V ′ is G-equivariant if
for all g ∈ G, we have

f ◦ ρV (g) = ρV ′(g) ◦ f,
or more compactly: f(g · v) = g · f(v) for all v ∈ V . An isomorphism is a G-equivariant
map which is invertible; if an isomorphism exists we write V ∼= V ′.

A subspace V ′ ⊆ V is a subrepresentation if g · v ∈ V ′ for all g ∈ G and v ∈ V ′. A
representation V is irreducible if the only subrepresentations are V and 0.

Example 2.1. (1) For any vector space V we can define ρV (g) to be the identity on
V . This is clearly a representation. When dimV = 1, this is called the trivial
representation.

(2) Let X be a finite set with a G-action. Recall this means that we have a function
G × X → X denoted (g, x) 7→ g · x such that 1G · x = x for all x ∈ X, and
g · (g′ ·x) = (gg′) ·x for all g, g′ ∈ G and x ∈ X. Let V = C[X] be the C-vector space
with basis {ex | x ∈ X} and define ρV by ρV (g)ex = eg·x. This is the permutation
representation of X.

A special case of a group action is when X = G and g · x = gx is given by the
group operation. In that case, C[G] is called the regular representation. �

C[G] has a natural multiplication: on basis vectors it is egeg′ = egg′ , and then extend it
linearly using the distributive law. A G-representation V is equivalent to a left C[G]-module:
we define egv = ρV (g)v (details omitted). This is the group algebra.

Lemma 2.2. All of the eigenvalues of ρ(g) are roots of unity, and ρ(g) is diagonalizable for
all g ∈ G.

Proof. Let λ be an eigenvalue of ρ(g) with eigenvector v. Then ρ(g)|G| = 1 but also ρ(g)|G|v =
λ|G|v, so λ|G| = 1.

Consider the Jordan normal form of ρ(g), which recall is an upper-triangular matrix whose
diagonal entries are the eigenvalues of ρ(g) and whose superdiagonal (the entries in positions
(i, i + 1)) are either 0 or 1. Then ρ(g) is diagonalizable if and only if the superdiagonal is
0. Furthermore, if any of those entries are 1, then no positive power of ρ(g) is equal to the
identity, but we know that ρ(g)|G| = 1. �

We define
Tr(g | V ) = Tr ρV (g).

This gives a function χV : G → C defined by χV (g) = Tr(g | V ). We will also denote it
by char(V ). Define a class function to be a function G → C which is invariant under
conjugation. They form a vector space over C. An example of a class function is χV .

We define an inner product on the space of class functions on G via

〈ϕ, ψ〉G =
1

|G|
∑
g∈G

ϕ(g)ψ(g).

where the bar is complex conjugation.
Let V and W be representations of G. There are a few basic operations we will make use

of:
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• (Direct sum) The direct sum V ⊕W is a representation with multiplication given by
g · (v, w) = (g · v, g · w). Then χV⊕W = χV + χW .
• (Dual) Recall that the dual space V ∗ is the vector space of linear functionals V → C.

It is a representation with multiplication given as follows: if f ∈ V ∗, then g · f is the
functional defined by (g · f)(v) = f(g−1 · v). Then χV ∗ = χV .
• (Tensor product) Recall that the tensor product V ⊗W is a vector space which is

spanned by symbols of the form v⊗w with v ∈ V and w ∈ W subject to the relations
– (v + v′)⊗ w = v ⊗ w + v′ ⊗ w,
– v ⊗ (w + w′) = v ⊗ w + v ⊗ w′,
– λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw) for any λ ∈ C.

Then V ⊗W is a representation of G via g ·
∑

i(vi⊗wi) =
∑

i(g · vi)⊗ (g ·wi). Then
χV⊗W = χV χW .
• (Symmetric powers) The symmetric group Sn acts on V ⊗n = V⊗· · ·⊗V by permuting

tensor factors. The quotient by this action, i.e., identifying σ(x) = x for all x ∈ V ⊗n,
is the symmetric power Symn V , which inherits an action of G. We write the coset
of x1 ⊗ · · · ⊗ xn by x1 · · ·xn. If v1, . . . , vr is a basis for V , then {vi1 · · · vin | 1 ≤ i1 ≤
· · · ≤ in ≤ r} is a basis for Symn V .
• (Exterior powers) Modify the previous construction by identifying σ(x) = sgn(σ)x

for all x ∈ V ⊗n to get the exterior power
∧n V , which inherits an action of G. We

write the coset of x1 ⊗ · · · ⊗ xn by x1 ∧ · · · ∧ xn. If v1, . . . , vr is a basis for V , then
{vi1 ∧ · · · ∧ vin | 1 ≤ i1 < · · · < in ≤ r} is a basis for

∧n V .
• (Invariants) V G = {v ∈ V | g · v = v for all g ∈ G} is the space of G-invariants and

is clearly a subrepresentation of V .

Proposition 2.3. The following properties hold:

(1) If χV = χV ′ then V ∼= V ′.
(2) If χV (g) = 0 for all g 6= 1, then V is isomorphic to a direct sum of copies of the

regular representation, i.e., V ∼= C[G]⊕N where N = (dimV )/|G|.
(3) χV is real-valued if and only if V ∼= V ∗.
(4) 〈χV , χV ′〉G = dim(V ∗ ⊗ V ′)G.

Given a subgroup H ⊆ G, any representation ρ of G becomes a representation of H by
restricting the map. This is called the restriction of ρ, and is denoted ResGHρ. In fact,
restriction makes sense for any class function.

On the other hand, given a representation ρ : H → GL(V ), one can define the induced
representation IndGHV which is a representation of G. This is conceptually clearest to
define using tensor products. First, as before, V is a left C[H]-module. Second, C[G] can
be made into a right C[H]-module via g · h = gh for g ∈ G and h ∈ H. We can then
define the tensor product over C[H]: C[G]⊗C[H]V . More generally, if R is a (not necessarily
commutative) ring and M is a right R-module and N is a left R-module, then M⊗RN is the
abelian group spanned by symbols m⊗ n with m ∈M and n ∈ N subject to the relations:

• (m+m′)⊗ n = m⊗ n+m′ ⊗ n,
• m⊗ (n+ n′) = m⊗ n+m⊗ n′,
• mr ⊗ n = m⊗ rn for any r ∈ R.

In general, there is no further structure on M ⊗RN . In our case, we can make C[G]⊗C[H] V
into a left C[G]-module by g · (

∑
i egi ⊗ vi) =

∑
i eggi ⊗ vi. Note that the tensor product

will be a C-vector space. If v1, . . . , vn is a basis for V and g1, . . . , gr are representatives for
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the left cosets G/H, then a basis for IndGHV is {egi ⊗ vj}, so in particular, dim(IndGHV ) =
|G/H| dimV .

Example 2.4. Let X be a set with a transitive G-action, i.e., for all x, y ∈ X, there exists
g ∈ G so that gx = y. Pick any point x ∈ X and let H be its stabilizer. Then the left action
of G on G/H is the same as the action of G on X under the identification gH 7→ gx. Hence
C[G/H] ∼= C[X]. Furthermore, we can identify C[G/H] with IndGHC where C is the trivial
representation of H. We denote its character by 1 ↑GH . �

Theorem 2.5 (Frobenius reciprocity). Given groups H ⊆ G and representations U, V of H
and G respectively, we have

〈IndGHU, V 〉G = 〈U,ResGHV 〉H .
This is a corollary of the usual adjunction between hom and tensor, but we won’t go into

the details.
In particular, we have 〈1 ↑GH , V 〉G = dimV H , which is how it will be used later.

2.2. Finite groups. It will be convenient to encode a Coxeter group by a finite graph Γ.
The vertex set is S. For s 6= s′, we connect s and s′ with m(s, s′) − 2 many edges. The
standard convention to denote multiple edges is to draw a single edge with the number
m(s, s′) above it. (Hence if m(s, s′) = 3 we do not decorate the edge.) We will call Γ a
Coxeter graph.

We call (W,S) irreducible if Γ is connected. Taking the disjoint union of two graphs
amounts to taking the direct product of Coxeter groups (generators without edges commute
with each other) and also taking the direct sum of geometric realizations. So if we want to
classify the finite Coxeter groups, we can focus our attention on irreducible Coxeter systems.

Recall that G ⊂ GL(V ) acts irreducibly, or that V is an irreducible representation
of G, if the only G-invariant subspaces of V are 0 and V . An element g ∈ GL(V ) is a
reflection if ker(1− g) is a hyperplane and g has finite order (this agrees with our previous
definition when g belongs to a Coxeter group in its geometric representation).

Lemma 2.6. Let G ⊂ GLn(R) be a finite group acting irreducibly on Rn and that contains
at least one reflection. Then there is a unique bilinear form (up to scalar multiple) which is
preserved by G. Furthermore, this bilinear form is, up to a sign, symmetric positive definite.

Proof. If B is a nonzero bilinear form preserved by G, then it gives a G-equivariant linear
map Rn → (Rn)∗ via v 7→ B(v,−). The kernel is a G-invariant subspace, so since G acts
irreducibly, this map is an isomorphism. Let B′ be another nonzero bilinear form preserved
by G. Then for every v ∈ Rn, B(v,−) must equal B′(v′,−) for some unique vector v′,
call it ϕ(v). Then ϕ : Rn → Rn is a linear map. By G-equivariance of B and B′, we have
B(gv,−) = B′(gv′,−), so ϕ is G-equivariant.

Let s ∈ G be a reflection. Then image(1 − s) is 1-dimensional, let (1 − s)v be a nonzero
vector. Since ϕ is G-equivariant, we have ϕ(1 − s)v = (1 − s)ϕ(v), which is a multiple
of (1 − s)v, so (1 − s)v is an eigenvector of ϕ; call its eigenvalue α. Then ϕ − αI is also
G-equivariant, so ker(ϕ − αI) is a nonzero G-invariant subspace. By irreducibility, it must
be the whole space, so ϕ = αI and hence B′ = αB.

For the last part, pick any symmetric positive definite bilinear formB′ and defineB(v, w) =∑
g∈GB

′(gv, gw). Then B is preserved by G and clearly symmetric. Suppose that v 6= 0.

Then for any g ∈ G, we have gv 6= 0 and hence B′(gv, gv) > 0. So B(v, v) > 0 and B is
positive definite. By uniqueness, every G-invariant form is a scalar multiple of B. �
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Remark 2.7. The second part of the proof is essentially Schur’s lemma, except we cannot
apply it over the real numbers since a G-invariant operator may not have an eigenvalue.
Here we are using the existence of a reflection to force the existence of an eigenvalue. �

Theorem 2.8 (Maschke). Let U be a vector space over a field of characteristic 0, and let
G be a finite subgroup of GL(U). If U ′ ⊆ U is a G-invariant subspace, then there is a
complementary G-invariant subspace U ′′ (i.e., U ′ ∩ U ′′ = 0 and U ′ + U ′′ = U).

Proof. Pick any complementary subspace X of U ′ and let p : U → U ′ be the projection
operator whose kernel is X. Then 1

|G|
∑

g∈G gp is also a projection operator and its kernel

U ′′ is complementary to U ′ and preserved by G. �

Lemma 2.9. Let (W,S) be a Coxeter group. If the Coxeter graph of W is connected and W
is finite, then the geometric representation V is an irreducible representation of W .

Proof. Let V ′ ⊆ V be a subrepresentation and set S ′ = {s ∈ S | αs ∈ V ′}. If v ∈ V ′ and
t /∈ S ′, then σt(v) − v = −2BW (v, αt)αt is an element of V ′ which means BW (v, αt) = 0.
In particular, the induced subgraph on S ′ is a connected component, so either S ′ = S (in
which case V ′ = V ) or S ′ = ∅ (in which case V ′ ⊆ kerBW ). In other words, any proper
subrepresentation must be a subspace of kerBW . To finish, we show that kerBW = 0.

Since kerBW is a W -invariant subspace, it has a W -invariant complement V ′′ by Maschke’s
theorem (Theorem 2.8). If V ′′ = V , then kerBW = 0, and we are done. Otherwise, V ′′ is a
proper subrepresentation, so by the above, V ′′ ⊂ kerBW . But V ′′∩kerBW = 0 which means
that V ′′ = 0 and kerBW = V . This means that BW = 0 which is false by definition. �

Remark 2.10. This fails when W is infinite. For example, when W is the infinite dihedral
group with S = {s, t}, we’ve seen that αs + αt is fixed by every element of W . �

Proposition 2.11. W is finite if and only if the bilinear form BW is positive definite.

Proof. Suppose that W is finite. Consider the geometric representation W → GL(V ). It
suffices to consider the case that the Coxeter graph is connected. In that case, W acts
irreducibly on V by Lemma 2.9, and hence by Lemma 2.6, either BW or −BW is positive
definite. But BW (αs, αs) = 1 for any s ∈ S, so in fact BW is positive definite.

Conversely, suppose that BW is positive definite. Then the orthogonal group preserving it
is compact (with respect to an orthonormal basis, the condition for A to be in the orthogonal
group is AAT = I, which means it is closed; each column of an orthogonal matrix lies on the
unit sphere, and hence the orthogonal group is bounded). By Corollary 1.32, W is a discrete
subgroup. A discrete subset of a compact space must be finite. �

In the next sections, we will actually classify all possible cases when BW is positive definite
and try to describe the groups as explicitly as possible.

The following isn’t logically needed for what follows in the notes, but is a nice fact to
know.

Theorem 2.12. Any finite subgroup G ⊂ GLn(R) generated by reflections is isomorphic to
a Coxeter group.

Proof. First, Rn has a positive definite G-invariant symmetric form: (v, w) = 1
|G|
∑

g∈G gv·gw
where · is the usual dot product. Without loss of generality, we may assume the standard
basis is orthonormal with respect to this form. Given a hyperplane H ⊂ Rn, let sH be the
reflection that fixes H and negates a normal vector to H. Define HG = {H | sH ∈ G}.
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Rn \
⋃
H∈HG

H has finitely many connected components which we call chambers. Let C

be one of them and let C be its closure in Rn. Now let S be the set of sH where H are the
hyperplanes bounding C, and let G′ be the subgroup generated by S.

We claim that the G′-orbit of every vector in Rn has nonempty intersection with C. To
see this, fix a ∈ C, and v ∈ Rn. Since G′ is finite, the orbit of v has an element v′ of minimal
distance to v. If v′ /∈ C, there is a hyperplane sH ∈ S separating a and v′. Then sH(v′) is
an element in the G′-orbit that is closer to a, which is a contradiction.

If we apply an element of G′ to a chamber, we get another chamber since G fixes HG and
acts continuously. Hence, from the claim, for any reflection sH ∈ G, there exists g ∈ G′ such
that gH bounds C, so that gsHg

−1 = sgH ∈ G′. In particular, G′ contains all the reflections
of G, and hence G′ = G.

For each s ∈ S, let αs be a unit vector normal to its fixed hyperplane that points towards
C (i.e., (αs, a) > 0 for any a ∈ C). We claim that the αs are linearly independent. First,
we have (αs, αt) ≤ 0 for each s 6= t (the angle between αs and αt is at most π/2). Suppose
that there is a dependency

∑
s∈S csαs = 0. Let v be the sum of the terms with cs > 0. If

v = 0, then there are no cs that are positive: otherwise, pairing with some a ∈ C, we have
(a, v) > 0. That implies there are no cs that are negative either, and so the dependency is
trivial. Finally, if v 6= 0, then

0 < (v, v) =
∑

s∈S, cs>0

∑
t∈S, ct<0

−csct(αs, αt)

and all of the terms are ≤ 0, which is a contradiction, and the claim is proven.
For s, t ∈ S, let m(s, t) be the order of st. By restricting to the span of {αs, αt}, and

using the calculation in the proof of Lemma 1.5, we see that (αs, αt) = − cos(π/m(s, t)). We
have a corresponding Coxeter group W and a surjective homomorphism W → G. Finally,
Rn can be identified with the geometric representation of W , and so W → G is injective by
Corollary 1.12. �

2.3. Classification. As we saw in Proposition 2.11, if W is finite, then BW is positive
definite, so our first goal is to classify the connected graphs whose associated bilinear form is
positive definite, i.e., BW (v, v) > 0 whenever v 6= 0. It will also be convenient to classify the
positive semidefinite bilinear forms (i.e., BW (v, v) ≥ 0 for all v). By choosing an ordering
on S, we can encode BW as a symmetric matrix AW whose (s, t) entry is BW (αs, αt) =
− cos( π

m(s,t)
). Given a subset S ′ ⊆ S, the determinant of a submatrix of AW whose rows and

columns are indexed by S ′ is called a principal minor.
Recall that a bilinear form B is positive definite (respectively, positive semidefinite) if

and only if all of the principal minors of the corresponding symmetric matrix A are positive
(respectively, nonnegative).

Call a symmetric n × n matrix A decomposable if there is a nonempty proper subset
S $ [n] such that Aij = 0 whenever i ∈ S and j /∈ S. A matrix is indecomposable if it is
not decomposable. The matrix of BW is indecomposable if and only if Γ is connected.

Theorem 2.13 (Perron–Frobenius). Let A be a real n×n symmetric matrix which is positive
semidefinite and indecomposable, and such that Aij ≤ 0 for i 6= j. Then:

(a) Let N = {x ∈ Rn | xTAx = 0}. Then N = kerA and has dimension at most 1.
(b) The smallest eigenvalue (all eigenvalues are real since A is symmetric) has multiplicity

1, and has an eigenvector whose coordinates are all strictly positive.
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Proof. Since A is symmetric, we can orthogonally diagonalize it: A = P TDP where D
is diagonal with real entries d1 ≥ · · · ≥ dn. Since A is positive semidefinite, all of the
eigenvalues are nonnegative: (P−1en)TA(P−1en) = eTnDen = dn ≥ 0.

(a) If x ∈ N , then for y = Px, we have
∑n

i=1 diy
2
i = 0. Since di ≥ 0 for all i, this implies

that for each i, either di = 0 or yi = 0, or simply diyi = 0. This means that DPx = 0, which
implies x ∈ kerA. Clearly kerA ⊆ N , so we get equality.

Suppose N 6= 0, and pick nonzero x ∈ N . Let z =
∑n

i=1 |xi|ei. Since Ai,j ≤ 0 for i 6= j,
we have

0 ≤ zTAz =
n∑
i=1

Ai,ix
2
i +

∑
i 6=j

Ai,j|xixj| ≤ xTAx = 0

which forces the first ≤ to be an equality, i.e., z ∈ N . Let J = {j | zj 6= 0}. We claim
that J = [n]. If not, pick i /∈ J . Since N = kerA, we have Az = 0, which means that∑

j∈J Aijzj = 0. Since Aij ≤ 0 and zj > 0, we must have Aij = 0 for all j ∈ J . In particular,

A is decomposable, which contradicts our assumption, so J = [n]. We conclude that if x ∈ N
is nonzero, then every coordinate of x is nonzero. Now suppose we have two nonzero vectors
x, y ∈ N . Then y1 6= 0 and x− x1

y1
y1 has a coordinate equal to 0, and hence must be 0. We

conclude that dimN ≤ 1.
(b) We have just shown this to be true if dn = 0. In general, we can consider the matrix

A − dnI which is again positive semidefinite and indecomposable and has nonnegative off
diagonal entries. Then its kernel is the eigenspace for the smallest eigenvalue of A. �

Since every Coxeter graph is in bijection with some Coxeter group (W,S), we can un-
ambiguously define it to be positive (semi)definite if its associated bilinear form is. For
the remainder of the section, given a graph Γ, a subgraph is the result of possibly deleting
vertices and edges. A proper subgraph is a subgraph different from Γ.

Corollary 2.14. If Γ is a positive semidefinite connected graph, then all of its proper sub-
graphs are positive definite.

Proof. Let A be the symmetric matrix of Γ. Let Γ′ be a subgraph with symmetric matrix
A′. Order the vertices 1, . . . , n so that Γ′ uses the vertices 1, . . . , k. Assume that A′ is
not positive definite. Then we can find nonzero x ∈ Rk such that xTA′x ≤ 0. Let y =
(|x1|, . . . , |xk|, 0, . . . , 0)T ∈ Rn. Since − cos is increasing on the interval [0, π/2], we have
A′i,j ≥ Ai,j for all i, j ≤ k. Hence

0 ≤ yTAy =
∑
i,j

Ai,j|xixj| ≤
∑
i,j

A′i,j|xixj| ≤
∑
i,j

A′i,jxixj = xTA′x ≤ 0.

So the first inequality is an equality, so all of the coordinates of y are positive by Theo-
rem 2.13, which means that k = n. The second inequality is also an equality, which means
that Ai,j = A′i,j for all i, j, i.e., Γ′ = Γ. �

The next result gives a list of positive definite connected Coxeter graphs (which we will
prove is the complete list). It will be helpful to know the following values of cosine:

cos
(π

3

)
=

1

2
, cos

(π
4

)
=

√
2

2
, cos

(π
5

)
=

1 +
√

5

4
, cos

(π
6

)
=

√
3

2
.
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Proposition 2.15. The following Coxeter graphs are all positive definite (the vertex num-
bering will be used later when we construct the root systems):

An (n ≥ 1) 1 2 · · · n− 1 n

Bn (n ≥ 2) 1 2 · · · n− 1
4

n
Dn (n ≥ 4) n

1 2 · · · n− 2 n− 1

E6 2

1 3 4 5 6
E7 2

1 3 4 5 6 7
E8 2

1 3 4 5 6 7 8

F4 1 2
4

3 4

H3 1
5

2 3

H4 1
5

2 3 4

I2(m) (m ≥ 5) 1
m

2

Proof. Note that a principal minor of AW is the determinant of the matrix corresponding
to a graph Γ′ obtained from Γ by deleting some nodes. By inspection, we see that deleting
nodes from any graph in this list gives a disjoint union of graphs that are still in the list. In
particular, we just need to check that detAW > 0 for each graph; we omit this check. �

Remark 2.16. The restrictions on m,n are imposed so that there are no coincidences. For
example, A2 = I2(3) and B2 = I2(4). For reasons coming from Lie theory, the case I2(6) is
also known as G2. �

Proposition 2.17. The following Coxeter graphs are positive semidefinite, but not positive
definite. In each case, the subscript on the name is the rank of the matrix, which is one less
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than the number of nodes. The labels are the coordinates of a kernel vector.

Ã1 1
∞

1

Ãn (n ≥ 2) 1

1 1 · · · 1 1

B̃n (n ≥ 3) 1

1 2 · · · 2
4 √

2

C̃n (n ≥ 2) 1
4 √

2 · · ·
√

2
4

1

D̃n (n ≥ 4) 1 1

1 2 · · · 2 1

Ẽ6 1

2

1 2 3 2 1

Ẽ7 2

1 2 3 4 3 2 1

Ẽ8 3

2 4 6 5 4 3 2 1

F̃4 1 2 3
4

2
√

2
√

2

G̃2 1 2
6 √

3

Proof. In each example above, every graph obtained by deleting nodes appears on the pre-
vious list, and hence is positive definite. The coordinates of a kernel element are listed on
the nodes, so we see that each graph is positive semidefinite, but not positive definite. �

Theorem 2.18. Every positive semidefinite connected graph is either listed in Proposi-
tion 2.15 or Proposition 2.17.

See [H1, §2.7].

2.4. Construction of finite root systems. An additive subgroup L of Rn is called a
lattice if L ∼= Zn and (v, w) ∈ Z for all v, w ∈ L. When W is finite, we want to know when
W preserves a lattice in the geometric representation V . If this is the case, we say that W
is crystallographic, or that W is a Weyl group.

Proposition 2.19. If W preserves a lattice, then m(s, t) ∈ {2, 3, 4, 6} for all s 6= t.
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Proof. Suppose that W preserves a lattice L. Then we can pick a basis for V consisting of
elements of L. In this basis, the matrix of every element w ∈ W has integer entries, and in
particular, we see that the trace (which is basis independent) of every w ∈ W is an integer.
If |S| ≤ 1, the result is clear so suppose otherwise. Now pick s, t ∈ S with s 6= t. We have
seen in the proof of Lemma 1.5 that, in some basis, st is the direct sum of an identity matrix
of size dimV − 2 and the 2 × 2 rotation matrix by the angle 2π/m(s, t), so the trace is
dimV −2+2 cos(2π/m(s, t)). Hence cos(2π/m(s, t)) ∈ {−1,−1

2
, 0, 1

2
, 1}. Since m(s, t) <∞,

this forces m(s, t) ∈ {2, 3, 4, 6}. �

In terms of our classification, this only allows the possibilities An, Bn, Dn, E6, E7, E8, F4,
and I2(6) = G2. For each case, we give the geometric representation explicitly. In each case,
the Z-span of the αi is a lattice preserved by W .

In each case, we should normalize the αi to have unit length if we want the inner products
to match the values of BW , but we present it as follows to match other conventions in Lie
theory. In all cases, e1, . . . , en are the standard basis vectors for Rn. Furthermore, we can
partially order roots by α ≥ β if α− β is a positive root. There is always a unique maximal
element, which we denote by α̃.

• For the An root system, take V = {x ∈ Rn+1 | x1 + · · · + xn+1 = 0} and take the
set of vectors ei − ej for i 6= j. For simple roots, take αi = ei − ei+1 for i = 1, . . . , n.
The positive roots are ei− ej for i < j. Then W ∼= Sn+1 is the symmetric group and
|W | = (n+ 1)!. We have α̃ = e1 − en+1.
• For the Bn root system, take V = Rn and take the set of vectors ±ei ± ej for i 6= j

and ±ei for i = 1, . . . , n. For simple roots, take αi = ei − ei+1 for i = 1, . . . , n − 1
and αn = en. The positive roots are ei ± ej for i < j and ei for i = 1, . . . , n. Then
W ∼= Sn n (Z/2)n is the hyperoctahedral group (signed permutation matrices) and
|W | = 2nn!. We have α̃ = e1 + e2.
• There is a “dual” root system Cn. We take Rn and the set of vectors are ±ei ± ej

for i 6= j and ±2ei. For simple roots, take αi = ei − ei+1 for i = 1, . . . , n − 1 and
αn = 2en. The positive roots are ei ± ej for i < j and 2ei for i = 1, . . . , n. W is the
same as in type Bn, and α̃ = 2e1.
• For the Dn root system, take V = Rn and take the set of vectors ±ei±ej for i 6= j. For

simple roots, take αi = ei− ei+1 for i = 1, . . . , n−1 and αn = en−1 + en. The positive
roots are ei ± ej for i < j. Let (Z/2)n−1 denote the subgroup of (Z/2)n of vectors
whose coordinate sum is 0. Then W ∼= Sn n (Z/2)n−1 is the demihyperoctahedral
group (signed permutation matrices with an even number of negative signs) and
|W | = 2n−1n!. We have α̃ = e1 + e2.
• We now give a description of the E8 root system. Take V = R8 and take the set of

vectors x such that
– either all coordinates of x are integers, or all coordinates of x are half-integers,

i.e., all coordinates of 2x are odd integers,
– x1 + · · ·+ x8 is an even integer, and
– x21 + · · ·+ x28 = 2.
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There are 240 such vectors, and we set

α1 =
1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), α2 = e1 + e2

α3 = e2 − e1, α4 = e3 − e2, α5 = e4 − e3,
α6 = e5 − e4, α7 = e6 − e5, α8 = e7 − e6.

We have |W | = 21435527 and α̃ = e7 + e8.
• To construct En for n = 6, 7, we replace V by the span of α1, . . . , αn and only

take those roots lying in that span. We have |W (E6)| = 51840 and |W (E7)| =
2903040. The number of roots are 72 and 126, respectively, and the highest roots are
1
2
(e1 + e2 + e3 + e4 + e5 − e6 − e7 + e8) and e8 − e7, respectively.

Remark 2.20. The Weyl groups of types En for n = 6, 7, 8 have very close con-
nections to matrix groups over finite fields. For example, one has an isomorphism
W (E7) ∼= Z/2 × Sp6(F2) where Sp6(F2) is the symplectic group that preserves a
non-degenerate symplectic form on the finite vector space F6

2. See [H1, §2.12] for
some other descriptions. �

• For the F4 root system, take V = R4 and take the set of vectors x such that
– either all coordinates of x are integers, or all coordinates of x are half-integers,

i.e., all coordinates of 2x are odd integers, and
– x21 + x22 + x23 + x24 is 1 or 2.

There are 48 such vectors and we set

α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 =
1

2
(e1 − e2 − e3 − e4).

Then |W | = 1152 and α̃ = e1 + e2.
• For the G2 root system, take V = {x ∈ R3 | x1 + x2 + x3 = 0} and take the set of

vectors x ∈ Z3 ∩ V such that x21 + x22 + x23 is 2 or 6. There are 12 such vectors and
we set

α1 = e1 − e2, α2 = −2e1 + e2 + e3.

W is the dihedral group of order 12 and α̃ = −e1 − e2 + 2e3.

As for the rest of the finite irreducible Coxeter groups:

• W (I2(m)) is the dihedral group of order 2m, i.e., the symmetries of a regular m-gon.
• W (H3) is the symmetry group of the regular icosahedron: a 3-dimensional polytope

built out of 20 triangles which meet 5 at a time at each of the 12 vertices. Abstractly,
the group has size 120 and is isomorphic to Z/2 × A5, where A5 is the alternating
group.
• W (H4) is the symmetry group of the 600-cell, which is a 4-dimensional polytope that

is analogous to the icosahedron: its boundary consists of 600 tetrahedra which meet
5 at a time in a common edge. The group has size 14400.

In [H1, §2.13], W (H4) is realized as a quaternionic reflection group. In the next section,
we’ll consider finite complex reflection groups, which are generally not Coxeter groups, but
share many algebraic properties with real reflection groups.
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2.5. Hyperbolic Coxeter groups. Our next goals are to discuss the Coxeter groups whose
graph is positive semidefinite. Before that, we describe the class of hyperbolic Coxeter groups
which are close to positive semidefinite and can be classified by considering subgraphs.

We now assume that the bilinear form BW is nondegenerate and set n = |S|. In that case,
we define the dual basis ωs to αs via the conditions BW (ωs, αt) = δs,t. We define

C = {v ∈ V | BW (v, αs) > 0 for all s ∈ S}

= {
∑
s

csωs | cs > 0}.

Recall that every real bilinear form can be diagonalized into the form x21 + · · ·+ x2p− x2p+1−
· · · − x2p+q for a unique choice of (p, q), which is called its signature.

Then (W,S) is defined to be hyperbolic if BW has signature (n− 1, 1) and BW (v, v) < 0
for all v ∈ C.

Lemma 2.21. Let E be an n-dimensional real vector space and B a symmetric bilinear form
of signature (n − 1, 1). For nonzero v ∈ E, define v⊥ = {w ∈ E | B(v, w) = 0}. Then B
restricted to v⊥ is positive semidefinite if and only if B(v, v) ≤ 0.

Proof. First suppose that B(v, v) 6= 0. In particular, v /∈ v⊥, so we have an orthogonal
direct sum E = 〈v〉 ⊕ v⊥. Since B is the direct sum of its restrictions to each of 〈v〉 and
v⊥, its restriction to v⊥ has signature (n − 2, 1) if B(v, v) > 0 (and hence is not positive
semidefinite) and has signature (n− 1, 0) if B(v, v) < 0 (and hence is positive definite).

Finally suppose that B(v, v) = 0. Since B has signature (n− 1, 1), there is a hyperplane
H so that the restriction of B to H is positive definite. Then H 6= v⊥ since v ∈ v⊥, so B is
positive definite on H ∩ v⊥, which means its signature on v⊥ is (n − 2, 0), and hence B is
positive semidefinite on v⊥. �

Proposition 2.22. Let Γ be the Coxeter graph for (W,S). Then (W,S) is hyperbolic if and
only if

(a) BW is nondegenerate but not positive definite, and
(b) For each s ∈ S, the subgraph Γ \ s is positive semidefinite.

For the proof below, for s ∈ S, we define Ls to be the span of {αt | t 6= s}.
Proof. First suppose that (W,S) is hyperbolic. Then (a) holds by definition. Now pick s ∈ S.
Since x 7→ BW (x, x) is continuous and ωs is in the closure of C, we have BW (ωs, ωs) ≤ 0. By
definition, ω⊥s = Ls. By Lemma 2.21, the restriction of BW to Ls is positive semidefinite.
By construction of BW , this restriction is just the bilinear form of Γ\ s, and hence (b) holds.

Now suppose that (a) and (b) hold. Define N = {v ∈ V | BW (v, v) < 0}. By (a), N 6= ∅,
and by (b), N ∩ Ls = ∅ for all s ∈ S. In particular, N ⊂ V \

⋃
s∈S Ls. The latter is

disconnected and has one connected component UT for each subset T ⊂ S, namely UT is
the set of vectors

∑
s csαs where cs > 0 if s ∈ T and cs < 0 if s /∈ T . Suppose that BW

has signature (p, q) with q ≥ 2. Then there is a 2-dimensional subspace Z on which BW is
negative definite, which means that Z \ 0 ⊂ N . However, Z \ 0 ∼= R2 \ 0 is connected, which
means it is a subset of some UT . But Z \ 0 is closed under negation while UT is not, which
is a contradiction. Hence the signature of BW must be (n− 1, 1).

Hence in some choice of basis, BW (x, x) = x21+· · ·+x2n−1−x2n, so N = {x | x21+· · ·+x2n−1 <
x2n}. In particular, N has two connected components N+ and N− corresponding to the sign of
xn, and by the triangle equality, each component is closed under addition, i.e., if x, y ∈ N±,
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then x + y ∈ N±. Finally, we have to show that C ⊂ N . By (b), for each s, BW is positive
semidefinite on ω⊥s = Ls, so that BW (ωs, ωs) ≤ 0 by Lemma 2.21, and hence each ωs belongs
to the closure of N . We claim that they all belong to the closure of a single connected
component.

Suppose that BW (v, v) < 0 and write v =
∑

s csαs. Let v+ be the sum of the terms for
which cs > 0 and let v− = v − v+. We have

BW (v, v) =
∑
s

c2s +
∑
s 6=t

csctBW (αs, αt),

and hence BW (v+, v+)+BW (v−, v−) ≤ BW (v, v) since the difference comes from terms in the
second sum (which are non-negative since cs and ct have different signs and BW (αs, αt) ≤ 0),
and hence either BW (v+, v+) < 0 or BW (v−, v−) < 0.

If v ∈ N , then either v+ ∈ N or v− ∈ N , and in either case, its negative is also in N . We
conclude that the two connected components of N correspond to when all the coefficients
(in the α basis) are all positive or all negative.

So if we write ωs =
∑

tws,tαt, either all coefficients are non-negative or non-positive. We
claim it is the latter. The matrix (ws,t) is the inverse (and transpose, depending on indexing
conventions) of the matrix β = (BW (αs, αt)) and ws,s is the determinant of the matrix for
Γ \ s divided by det β < 0. By (b), the first quantity is non-negative. If it is positive, we are
done. Otherwise, if it is 0, then we have

1 = BW (ωs, αs) =
∑
t6=s

ws,tBW (αs, αt).

Since BW (αs, αt) ≤ 0, we conclude that ws,t ≤ 0.
Hence the closure C belongs to N . By considering interiors, we have C ⊂ N . �

I don’t have much to say about the connections with hyperbolic geometry, but see the
references in [H1, §6.8] for further information.

A list of all of the hyperbolic Coxeter groups of ranks ≥ 4 are given in [H1, §6.9]. In rank
2, every graph is positive semidefinite, so there are no hyperbolic examples.

Corollary 2.23. Every connected Coxeter graph Γ on 3 vertices is either positive semidefinite
or hyperbolic.

Proof. By the above comments, Γ automatically satisfies condition (b) above. So we need
to see the possibilities for the signature of BW . There are two possibilities. First, if Γ is a
path, in which case the matrix for BW is of the form 1 −a 0

−a 1 −b
0 −b 1


where a, b ≥ 0. Its eigenvalues are 1, 1 ±

√
a2 + b2 and in particular is either positive semi-

definite or has signature (2, 1). Otherwise, Γ is a cycle, and the matrix for BW has the
form  1 −a −c

−a 1 −b
−c −b 1
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where a, b, c ≥ 1/2. The determinant is 1− (a2 + b2 + c2 +2abc) ≤ 0, and equality is achieved

when a = b = c = 1/2, in which case this is Ã2 and positive semidefinite. Otherwise, the
determinant is negative (and hence Bw is nondegenerate) and the trace is positive, which
means the only possibility for the signature is (2, 1). �

3. Polynomial invariants

3.1. Some commutative algebra. We will need some basic results in commutative al-
gebra. Let k be a field. First, given a vector space V of dimension n, pick a basis
x1, . . . , xn. The ring of polynomials A = k[x1, . . . , xn] identifies with the symmetric algebra
Sym(V ) =

⊕
d≥0 Symd V . In particular, if a group G acts on V , then it acts on k[x1, . . . , xn].

Since (V ∗)∗ = V , we can interpret A as the ring of polynomial functions on V ∗.
We recall that a nonempty subset I ⊂ A is an ideal if it is an A-submodule of A, i.e.,

a+ b ∈ I if a, b ∈ I and ab ∈ I if a ∈ A and b ∈ I. A set S generates I if every element of I
is an A-linear combination of elements of S.

A finitely generated k-algebra is a quotient ring of A by an ideal. We have the following
basic result (which states that R is noetherian):

Theorem 3.1 (Hilbert basis theorem). Let R be a finitely generated algebra over a field.
Every ideal of R has a finite generating set. More generally, every submodule of a finitely
generated R-module is also finitely generated.

We will primarily interested in graded situations. In particular, let d1, . . . , dn be positive
integers and make the convention that deg(xi) = di. In many cases, di = 1 for all i, but we
will use the more general case as well. This introduces a grading A =

⊕
d≥0Ad where Ad is

the linear span of all monomials xp11 · · ·xpnn such that
∑n

i=1 pidi = d. (Note A0 = k is the
span of the constant polynomial since all di > 0.)

An A-module M is graded if we have a decomposition M =
⊕

d≥0Md such that if f ∈ Ad
and m ∈ Me, then fm ∈ Md+e. An element in Md is called homogeneous. In particular,
a graded ideal I is called homogeneous and means that I =

⊕
d≥0(I ∩ Ad). For graded

modules, we can always find a generating set that consists of homogeneous elements.
For a graded module M , its Hilbert series is the formal power series

HM(t) =
∑
d≥0

(dimMd)t
d.

The graded tensor product (over k) is given by (M ⊗N)d =
⊕d

e=0Me ⊗Nd−e. The Hilbert
series is multiplicative in the sense that

HM⊗N(t) = HM(t)HN(t).

An important case is M = k[x1, . . . , xn] = k[x1]⊗ · · · ⊗ k[xn], in which case we get

Hk[x1,...,xn](t) =
n∏
i=1

1

1− tdeg(xi)
.

Finally, we recall that polynomials f1, . . . , fk are algebraically independent if for any
nonzero polynomial h(y1, . . . , yk) (in new variables), we have h(f1, . . . , fk) 6= 0. An alge-
braically independent set can be extended to a transcendence basis of k(x1, . . . , xn) over k,
so in particular, any algebraically independent set has size at most n.
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3.2. Molien’s formula. From now on, we assume k = C is the field of complex numbers.

Lemma 3.2. Let V be a finite-dimensional vector space. Define ϕ : V → V by

ϕ(v) =
1

|G|
∑
g∈G

g · v.

ϕ is a projection and its image is V G. In particular,

dimV G = Tr(ϕ) =
1

|G|
∑
g∈G

Tr(g|V ).

Proof. First we prove the image is contained in V G: for any h ∈ G, we have

h · ϕ(v) =
1

|G|
∑
g∈G

hg · v =
1

|G|
∑
g∈G

g · v = ϕ(v).

where in the second equality, we reindexed the sum since {hg | g ∈ G} = {g | g ∈ G}.
On the other hand, given w ∈ V G, we have ϕ(w) = w, and so the image is all of V G.
These two facts imply that ϕ is a projection: ϕ2(v) = ϕ(ϕ(v)) and ϕ(v) ∈ V G which

implies that ϕ2(v) = ϕ(v).
For the last statement, note that the eigenvalues of a projection are either 0 or 1 (since

it’s a root of the polynomial t2 − t) and the multiplicity of 1 is its rank. �

We now apply this formula to the action of G on A = C[x1, . . . , xn] = Sym(V ). While A
is infinite-dimensional, it is a direct sum of finite-dimensional G-representations Symd(V ),
so we can apply the formula to each piece individually.

Theorem 3.3 (Molien’s formula). For g ∈ V , let ρV (g) be the linear operator on V corre-
sponding to multiplication by g. We have∑

d≥0

dim(Symd V )Gtd =
1

|G|
∑
g∈G

1

det(1− ρV (g)t)
.

If we assign all elements of V to have degree 1, this quantity is HAG(t).

Proof. Pick g ∈ G. Let z1, . . . , zn be the eigenvalues (with multiplicity) of ρV (g). If we pick
an eigenbasis v1, . . . , vn for ρV (g), then vi1 · · · vid with 1 ≤ i1 ≤ · · · ≤ id ≤ n is an eigenbasis
for g acting on Symd(V ) with eigenvalues zi1 · · · zid . We see that∑

d≥0

Tr(g| Symd V )td =
n∏
i=1

1

1− zit
=

1

det(1− ρV (g)t)
.

The claimed formula now follows from Lemma 3.2. �

3.3. Ring of invariants. Recall the projection operator given by the formula ϕ = 1
|G|
∑

g∈G ρ(g).

We are now interested in the case when the representation is the symmetric algebra A =
Sym(V ) ∼= C[x1, . . . , xn]. In that case, we write f# instead of ϕ(f). Note that if f1 ∈ AG
and f2 ∈ A, then (f1f2)

# = f1f
#
2 . In particular, #: A → AG is a surjective AG-module

homomorphism which preserves degrees.



28 STEVEN V SAM

Proposition 3.4. Let I be the ideal of A generated by AG. Suppose that f1, . . . , fk ∈ AG
are positive degree homogeneous elements that generate I. Then f1, . . . , fk generate AG as a
C-algebra.

In particular, AG is a finitely generated C-algebra.

Proof. We prove that f ∈ AG is a polynomial in the f1, . . . , fk by induction on deg f .
We may assume that f is homogeneous. Then f ∈ I and hence there exist homogeneous
h1, . . . , hk ∈ A such that f = h1f1 + · · · + hkfk. Now apply #: f = h#1 f1 + · · · + h#k fk. In
particular

deg h#i = deg hi = deg f − deg fi < deg f.

By induction on degree, h#i is a polynomial in the f1, . . . , fk. Substituting these expressions
gives the desired result.

The last statement follows from Hilbert’s basis theorem since I is finitely generated. �

Remark 3.5. The above proof required the use of #, which relies on being able to divide by
|G|, and hence does not extend when k is a field of positive characteristic p where p divides
|G|. However, the conclusion that AG is finitely generated, due to Noether, still holds as we
now show. So now let k be any field.

Let t be a new indeterminate. For each i = 1, . . . , r, consider the polynomial pi(t) ∈ A[t]
defined by pi(t) =

∏
g∈G(t−gxi). In fact, the coefficients are symmetric in the gxi and hence

are elements of AG. Let B be the k-subalgebra of AG generated by the coefficients of the
pi(t) for i = 1, . . . , n. By definition, B is finitely generated. Furthermore, A is a generated
as a B-module by {xji | 1 ≤ i ≤ n, 0 ≤ j < |G|}: pi(t) is a monic polynomial of degree |G|
and has xi as a root, so x

|G|
i can be rewritten as a linear combination of lower powers of xi

with coefficients in B. Next, AG is a B-submodule of A, and hence by noetherianity, it is
also a finitely generated B-module. The set of these B-module generators together with the
generators for B as an algebra then give a set of algebra generators for AG. �

For any integral domain R, we let Frac(R) denote its field of fractions.

Proposition 3.6. We have Frac(AG) = Frac(A)G. In particular, if G acts faithfully on V ,
then Frac(A) is a degree |G| extension over Frac(AG). The transcendence degree of Frac(AG)
is n.

Proof. It is clear that Frac(AG) ⊆ Frac(A)G. For the other inclusion, suppose that p/q ∈
Frac(A)G with p, q ∈ A. Let p′ =

∏
g∈G, g 6=1 gp. Then p/q = pp′

qp′
and pp′ is G-invariant.

Hence qp′ is also G-invariant, so p/q ∈ Frac(AG).
In particular, Frac(A) is a degree |G| extension over Frac(AG). The last statement follows

from the fact that Frac(A) has transcendence degree n, and that it is constant for finite
extensions. �

3.4. Chevalley’s theorem. We say that g ∈ GLn(C) is a (complex) reflection if rank(g−
I) = 1 and g has finite order. Throughout, W ⊂ GLn(C) is a finite group generated by
reflections and A = C[x1, . . . , xn].

Lemma 3.7. Let f1, . . . , fk ∈ AW be homogeneous polynomials with f1 not in the ideal of
AW generated by f2, . . . , fk. Suppose that we have homogeneous polynomials h1, . . . , hk ∈ A
and a linear relation

f1h1 + · · ·+ fkhk = 0.(3.7a)
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Then h1 ∈ I.

Proof. We prove this by induction on deg h1. If deg h1 = 0, then h1 is a constant. Apply #
to get

h1f1 = −(f2h
#
2 + · · ·+ fkh

#
k ),

If h1 6= 0, this contradicts our assumption that f1 is not in the ideal of AW generated by
f2, . . . , fk. Hence we conclude that h1 = 0 ∈ I.

Now assume that deg h1 > 0. Let s ∈ W be a reflection and let `s be a nonzero linear
equation defining its fixed hyperplane. For each i, shi−hi is identically 0 on this hyperplane,
and hence shi−hi = h′i` for some homogeneous polynomial h′i (extend {`} to a basis for the
linear polynomials and write shi − hi as a polynomial in these basis elements; the condition
is that this polynomial is identically 0 when we substitute ` = 0). If we apply s to (3.7a),
we get f1(sh1) + · · ·+ fk(shk) = 0, and their difference gives

`(f1h
′
1 + · · ·+ fkh

′
k) = 0.

Since A is an integral domain, we conclude that f1h
′
1 + · · · + fkh

′
k = 0. Next, deg h′1 =

deg h1−1, so by induction, we conclude that h′1 ∈ I and hence sh1−h1 ∈ I or that sh1 ≡ h1
(mod I). This last statement holds for each reflection, which means that gh1 ≡ h1 (mod I)

for all g ∈ W . Unpacking the definition of #, we see that h#1 ≡ h1 (mod I). Finally,

h#1 ∈ AW ⊂ I, which means that h1 ∈ I. �

Lemma 3.8. If f is a homogeneous polynomial in x1, . . . , xn, then

n∑
i=1

xi
∂f

∂xi
= (deg f)f.

Proof. If f = xp11 · · ·xpnn , then the left side is
∑n

i=1 pif , which is (deg f)f . By linearity, the
equation is true for any sum of monomials of the same total degree. �

Theorem 3.9 (Chevalley). AW has a generating set consisting of n algebraically independent
homogeneous elements.

Proof. As in Proposition 3.4, let I be the ideal of A generated by AW . Let f1, . . . , fk ∈ AW
be a minimal set of positive degree homogeneous elements that generate I. Then f1, . . . , fk
generate AW as a C-algebra, and our goal is to show that they are algebraically independent.
Let y1, . . . , yk be new indeterminates with deg(yi) = deg(fi), and define a ring homomor-
phism

ψ : C[y1, . . . , yk]→ AW

ψ(h(y1, . . . , yk)) = h(f1, . . . , fk).

Then f1, . . . , fk are algebraically independent if and only if kerψ = 0. Suppose otherwise.
Since ψ preserves degrees, kerψ is a homogeneous ideal; pick homogeneous nonzero h ∈ kerψ
of minimal degree (it must have positive degree). Apply ∂

∂xi
to h(y1, . . . , yk) = 0 and the

chain rule to get (hj = ∂h
∂yj

(f1, . . . , fk))

k∑
j=1

hj
∂fj
∂xi

= 0.
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Renumber the h1, . . . , hk if necessary so that h1, . . . , hm is a minimal generating set for
the ideal in AW that they generate. Since h has positive degree, there exists j such that
∂h
∂yj
6= 0. By minimality of deg h, this derivative is not in kerψ, so m > 0. In particular,

for m + 1 ≤ j ≤ k, we can write hj =
∑m

a=1 αj,aha for homogeneous αj,a ∈ AW with
degαj,a = deg hj − deg ha = deg fa − deg fj if it is nonzero. So we can rearrange the above
equation to get an expression of the form

m∑
j=1

hjpi,j = 0, pi,j =
∂fj
∂xi

+
k∑

b=m+1

αb,j
∂fb
∂xi

.

By Lemma 3.7, we have pi,1 ∈ I for each i. In other words, pi,1 is a homogeneous linear
combination of the fi. Then the following element is also in I (we use Lemma 3.8):

n∑
i=1

xipi,1 =
n∑
i=1

xi
∂f1
∂xi

+
k∑

b=m+1

αb,1

n∑
i=1

xi
∂fb
∂xi

= (deg f1)f1 +
k∑

b=m+1

(deg fb)αb,1fb,

and is a homogeneous linear combination of the fi:

(deg f1)f1 +
k∑

b=m+1

(deg fb)αb,1fb =
k∑
j=1

βjfj.

All of the terms on the left side are homogeneous of degree f1. On the right side, if β1 6= 0,
then deg β1 > 0 (since the expression is also equal to

∑n
i=1 xipi,1), so deg(β1f1) > deg f1,

so it must cancel with some other terms in the sum. Once we remove those terms, we can
rearrange the above equation to write f1 as a linear combination of f2, . . . , fk, which contra-
dicts that they are a minimal set of generators. This shows that f1, . . . , fk are algebraically
independent.

Since the transcendence degree of AW is n (Proposition 3.6), we must have n = k. �

The generators need not be unique (for example, W could be trivial, in which case taking
any basis for the linear polynomials works), but their degrees are since they are encoded into
the Hilbert series: if deg fi = di, then HAW (t) =

∏
i(1− tdi)−1.

Theorem 3.10. Let G ⊂ GLn(C) be a finite group and assume that AG is generated by an
algebraically independent set of homogeneous elements f1, . . . , fn and let di = deg fi. Let T
be the set of reflections in G.

Then d1 · · · dn = |G| and d1 + · · ·+ dn = |T |+ n.

Proof. Since AG is generated by algebraically independent elements of degrees d1, . . . , dn, its
Hilbert series is

n∏
i=1

1

1− tdi
= HAG(t) =

1

|G|
∑
g∈G

1

det(1− ρ(g)t)
,

where the second equality follows from Molien’s formula (Theorem 3.3). For the right side,
since det(1− ρ(g)t) factors as

∏
(1− ζit) where ζi are the eigenvalues of ρ(g), this is (1− t)n

for g = 1, it is (1 − t)n−1(1 − ωgt) for a root of unity ωg 6= 1 if g ∈ T , and otherwise is not
divisible by (1− t)n−1. Hence, we multiply both expressions for HAG(t) by (1− t)n, we get

n∏
i=1

1

1 + t+ · · ·+ tdi−1
=

1

|G|
(1 +

∑
g∈T

1− t
1− ωgt

+ (1− t)2F (t))
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where F (t) is a rational function whose denominator is nonzero at t = 1. Now set t = 1 to
get

∏n
i=1 d

−1
i = 1/|G|, or d1 · · · dn = |G|.

Next, take the derivative with respect to t of the above identity to get

−

(
n∏
i=1

1

1 + t+ · · ·+ tdi−1

)
n∑
i=1

1 + 2t+ · · ·+ (di − 1)tdi−2

1 + t+ · · ·+ tdi−1
=

1

|G|
∑
g∈T

ωg − 1

(1− ωgt)2
+H(t).

where H(t) = d
dt

(1− t)2F (t) satisfies H(1) = 0. Next, set t = 1 to get

− 1

d1 · · · dn

n∑
i=1

di(di − 1)/2

di
= − 1

|G|
∑
g∈T

1

1− ωg
.

If g ∈ T has order r, then g, g2, . . . , gr−1 ∈ T and ωgi = ωig. By Lemma 3.11, their contribu-

tion to the sum is r−1
2

. In particular, by grouping together terms based on the cyclic group
that they generate, we see that the sum is |T |/2. Using |G| = d1 · · · dn, we conclude that∑n

i=1(di − 1) = |T |. �

Lemma 3.11. Let ω be a primitive rth root of unity. Then

r−1∑
i=1

1

1− ωi
=
r − 1

2
.

Proof. Define f(x) =
∏r−1

i=1 (x− ωi). Using the product rule for derivatives,

f ′(x)

f(x)
=

r−1∑
i=1

1

x− ωi
.

Now substitute x = 1. Since f(x) = 1 + x + · · · + xr−1, we have f(1) = r and f ′(1) =∑r−1
i=1 i = r(r − 1)/2, so the result follows. �

Theorem 3.12 (Shephard–Todd). Let G ⊂ GLn(C) be a finite group and suppose that AG

is generated by algebraically independent elements. Then G is generated by reflections.

Proof. Let T ⊂ G be the set of reflections and let H ⊂ G be the subgroup generated by T .
By Theorem 3.9, AH has a set of algebraically independent generators. Let d1 ≤ · · · ≤ dn be
the degrees of the generators for AG and let e1 ≤ · · · ≤ en be the degrees of the generators
for AH . Since AG ⊆ AH , we must have ei ≤ di for all i (the first i generators of AG are
elements of AH and hence require at least i of the generators of AH to be generated).

By Theorem 3.10, we have

d1 + · · ·+ dn = |T |+ r = e1 + · · ·+ en,

so ei ≤ di cannot be strict for any i. But then |H| = e1 · · · en = d1 · · · dn = |G|, so G = H is
generated by T . �

3.5. Coinvariant ring. As before, W is a reflection group and we let I be the ideal in A
generated by AW . The coinvariant ring is the quotient A/I. Pick a homogeneous basis {vi}
for A/I as a vector space and pick homogeneous representatives vi for vi + I.

Lemma 3.13. The vi form a basis for A as an AW -module.



32 STEVEN V SAM

Proof. Let f ∈ A be an element. We claim that it is in the AW -module spanned by the vi.
It suffices to handle the case when f is homogeneous, and then we will prove the claim by
induction on deg f . The base case deg f = 0 is clear, so assume deg(f) > 0.

Let f be its image in A/I. Then by definition, we can find scalars such that f =
∑

i civi.
Hence f −

∑
i civi ∈ I, so we can write it as

∑
j hjfj where fj are the basic invariants

and the hj are homogeneous. The expression
∑

i civi is homogeneous of the same degree
as f , so deg(hj) + deg(fj) = deg(f) for all j, and in particular, deg(hj) < deg(f) for all
j. By induction, each hj is spanned by the vi with coefficients in AW . Substituting these
expressions shows that f is also spanned by the vi with coefficients in AW .

Now we claim that if u1, . . . , um ∈ A are homogeneous such that their images in A/I
are linearly independent, then u1, . . . , um are linearly independent over AW . We prove this
by induction on m, with the case m = 1 being clear. If u1, . . . , um are dependent over
AW , then we have an expression of the form h1u1 + · · · + hmum = 0 for hi ∈ AW . By
Lemma 3.7, since u1 /∈ I, it must be that h1 is in the AW ideal generated by h2, . . . , hm, i.e.,
h1 = α2h2 + · · ·+ αmhm with αi ∈ AW . But then we have

h2(u2 + α2u1) + · · ·+ hm(um + αmu1) = 0.

Since αiu1 ∈ I, the images of u2 + α2u1, . . . , um + αmu1 are linearly independent, so by
induction h2 = · · · = hm = 0, and hence h1 = 0. �

Corollary 3.14. A/I is a vector space of dimension |W | and A is a free AW -module of rank
|W |. Furthermore, A/I is isomorphic to the regular representation of W .

Proof. From the last result, dim(A/I) = rankAW A. If A is a free AW -module of rank N ,
then by tensoring with Frac(AW ), we see that A⊗ Frac(AW ) is a dimension N vector space
over Frac(AW ). We claim that A⊗Frac(AW ) = Frac(A). First, by Proposition 3.6, Frac(A)
is a degree |W | extension over Frac(AW ). Hence if f ∈ A, then 1/f satisfies a (monic)
polynomial equation with coefficients in Frac(AW ), say

(1/f)n + an−1(1/f)n−1 + · · ·+ a0 = 0.

Multiplying by fn−1, we see 1/f = −(an−1 + · · · + a0f
n−1). Since the ai and f belong to

A⊗ Frac(AW ), we conclude that 1/f does too, which shows that A⊗ Frac(AW ) = Frac(A).
Again using Proposition 3.6, we see that N = |W |.

For the last statement, pick a basis v1, . . . , vN for A/I and lift them to representatives
v1, . . . , vN ∈ A. After inverting AW , this gives a basis for Frac(A) as a Frac(AW )-vector
space. Now we appeal to the normal basis theorem in Galois theory [L, §VI.13] which says
that Frac(A) is a regular representation of W as a vector space over Frac(A)W = Frac(AW ).
This tells us that the trace of any non-identity element of W is 0, and so the same is true if
we reduce modulo I. So we see that A/I is a regular representation (Proposition 2.3). �

Corollary 3.15. Let di = deg(fi). Then

HA/IW (t) =
HA(t)

HAW (t)
=

n∏
i=1

1− tdi
1− t

=
n∏
i=1

(1 + t+ · · ·+ tdi−1).

Proof. Corollary 3.14 implies that

HA/IW (t)HAW (t) = HA(t),

so the result follows from HAW (t) =
∏n

i=1(1− tdi)−1 and HA(t) =
∏n

i=1(1− t)−1. �



NOTES FOR MATH 264C (SPRING 2021) 33

Remark 3.16. In commutative algebra terminology, the fact that A/I is finite-dimensional
means that f1, . . . , fn form a system of parameters. Any system of parameters in a polyno-
mial ring (more generally, for any Cohen–Macaulay ring) is automatically a regular sequence,
which implies the Hilbert series formula for A/I that we just obtained. �

3.6. Jacobian. For any polynomials h1, . . . , hn, we define the Jacobian by

J = J(h1, . . . , hn) = det

(
∂hi
∂xj

)
i,j=1,...,n

= det

(
∂hj
∂xi

)
i,j=1,...,n

.

While this depends on the choice of basis x1, . . . , xn, a change of coordinates only changes
J by a scalar (the determinant of the change of coordinates).

Lemma 3.17. h1, . . . , hn are algebraically independent if and only if J(h1, . . . , hn) 6= 0.

Proof. First suppose that the hi are algebraically dependent. Hence we can find a nonzero
polynomial in new variables F (y1, . . . , yn) such that F (h1, . . . , hn) = 0. Pick F so that it
has smallest possible degree with this property. For each j, using the chain rule, we have

0 =
∂

∂xj
F (h1, . . . , hn) =

n∑
i=1

∂F

∂yi
(h1, . . . , hn)

∂hi
∂xj

.

In particular, we have(
∂F
∂y1

(h1, . . . , hn) · · · ∂F
∂yn

(h1, . . . , hn)
)(∂hi

∂xj

)
i,j=1,...,n

= 0

Since F is not constant, at least one of its partial derivatives is nonzero. By minimality of
degF , for each of these nonzero derivatives, we have ∂F

∂xj
(h1, . . . , hn) 6= 0. Hence we see that

J = 0.
Now suppose that h1, . . . , hn are algebraically independent. By considering transcendence

degree, the maximal number of algebraically independent polynomials is n. So for each i,
the set xi, h1, . . . , hn is algebraically dependent. For each i, we let Fi be a polynomial in new
variables y0, . . . , yn of minimal degree such that Fi(xi, h1, . . . , hn) = 0. For each j, we have

0 =
∂

∂xk
Fi(xi, h1, . . . , hn) =

∂Fi
∂y0

(xi, h1, . . . , hn)δi,j +
n∑
k=1

∂Fi
∂yk

(xi, h1, . . . , hn)
∂hk
∂xj

.

Combining these gives a matrix identity(
∂Fi
∂yj

(xi, h1, . . . , hn)

)
i,j=1,...,n

(
∂hi
∂xj

)
i,j=1,...,n

= −
(
∂Fi
∂y0

(xi, h1, . . . , hn)δi,j

)
i,j=1,...,n

.

Since the hi are algebraically independent, Fi is a positive degree polynomial with respect to
y0 for each i. In particular, ∂Fi

∂y0
6= 0 and hence ∂Fi

∂y0
(xi, h1, . . . , hn) 6= 0 by minimality of degFi,

so the matrix on the right side is a diagonal matrix with nonzero entries. In particular, by
taking determinants of both sides, we see that J 6= 0. �

We continue the same notation, soW ⊂ GLn(C) is a finite reflection group and f1, . . . , fn ∈
A = C[x1, . . . , xn] are generators for AW .

We let J = J(f1, . . . , fn), which is nonzero by the previous lemma and is homogeneous of
degree

∑n
i=1(deg(fi)− 1).



34 STEVEN V SAM

Example 3.18. Consider W = Sn acting on {x ∈ Cn | x1 + · · · + xn = 0}. Then the
basic invariants can be taken to be the (normalized) power sums 1

d

∑n
i=1 x

d
i . In that case,

the Jacobian is the usual Vandermonde determinant

J = det
(
xi−1j

)
i,j=1,...,n

=
∏
i<j

(xj − xi).

The solutions to J(x) = 0 consist of the union of the reflection hyperplanes. This is a general
fact to be proven next. �

3.7. Solomon’s theorem. We now consider the algebra of differential forms in x1, . . . , xn
with coefficients in A. Algebraically, if V is the span of x1, . . . , xn, this is the ring Sym(V )⊗∧

(V ) where E =
∧

(V ) denotes the exterior algebra of V , so we denote this algebra by
A ⊗ E. Concretely, this is an algebra over A, with multiplication denoted ∧, generated by
symbols dxi subject to the relations dxi ∧ dxj = −dxj ∧ dxi. In particular, A⊗ E is a free
A-module of rank 2n with basis given by dxi1 ∧ · · · ∧ dxir with 1 ≤ i1 < · · · < ir ≤ n. We
will denote this element by dxI where I = {i1, . . . , ir}.

There is a bigrading on A⊗E where an element hdxI , with h homogeneous, has bidegree
(deg h, |I|). Given a bigraded vector space M , we denote the bidegree (d, e)-component by
Md,e and define a bigraded Hilbert series by

HM(t, u) =
∑
d,e

(dimMd,e)t
due.

In particular,

HA⊗E(t, u) = HA(t, u)HE(t, u) =

(
1 + u

1− t

)n
.

We will extend the differential notation to make it linear, i.e., d(u + v) = du + dv. The
action of g ∈ W is given by

g
∑
I

hIdxI =
∑
I

ghIdgxi1 ∧ · · · ∧ dgxir .

Our goal in this section is to understand (A⊗ E)W .
A basic, but important, observation is that for polynomials hi,j with i, j = 1, . . . , n, we

have

(3.19) (
∑
i

hi,1dx1) ∧ · · · ∧ (
∑
i

hi,ndxn) = det(hi,j)dx1 ∧ · · · ∧ dxn.

In particular, for g ∈ GLn(C), we have g(dx1 ∧ · · · ∧ dxn) = (det g)dx1 ∧ · · · ∧ dxn.
For a general polynomial h, we define

dh =
n∑
i=1

∂h

∂xi
dxi.

This satisfies the product rule:

d(h1h2) = h1dh2 + h2dh1.

Lemma 3.20. For any g ∈ GLn(C), we have gdh = d(gh).
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Proof. Next, if it holds for h1 and h2, then by the product rule it holds for h1h2:

gd(h1h2) = g(h1dh2+h2dh1) = gh1g(dh2)+gh2(gdh1) = gh1d(gh2)+gh2d(gh1) = d(g(h1h2)).

Since the statement holds for h = xi by definition, by induction on degree, and what we just
said, it then holds when h is a monomial. Finally, if it holds for h1 and h2 it also holds for
h1 + h2, so it holds for all polynomials. �

We say that h ∈ A is a skew-invariant if gh = (det g)−1h (where det is defined using
that G is a subgroup of GLn(C)) for all g ∈ W .

For each reflection hyperplane H, consider the subgroup WH of reflections that fix H. Let
rH be its order and let `H be a linear equation whose solution set is H.

Proposition 3.21. (1) J is a skew-invariant.
(2) J is a nonzero scalar multiple of

∏
H `

rH−1
H .

(3) Every skew-invariant is of the form hJ for some h ∈ AW .

Proof. Use (3.19) with hi,j =
∂fj
∂xi

to get

df1 ∧ · · · ∧ dfn = Jdx1 ∧ · · · ∧ dxn.

For each i, dfi is a W -invariant by Lemma 3.20. Hence both sides are W -invariant. For the
right side, we have for g ∈ W :

g(Jdx1 ∧ · · · ∧ dxn) = (gJ)(det g)dx1 ∧ · · · ∧ dxn.

Hence (det g)(gJ) = J which implies that J is a skew-invariant, and proves (1).
Now suppose that F is an arbitrary skew-invariant. Given H, do a linear change of

coordinates to variables y1, . . . , yn so that y1 = `H and y2, . . . , yn are fixed by WH . Then
for a generator g ∈ WH , we have gF = (det g)−1F but also gyp11 · · · ypnn = (det g)p1yp11 · · · ypnn
where det g is a primitive rHth root of unity. This implies that F is divisible by `rH−1H . In
particular, every skew-invariant is divisible by

∏
H `

rH−1
H .

Now note that deg J =
∑n

i=1(di− 1), which is the number of reflections by Theorem 3.10,

which can also be written
∑

H(rH − 1), so that J and
∏

H `
rH−1
H have the same degree. So,

using the previous paragraph, we conclude that (2) holds. This also implies (3). �

Theorem 3.22 (Solomon). The ring of invariants (A⊗E)W is freely generated as an exterior
algebra over AW by df1, . . . , dfn. In other words, every element is uniquely of the form∑

I hIdfI where hI ∈ AW and dfI = dfi1 ∧ · · · ∧ dfir and i1 < · · · < ir are the elements of I.

Proof. We prove the statement in the second form. First, we prove uniqueness, i.e., if∑
I hIdfI = 0, then hI = 0 for all subsets I. We can break this relation into its homogeneous

components with respect to the dxI , and assume that all I have size p for some fixed p. For
a given subset I, let Ic = [n]\I and multiply the expression by dfIc . Note that dfI∧dfJ = 0
if I ∩ J 6= ∅ and is ±Jdx[n] otherwise. Since J 6= 0, we conclude that hI = 0 for each I.

Next, we need to show that every element ω ∈ (A⊗E)W is of the form that we specified.
Again, we may assume that ω is homogeneous in the dxi. We have (A⊗E)W ⊂ Frac(A)⊗E,
and the argument above also shows that the elements dfI are linearly independent over
Frac(A). Since the exterior algebra has dimension 2n, this also shows that the dfI form a
basis. So we can write ω =

∑
I cIdfI with cI ∈ Frac(A). Now we average over the elements

of W :

ω =
1

|W |
∑
I

(
∑
g∈W

gcI)dfI =
∑
I

sI
tI

dfI
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where sI , tI ∈ A and sI/tI = 1
|W |
∑

g∈W gcI ∈ Frac(A)W . Multiply by dfIc to get

±cIJdx[n] = ω ∧ dfIc = ±sI
tI
Jdx[n].

Since ω ∈ A ⊗ E, we must have cIJ ∈ A. The right side is W -invariant, and hence so
is the left side. This implies that cIJ is a skew-invariant, and hence is divisible by J by
Proposition 3.21. In particular, cI ∈ AW , so we are done. �

Corollary 3.23. The bigraded Hilbert series of (A⊗ E)W is

H(A⊗E)W (t, u) =
n∏
i=1

1 + utdi−1

1− tdi
.

Let ep(x1, . . . , xn) =
∑

1≤i1<···<ip≤n xi1 · · · xip .

Theorem 3.24. ep(d1 − 1, . . . , dn − 1) is the number of g ∈ W such that the eigenvalue 1
has multiplicity exactly n− p.

Proof. By adapting the proof of Molien’s formula, we can show that

H(A⊗E)W (t, u) =
1

|W |
∑
g∈W

det(1 + ρV (g)u)

det(1− ρV (g)t)
.

Combining this with Corollary 3.23 gives
n∏
i=1

1 + utdi−1

1− tdi
=

1

|W |
∑
g∈W

det(1 + ρV (g)u)

det(1− ρV (g)t)
.

For each p, equating the coefficients of up on both sides gives (let ω1(g), . . . , ωn(g) be the
eigenvalues of g)

ep(t
d1−1, . . . , tdn−1)∏n
i=1(1− tdi)

=
1

|W |
∑
g∈W

ep(ω1(g), . . . , ωn(g))

(1− ω1t) · · · (1− ωnt))
.

Next, let e′p(x1, . . . , xn) = ep(1− x1, . . . , 1− xn); by expanding its terms, we see that it is a
linear combination of e0(x), . . . , ep(x). In particular, since the above formula is valid for all
p, we can replace the ep in the numerator with e′p and get another identity

ep(1− td1−1, . . . , 1− tdn−1)∏n
i=1(1− tdi)

=
1

|W |
∑
g∈W

ep(1− ω1(g), . . . , 1− ωn(g))

(1− ω1t) · · · (1− ωnt)
.

Now multiply both sides by (1−t)n−p and set t = 1. For the left side (set [d] = (1−td)/(1−t)),
by pulling out (1− t)p from each term in the numerator, we get:

(1− t)n ep([d1 − 1], . . . , [dn − 1])∏n
i=1(1− tdi)

∣∣∣∣
t=1

=
ep([d1 − 1], . . . , [dn − 1])∏n

i=1[di]

∣∣∣∣
t=1

=
ep(d1 − 1, . . . , dn − 1)

|W |
where in the last equality, we used d1 · · · dn = |W | (Theorem 3.10).

For the right side, consider each summand. If the multiplicity of the eigenvalue 1 for
g is greater than n − p, then ep(1 − ω1(g), . . . , 1 − ωn(g)) = 0. If it is less than n − p,
then (1 − t)n−p/((1 − ω1t) · · · (1 − ωnt)) evaluated at t = 1 is 0. If it is exactly n − p,
then ep(1−ω1(g), . . . , 1−ωn(g)) = (1−ω1(g)) · · · (1−ωp(g)) where ω1(g), . . . , ωp(g) are the
eigenvalues different from 1. Hence the summand is 1, and we see that the right hand side
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is simply 1/|W | times the number of g such that the multiplicity of 1 as an eigenvalue is
n− p. �

Remark 3.25. When p = 1 in the theorem, e1(d1−1, . . . , dn−1) =
∑

i(di−1) is the number
of reflections, i.e., the number of elements that have 1 as an eigenvalue with multiplicity n−1,
so this includes our previous formula. Also, note that

d1 · · · dn = ((d1 − 1) + 1) · · · ((dn − 1) + 1) =
n∑
p=0

ep(d1 − 1, . . . , dn − 1)

which the theorem says is |W |, so it also recovers that formula. �

3.8. Spherical Coxeter complex. We now restrict to the case that W is a Coxeter group
and show that the Hilbert series of A/I gives the Poincaré series W (t).

First we identify the fundamental domain from §1.8. Recall that if V is the geometric
representation of W , then this is defined by

D = {f ∈ V ∗ | f(αs) ≥ 0 for all s ∈ S}.

By Proposition 2.11, the bilinear form BW is nondegenerate and hence defines an isomor-
phism V → V ∗ via v 7→ BW (v,−). The inverse image of D is then (we also call it D)

D = {v ∈ V | BW (v, αs) ≥ 0 for all s ∈ S}.

We call this the fundamental chamber.

Proposition 3.26. The union of the W -translates of D is all of V .

Proof. Let I ⊆ S be a subset. Let wI,0 ∈ WI be the maximal length element, as in
Lemma 1.33. Then wI,0αs is negative for all s ∈ I and otherwise wI,0αs = αs. In par-
ticular,

wI,0D = {v ∈ V | BW (v, αs) ≤ 0 for all s ∈ I and BW (v, αs) ≥ 0 for all s /∈ I}.

and the union over all subsets I is all of V . �

These translates will be called chambers. Each one is homeomorphic to the non-negative
orthant in Rn. Each subset I ⊆ S gives a face DI of D, given by

DI = {v ∈ D | BW (v, αs) = 0 for all s ∈ I}.

Now consider the (n−1)-dimensional sphere Sn−1 = {v ∈ V | BW (v, v) = 1} and intersect
with the W translates of the DI . This gives a triangulation of Sn−1 by simplices, which
is the spherical Coxeter complex. We will now make use of some basic facts about
(reduced) homology. (The conclusion below can be obtained without using any topology,
see [H1, §1.16]. However, I think it is more natural to just appeal to some topology.) The
triangulation gives us a chain complex F• that computes the reduced homology of Sn−1 where
Fi (for i = −1, . . . , n− 1) is the Q-vector space with basis given by W translates of DI with
|I| = n − i − 1 (i.e., the i-dimensional faces). The (rational) reduced homology of Sn−1 is
given by

H̃i(S
n−1; Q) =

{
Q if i = n− 1

0 else
.
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Proposition 3.27. As class functions on W , we have

det =
∑
I⊆S

(−1)|I|1 ↑WWI
.

Proof. Since the triangulation is W -invariant, each w gives a chain map w : F• → F•, and
the Hopf trace formula tells us that

(−1)n−1 Tr(w | H̃n−1(S
n−1; Q)) =

n−1∑
i=−1

(−1)i Tr(w | Fi).

Since w is an orthogonal matrix, it acts trivially on H̃n−1(S
n−1; Q) if and only if it is

orientation-preserving and by −1 otherwise. In other words, the trace is simply detw.
Next, Fi is a permutation representation on the set of i-dimensional faces. There is one

orbit for each subset I ⊆ S with |I| = n − i − 1, and the DI are representatives. By
Theorem 1.31, the stabilizer of DI is WI . So by Example 2.4, we see that

Tr(w | Fi) =
∑

I, |I|=n−i−1

1 ↑WWI
(w).

Combining all of this gives the desired formula. �

Recall the definition of the Poincaré series from §1.9

W (t) =
∑
w∈W

t`(w).

As before, we let A = C[x1, . . . , xn] with the action of W by linear change of coordinates.
The action of W on Cn is isomorphic to the complexification of V ∗ ∼= V .

Let AW,ε denote the submodule of skew-invariants of A. By Proposition 3.21, this is a free
AW -module of rank 1 with its generator in degree

∑n
i=1(di − 1). By Theorem 3.10, this is

the number of reflections of W , which is also the number of positive roots, and hence `(w0).
So

HAW,ε(t) =
t`(w0)∏n

i=1(1− tdi)
.

Theorem 3.28. If W is a finite Coxeter group, then

W (t) = HA/IW (t) =
n∏
i=1

1− tdi
1− t

.

Proof. Define QW (t) = HA/IW (t) =
∏n

i=1
1−tdi
1−t .

By Frobenius reciprocity (Theorem 2.5), we have dimAWI
d = 〈1 ↑WWI

, char(Ad)〉W . In
particular, using Proposition 3.27, we get∑

I⊆S

(−1)|I|HAWI (t) =
∑
I⊆S

(−1)|I|
∑
d≥0

〈1 ↑WWI
, char(Ad)〉W td

=
∑
d≥0

〈det, char(Ad)〉W td = HAW,ε(t)

=
t`(w0)∏n

i=1(1− tdi)
=

t`(w0)

(1− t)nQW (t)
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If |I| = p, then the restriction of the geometric representation of W to WI is isomorphic to
the geometric representation of WI direct sum a copy of a trivial representation of dimension
n − p. Hence if d′1, . . . , d

′
p are the degrees of the basic invariants of WI on its geometric

representation, then 1, . . . , 1, d′1, . . . , d
′
p are the degrees of the basic invariants of WI on Cn,

and so

HAWI (t) =
1

(1− t)n−p
∏p

i=1(1− td
′
i)

=
1

(1− t)nQWI
(t)
.

Hence, after multiplying both sides by (1− t)nQW (t), the first equation above becomes∑
I⊆S

(−1)|I|
QW (t)

QWI
(t)

= t`(w0).

Now we prove the result by induction on |S|. The case |S| = 0 is clear: W (t) = 1 = QW (t).
If |S| > 0, we have

t`(w0) − (−1)|S|

W (t)
=
∑
I$S

(−1)|I|

WI(t)
=
∑
I$S

(−1)|I|

QWI
(t)

=
t`(w0) − (−1)|S|

QW (t)
,

the first equality follows from (1.35), the second equality follows by induction since |I| < |S|,
and the third follows from the identity we just proved. Hence W (t) = QW (t). �

Remark 3.29. We previously showed by direct calculation that the Poincaré series of W =
Sn is

∏n
i=2

1−ti
1−t . This is consistent with the above result since the degrees of the invariants

of Sn on Cn are 1, . . . , n (we could also use {x ∈ Cn | x1 + · · ·+ xn = 0} in which case the
degrees are 2, . . . , n). �

We will see later how to get a closed form formula for W when its Coxeter graph is
positive semidefinite (the affine Weyl groups). This will make use of Solomon’s theorem and
the “toroidal Coxeter complex”, in which we get a triangulation of a torus rather than a
sphere.

3.9. Examples. We start with a useful fact which gives an easy way to check that polyno-
mials are algebraically independent.

Lemma 3.30. Let h1, . . . , hn be homogeneous polynomials such that h1(α) = · · · = hn(α) = 0
implies that α = 0, i.e., there is no nontrivial solution to the hi. Then the hi are algebraically
independent.

Proof. We just provide a sketch. Let I be the ideal generated by the hi. Using the Hilbert
Nullstellensatz, the condition on the hi implies that the radical of I is the ideal generated
by the variables. This implies that A/I is a finite-dimensional C-vector space. If we pick
a basis and consider their preimages in A, then they give generators for A as a module
over C[h1, . . . , hn]. Hence the fraction field of A is a finite extension of the fraction field
of C[h1, . . . , hn], so the latter has transcendence degree n over C and hence the hi are
algebraically independent. �

The condition on the hi is strictly stronger than being algebraically independent. For
example, x2, xy are algebraically independent but have a nontrivial solution (0, 1). However,
it will be easier to check than showing that the Jacobian is nonzero for our examples.
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We will use one other fact, essentially proven in Theorem 3.12: if h1, . . . , hn ∈ AW are
homogeneous and algebraically independent and (deg f1) · · · (deg fn) = |W |, then the hi
generate AW .

Example 3.31. A large source of reflection groups is the family called G(m, p, n) where
m, p, n are positive integers such that p divides m. First, for p = 1, this is the subgroup
of n × n matrices such that each row and entry has exactly one nonzero entry, that each
nonzero entry is an mth root of unity. Then |G(m, 1, n)| = n!mn. For general p, G(m, p, n)
the subgroup where the product of the nonzero entries is an (m/p)th root of unity. Then
|G(m, 1, n)| = n!mn/p. We claim this is generated by reflections (let ω be a primitive mth
root of unity). When p = 1: we can take as a set of generators the adjacent transpositions
in Sn together with the diagonal matrix whose entries are ω, 1, . . . , 1. If p = m, we replace

that last matrix by the block sum of

(
0 ω
ω−1 0

)
with an identity matrix of size n − 2. For

general p, G(m, p, n) is generated by G(m,m, n) together with the diagonal matrix whose
entries are ωp, 1, . . . , 1. To see that this is correct, note that G(m, p, n) is generated by
permutation matrices together with diagonal matrices whose entries are ωa1 , . . . , ωan such
that ai ∈ Z/m and

∑
i ai = 0 (mod p). The group G(m,m, n) already contains the diagonal

matrices satisfying
∑

i ai = 0 (mod m), so any diagonal matrix in G(m, p, n) differs by a
diagonal matrix in G(m,m, n) by a power of the new generator we added.

These are usually irreducible, but not always. For example, G(1, 1, n) ∼= Sn acting on Cn,
which is not its geometric representation since there is an extra trivial factor. Almost all
of the irreducible reflection groups are one of the G(m, p, n) (there are 34 exceptions, which
were classified by Shephard–Todd [ST]).

This group is a Coxeter group in a few cases:

• When m = 1, we get the symmetric group Sn.
• When m = 2 and p = 1, we get the Coxeter groups of type Bn.
• When m = p = 2, we get the Coxeter groups of type Dn.
• When m = p and n = 2, we get the dihedral groups I2(m).

Now we describe generators for the invariant ring. We start with Sn ∼= G(1, 1, n).
In that case, define ep(x1, . . . , xn) =

∑
i1<···<ip xi1 · · · xip as before. They are clearly Sn-

invariant. Note that
n∑
i=0

(−1)pep(x)tn−p = (t− x1) · · · (t− xn),

so that ep(α) = 0 for all p if and only if α = 0. So e1, . . . , en are algebraically independent
and the product of their degrees is n! = |Sn|, which means they generate.

Now consider G(m, 1, n) in general. We now consider the polynomials ep(x
m
1 , . . . , x

m
n ),

which are clearly G(m, 1, n)-invariant. If we had a nonzero solution for these polynomials,
by extracting mth roots we would get a nonzero solution for the original e1, . . . , en. Hence
they are algebraically independent. The product of their degrees is now mnn! = |G(m, 1, n)|,
so they generate the ring of invariants.

Finally, forG(m, p, n), we take ep(x
m
1 , . . . , x

m
n ) for p = 1, . . . , n−1 and en(x

m/p
1 , . . . , x

m/p
n ) =

(x1 · · ·xn)m/p. Again, these are G(m, p, n)-invariant, and algebraically independent and the
product of their degrees is |G(m, p, n)| so they generate the ring of invariants. �

There are 34 additional irreducible complex reflection groups, numbered 4 through 37
in the Shephard–Todd classification. The ones of rank 3 have interesting connections to
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projective plane geometry. We’ll describe a couple, see [D] for some more about reflection
groups and algebraic geometry.

Example 3.32. Group number 24 is closely related to the Klein quartic: this is the degree
4 equation

x3y + y3z + z3x = 0,

whose (projective) solution set is a Riemann surface of genus 3 in the projective plane.
Its automorphism group is of order 168 (the maximum possible size allowed by Hurwitz’s
bound) and is isomorphic to PSL2(F7), which is the group of determinant 1 2× 2 matrices
over Z/7 modulo the subgroup generated by −I. Then, precisely, group 24 is isomorphic
to Z/2 × PSL2(F7), and its invariants have degrees 4, 6, 14. The degree 4 invariant is the
Klein quartic and the degree 6 invariant is its Hessian (determinant of the second partial
derivatives). �

Example 3.33. For group 25, we consider the Hesse pencil. This is the family of cubic
curves (λ, µ are projective parameters):

λ(x30 + x31 + x32) + µx0x1x2 = 0.

Think of the indices as elements of Z/3 and let ω be a primitive 3rd root of unity. We have
two linear operators σ(xi) = xi+1 and τ(xi) = ωixi. They generate a nonabelian group H of
order 27 (they don’t commute, but their commutator is multiplication by ω), and group 25
N normalizes H and N/H ∼= SL2(F3). The size of the group is 648. (This is a more general
construction in the theory of level structures on abelian varieties.) Furthermore, there are 12
reflection planes, which are projectively lines. To obtain them: there are 4 values of [λ : µ]
for which the cubic curve above is singular, and in that case it is the union of 3 lines. This
gives the 12 lines we want. �

4. Affine Weyl groups

4.1. Affine representation. Consider a Coxeter group (Wa, Sa) associated with one of the
graphs in Proposition 2.17 and let Va be its geometric representation. We let n+1 = dimVa,
and pick an element s0 ∈ Sa so that the graph on S = Sa \ s0 is of type Xn if (Wa, Sa) is

of type X̃n. We know that the kernel of the bilinear form BWa is 1-dimensional, denote it
by V ⊥a = kerBWa . We let δ ∈ V ⊥a be the unique vector such that the coefficient of α0 is 1,
which is possible by Theorem 2.13.

Define

Z = {f ∈ V ∗a | f(δ) = 0},
E = {f ∈ V ∗a | f(δ) = 1}.

Then Z is a vector space and E is an affine space over Z, i.e., we have a simply transitive
action Z × E → E.

A map ϕ : E → E is an affine transformation if there exists a linear map ψ : Z → Z
(necessarily unique) such that ϕ(e + z) = ϕ(e) + ψ(z) for all e ∈ E and z ∈ Z. The set of
affine transformations forms a group under composition denoted Aff(E).

Lemma 4.1. Aff(E) ∼= {g ∈ GL(V ∗a ) | g(E) = E}.

Proof. First, suppose that g ∈ GL(V ∗a ) satisfies g(E) = E. Then for any e ∈ E and z ∈ Z,
we have g(e + z) = g(e) + g(z) by linearity, so g : E → E is affine. Conversely, suppose we
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have an affine transformation ϕ : E → E with corresponding linear map ψ : Z → Z. Pick a
basis v0, . . . , vn such that v0 = δ and let v∗0, . . . , v

∗
n be the dual basis for V ∗a . Then v∗1, . . . , v

∗
n

is a basis for Z and we define g ∈ GL(V ∗a ) by

g(c0v
∗
0 + · · ·+ cnv

∗
n) = c0ϕ(v∗0) + ψ(c1v

∗
1 + · · ·+ cnv

∗
n).

Then g(E) = E and its restriction to E is ϕ: any element of E is of the form v∗0 + v′ where
v′ is a span of v∗1, . . . , v

∗
n, and so g(v∗0 + v′) = ϕ(v∗0) + ψ(v′) = ϕ(v∗0 + v′). �

Since wδ = δ for all w by the formula for how each s ∈ Sa acts, w preserves both Z and
E and hence we get a homomorphism

Wa → Aff(E).

Via the identification of Aff(E) with a subgroup of GL(V ∗a ), we see that this homomorphism
is injective (since the same holds for the geometric representation).

Next, BWa descends to a positive definite form on Va/V
⊥
a (which we call BW ) and we have

an identification Z ∼= (Va/V
⊥
a )∗. Using BW , we also get an identification (Va/V

⊥
a )∗ ∼= Va/V

⊥
a

where f ∈ (Va/V
⊥
a )∗ is identified with the unique vector vf such that f(x) = BW (vf , x) for

all x ∈ Va/V ⊥a . In particular, we get a Wa-invariant positive definite form on Z.
For s ∈ Sa, define

Zs = {f ∈ V ∗a | f(αs) = 0}, Es = E ∩ Zs.
Since the coefficient of α0 in δ is nonzero, {αs | s ∈ S} ∪ {δ} is linearly independent. Hence
E ∩

⋂
s∈S Zs is a single point, call it e0. Explicitly, we have

e0(αs0) = 1, e0(αs) = 0 for s 6= s0.

We can identify Z with E via z 7→ e0 + z. We denote the inverse by e′ 7→ e′ − e0. This
identification allows us to transfer the form to E, call it BE.

Lemma 4.2. BE is invariant under (Wa)e0.

Proof. If w ∈ (Wa)e0 , i.e., we0 = e0, then for e′, e′′ ∈ E, we have

BE(we′, we′′) = BW (we′ − e0, we′′ − e0)
= BW (w(e′ − e0), w(e′′ − e0))
= BW (e′ − e0, e′′ − e0)
= BE(e′, e′′). �

Proposition 4.3. Wa is isomorphic to a subgroup of Aff(E) generated by affine reflections.

Proof. For each s ∈ S, Es is an affine hyperplane passing through e0. The action of s on E
fixes Es, and hence e0, so that it preserves BE. Since it has order 2, it must be the reflection
with respect to Es.

On the other hand, Es0 does not contain e0. Let α′0 ∈ Z be the element corresponding to
the linear functional v 7→ BWa(αs0 , v). Given v ∈ V and z ∈ Z, we have

(s0(e0 + z))(v) = (e0 + z)(s0v)

= (e0 + z)(v − 2BWa(v, αs0)αs0)

= (e0 + z)(v)− 2(e0 + z)(αs0)α
′
0(v),

= (e0 + z)(v)− 2(1 +BW (z, α′0))α
′
0(v)

In other words, s0 is an affine reflection. �
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4.2. Semidirect product structure. Let W be an irreducible finite Weyl group of rank n
with geometric representation V as in §2.4. Let Φ be the set of roots constructed there with
simple roots α1, . . . , αn. This differs from our general theory in that they generally do not
have the same length 1. We use (, ) in place of BW to distinguish this fact. However, the
Z-span L of Φ is a lattice preserved by the action of W . We let α̃ denote the highest root.

For each root α ∈ Φ, we define α∨ = 2α
(α,α)

. We let L∨ denote the Z-span of α∨ as α ranges

over the roots and call it the coroot lattice.
If Φ is of type Xn, let Γa be the Coxeter graph of type X̃n. (From our discussion, Φ is

determined by W except if W = W (Bn) in which case we have two root systems, type B
and type C.) This is obtained by adding a single node to the Coxeter graph of W ; let α0 be
the new simple root.

Lemma 4.4. The kernel of the bilinear form for Γa is spanned by δ = α0 + α̃.

Proof. This can be checked in each case directly, so I won’t elaborate on it. �

For k ∈ Z, we define sα,k ∈ Aff(V ) by

sα,k(v) = v − ((α, v)− k)α∨.

We omit the check that sα,0 preserves the form (, ), and call this just sα. This is a reflection
with respect to the affine hyperplane

Hα,k = {v ∈ V | (α, v) = k}.
For v ∈ V , let tv ∈ Aff(V ) denote translation by v, i.e., tv(x) = x+ v.

Lemma 4.5. We have the following properties.

(1) If w ∈ W , then wHα,k = Hwα,k and wsα,kw
−1 = swα,k.

(2) We have sα,1sα = tα∨.
(3) If v ∈ V satisfies (v, α) ∈ Z, then tvHα,k = Hα,k+(v,α) and tvsα,kt

−1
v = sα,k+(v,α).

Proof. (1) For w ∈ W and x ∈ Hα,k, we have (wα,wx) = (α, x) = k, so wHα,k = Hwα,k.
Also, we have for x ∈ V ,

wsα,kw
−1(x) = w(w−1x− ((α,w−1x)− k)α∨) = x− ((wα, x)− k)w(α∨) = swα,k(x)

since w(α∨) = (wα)∨.
(2) It’s clear from the formula that sα,k = tkα∨sα. Take k = 1 and multiply both sides on

the right by sα to get sα,1sα = tα∨ .
(3) The first equality is clear since if x ∈ Hα,k, then (α, x+v) = k+(α, v). For the second,

we have for x ∈ V ,

tvsα,kt
−1
v (x) = tvsα,k(x− v)

= tv(x− v − ((α, x− v)− k)α∨)

= x− ((α, x)− (k + (α, v)))α∨

= sα,k+(α,v)(x). �

We have identifications V ∼= Z ∼= E where the first map sends v to the linear functional
BWa(v,−) and the second map is adding the vector e0. For the following, note that we are
using different conventions now for what the simple roots are compared to the last section,
which affects the definition of δ (and potentially some scalars). We take δ = α0 + α̃ to be
consistent with the current section.
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Lemma 4.6. Via the identification V ∼= E, sα̃,1 coincides with s0 ∈ Wa.

Proof. We have previously shown that s0 is an affine reflection on E, so it suffices to compute
the affine hyperplane that it fixes. For v ∈ V and z ∈ Z, we have

(s0(e0 + z))(v) = (e0 + z)(v − 2BWa(v, α0)α0),

and hence s0(e0 + z) = e0 + z if and only if (e0 + z)(α0) = 0. Since e0(α0) = 1 and α0 ≡ −α̃
(mod V ⊥a ), this is equivalent to z(α̃) = 1. Hence, for u ∈ V , this condition translates, via
our identification of V with E, to BWa(u, α̃) = 1, and BWa restricts to (, ) on V , so we see
the fixed affine hyperplane of s0 is Hα̃,1. �

Corollary 4.7. The group generated by sα1 , . . . , sαn , sα̃,1 is isomorphic to Wa.

Corollary 4.8. (1) Wa contains tv for every v ∈ L∨.
(2) For every root α and k ∈ Z, we have sα,k ∈ Wa.

Proof. We refer to the 3 items in Lemma 4.5. From Corollary 4.7, Wa is generated by
sα1 , . . . , sαn , sα̃,1. Since W acts transitively on the set of roots, by (1) we have sα,1 ∈ Wa for
every root α. Hence by (2), we get tα∨ ∈ Wa for every root α. Since (α, α∨) = 2, by (3) we
have tkα∨sαt

−k
α∨ = sα,2k and tkα∨sα,1t

−k
α∨ = sα,2k+1 for all k. �

We let TL∨ = {tv | v ∈ L∨}. We have a usual action of W on TL∨ via w · tv = twv.
The semidirect product TL∨ o W is defined to be TL∨ × W as a set, with the product
(tv, w)(tv′ , w

′) = (tvtwv′ , ww
′).

Corollary 4.9. TL∨ is a normal subgroup of Wa and Wa
∼= TL∨ oW .

Proof. We have wtvw
−1 = twv, so TL∨ is a normal subgroup. Note that W ∩ TL∨ is just

the identity element, since W preserves the zero vector in V , and the only element in TL∨
that does that is t0. Hence the composition ϕ : W → Wa → Wa/TL∨ is injective. Next,
sα̃ = sα̃,1tα̃∨ and sα̃ ∈ W , so the coset sα̃,1TL∨ is in the image of ϕ. In other words,
ϕ : W → Wa/TL∨ is an isomorphism.

In particular, we have distinguished right coset representatives {TL∨w | w ∈ W} for
Wa/TL∨ , and so every element is of the form tvw for a unique w ∈ W and v ∈ L∨. Since
wtv′ = twv′w, we have tvwtv′w

′ = tvtwv′ww
′. �

4.3. Alcoves. In §1.8, we constructed a fundamental domain D for the action of Wa using
its geometric realization. Using the notation from §4.1 again, we have

D = {f ∈ V ∗a | f(αs) ≥ 0 for all s ∈ Sa}.
As before, define E = {f ∈ V ∗a | f(δ) = 1}.

As in the last section, V is the geometric representation of the finite Weyl group and we
let α1, . . . , αn ∈ V be the roots and let α̃ denote the highest root.

Lemma 4.10. We have

D ∩ E = {e0 + z | (z, αi) ≥ 0 for 1 ≤ i ≤ n and (z, α̃) ≤ 1}.

Proof. Suppose e0+z ∈ D∩E. Then (e0+z)(αs) ≥ 0 for all s ∈ Sa and (e0+z)(δ) = 1. Since
e0(αs) = 0 for s ∈ S, we get z(αs) ≥ 0 for s ∈ S. Since e0(αs0) = 1, we get that z(αs0) ≥ −1.
When we identify (Va/V

⊥
a )∗ with V , for s ∈ S, αs becomes some αi for 1 ≤ i ≤ n, and αs0

becomes −α̃, so the conditions we just wrote are equivalent to (z, αi) ≥ 0 for 1 ≤ i ≤ n and
B(z, α̃) ≤ 1.
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Conversely, if these conditions hold, then (e0 + z)(αs) ≥ 0, and

1 = (e0 + z)(δ) = (e0 + z)(αs0) + z(δ − αs0).
The latter quantity is (z, α̃), so we see that (e0 + z)(αs0) ≥ 0. �

We define

A◦ = {v ∈ V | (v, αi) > 0 for 1 ≤ i ≤ n and (v, α̃) < 1},
A = {v ∈ V | (v, αi) ≥ 0 for 1 ≤ i ≤ n and (v, α̃) ≤ 1}.

We call A◦ the fundamental alcove. Note that A◦ is an open simplex and A is its closure.
By Theorem 1.31, each Wa-orbit in E intersects D∩E in at most one point. This translates
to saying that every Wa-orbit in V intersects A in at most one point.

Proposition 4.11. The Wa-orbit of A is all of V .

Proof. Fix λ ∈ A◦. Pick any µ ∈ V . Then TL∨µ is a discrete set, and since W is finite, this
implies that Waµ is a discrete set. In particular, we can pick ν ∈ Waµ whose distance from
λ is minimized. If ν ∈ A, we’re done. Otherwise, there is a hyperplane that bounds A◦ and
separates λ and ν. Let w be the corresponding reflection. Then ‖wν−λ‖ < ‖ν−λ‖.1 Since
wν ∈ Waµ, this contradicts the choice of ν, so we conclude that ν ∈ A. �

Example 4.12. Consider the A1 root system. Our model has been to take the line in R2

spanned by (1,−1). We can also think of this as V ∼= R and Φ = {2,−2} so α∨1 = 1. In
that case, A◦ = (0, 1) and our affine Weyl group is generated by the negation operator and
reflection with respect to the point 1. �

Example 4.13. The irreducible rank 2 root systems Ã2, B̃2, C̃2, and G̃2 give tilings of the
plane by triangles. The pictures are omitted here. �

4.4. Length function. Fix w ∈ Wa. We say that a hyperplane H = Hα,k separates A◦
and wA◦ if they lie on opposite sides of H. Alternatively, if we join some point of A◦ with
some point of wA◦ with a line segment, then H separates if and only if it intersects this line
segment. For each α, the hyperplanes Hα,k as k varies are parallel, so at most finitely many
of them can intersect a finite line segment. As there are only finitely many choices for α, the
number of separating hyperplanes is finite. We define

L(w) = {Hα,k | Hα,k separates A◦ and wA◦}.
We define Hs0 = Hα̃,1 and for s ∈ S, we define Hs = Hαs,0.

Lemma 4.14. For s ∈ Sa, L(s) = {Hs}.

Proof. It is clear that Hs separates A◦ and sA◦ so we have to show that it is the only
separating hyperplane. Pick x ∈ A◦. Then 0 < (x, α) < 1 for all positive roots α. Then for
t ∈ Sa \{s}, we have (sx, αt) = (x, sαt) and sαt is a positive root and hence 0 < (sx, αt) < 1,
which means that A◦ and sA◦ are on the same side of Hα,k for any α 6= αs. Since (xs, αs) =
−(x, αs) and 0 < (x, αs) < 1, we see that Hαs,k only separates if k = 0. �

Lemma 4.15. Pick w ∈ Wa and s ∈ Sa.
1Picking an appropriate orthonormal basis for V , we may assume that w is negation of the last coordinate.

Then ‖ν − λ‖2 − ‖wν − λ‖2 = −4ab where a is the last coordinate of ν and b is the last coordinate of λ.
Since λ and ν are on opposite sides of the hyperplane, we have ab < 0.
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(1) Hs is in exactly one of L(w−1) and L(sw−1).
(2) s(L(w−1) \ {Hs}) = L(sw−1) \ {Hs}.

Proof. (1) If x ∈ w−1A◦, then (αs, sx) = −(αs, x), so w−1A◦ and sw−1A◦ are on different
sides of Hs.

(2) Suppose H ∈ L(w−1) \ {Hs}. Since sHs = Hs, we see that sH 6= Hs. We claim that
sH ∈ L(sw−1). If not, then sw−1A◦ and A◦ are on the same side as sH, which implies that
w−1A◦ and sA◦ are on the same side as H. Since H separates w−1A◦ and A◦, we see that it
also separates sA◦ and A◦. But this forces H = Hs by Lemma 4.15, which is a contradiction,
so our claim is proven.

This shows that s(L(w−1) \ {Hs}) ⊆ L(sw−1) \ {Hs}. Replacing w by sw−1 shows that
s(L(sw−1) \ {Hs}) ⊆ L(w−1) \ {Hs}. Applying s to both sides gives the reverse inclusion
that we want. �

Proposition 4.16. Let w = si1 · · · sir be a reduced expression for w ∈ Wa.

(1) The hyperplanes

Hsi1
, si1Hsi2

, . . . , si1 · · · sir−1Hsir

are all distinct.
(2) L(w) = {Hsi1

, si1Hsi2
, . . . , si1 · · · sir−1Hsir

}.

Proof. Suppose that (1) is false, so that there exist p < q such that si1 · · · sip−1Hsip
=

si1 · · · siq−1Hsiq
, which implies that Hsip

= sip · · · siq−1Hsiq
. By Corollary 4.9, there is a

unique x ∈ L∨ and u ∈ W such that sip · · · siq−1 = txu. So by Lemma 4.5, we see that
(sip · · · siq−1)siq(sip · · · siq−1)

−1 = sip . In particular, sip · · · siq−1siq = sip+1 · · · siq−1 , which can
be used to shorten the reduced expression for w, and hence is a contradiction.

Now we prove (2) by induction on `(w). The base case `(w) = 0 consists of showing that
L(1) = ∅ which is clear. So assume `(w) > 0. By induction,

L(si1w) = {Hsi2
, si2Hsi3

, . . . , si2 · · · sir−1Hsir
}

and by (1), the set has size r − 1. In particular, {si1Hsi2
, si1si2Hsi3

, . . . , si1si2 · · · sir−1Hsir
}

also has size r− 1, and does not contain Hsi1
by (1). In particular, L(si1w) does not contain

si1Hsi1
= Hsi1

. By Lemma 4.15, we have Hsi1
∈ L(w) and si1(L(w) \ {Hsi1

}) = L(si1w),
which proves our claim. �

Corollary 4.17. For all w ∈ Wa, we have `(w) = |L(w)|.

4.5. Toroidal Coxeter complex. We can modify the approach of §3.8 to get a nice factor-
ization of the Poincaré polynomial of an affine Weyl group. As before, write Wa

∼= TL∨ oW
for a finite Weyl group W and coroot lattice L∨.

This time, we have a triangulation of V by theWa-translates of A. Each s ∈ Sa corresponds
to a facet of A, namely {v | (v, αs) = 0} for s ∈ S and {v | (v, α̃) = 1} for s0. Given a subset
I ⊆ Sa, define AI to be the intersection of the corresponding facets. Since A is a simplex,
this is nonempty if and only if I 6= Sa.

Rather than work with this infinite triangulation, we consider the quotient V/L∨, which is
an n-dimensional torus which now has a finite triangulation. This is the toroidal Coxeter
complex. It has an action of the finite Weyl group Wa/TL∨ ∼= W .

The toroidal Coxeter complex gives us a chain complex F• that computes the (real) ho-
mology of V/L∨ where Fi (for i = 0, . . . , n) is the R-vector space with basis given by W
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translates of the AI with i = n− |I|. The homology of an n-dimensional torus is given by

Hi(V/L
∨; R) =

i∧
V

and this identification is compatible with the action of W on V/L∨ (the basic idea is that
V/L∨ is a product of n circles and we can use the Künneth formula).

For I $ Sa, the parabolic subgroup (Wa)I is finite. Let W (I) be the image of (Wa)I under
the quotient map Wa → W . Since TL∨ ∼= Zn has no nontrivial finite order elements and
(Wa)I is finite, their intersection must be trivial, so that (Wa)I → W (I) is an isomorphism.
Note that W (I) is not a parabolic subgroup of W if s0 ∈ I. However, the image of s0 in
W is the reflection with respect to the highest root α̃, so W (I) is a subgroup generated by
reflections in the geometric representation of W .

Proposition 4.18. As class functions on W , we have

n∑
i=0

(−1)ichar(
i∧
V ) = (−1)n

n∑
i=0

(−1)|I|1 ↑WW (I) .

Proof. Since the triangulation is W -invariant, each w gives a chain map w : F• → F•, and
the Hopf trace formula tells us that

n∑
i=0

(−1)i Tr(w | Hi(V/L
∨; R)) =

n∑
i=0

(−1)i Tr(w | Fi).

Next, Fi is a permutation representation on the set of i-dimensional faces. In V , there is
one orbit for each subset I ⊆ Sa with |I| = n − i, and the AI are representatives. By
Theorem 1.31, the stabilizer of AI is (Wa)I . Then the stabilizer of AI/L

∨ in W is W (I). So
by Example 2.4, we see that

Tr(w | Fi) =
∑

I, |I|=n−i

1 ↑WW (I) (w).

Combining all of this gives the desired formula. �

Theorem 4.19 (Bott). Let d1, . . . , dn be the degrees of the basic invariants for W . Then

Wa(t) = W (t)
n∏
i=1

1

1− tdi−1
=

1

(1− t)n
n∏
i=1

1− tdi
1− tdi−1

.



48 STEVEN V SAM

Proof. We have∑
I$Sa

(−1)|I|HAW (I)(t) =
∑
I$Sa

(−1)|I|
∑
d≥0

〈1 ↑WW (I), char(Ad)〉W td (Frobenius reciprocity, Theorem 2.5)

=
n∑
i=0

(−1)n+i
∑
d≥0

〈char(
i∧
V ), char(Ad)〉W td (Proposition 4.18)

=
n∑
i=0

(−1)n+i
∑
d≥0

dim(
i∧
V ∗ ⊗ Ad)W td (Proposition 2.3)

= (−1)nH(A⊗E)W (t,−1) (V is self-dual, Proposition 2.3)

= (−1)n
n∏
i=1

1− tdi−1

1− tdi
(Corollary 3.23)

Next, each group W (I) in the original sum is a finite generated by reflections. So from
Theorem 3.28 and Corollary 3.15, we have

HAW (I)(t) · (1− t)n =
1

HA/IW (I)(t)
=

1

W (I)(t)
.

Finally, using (1.35), and our first derivation, we have

(−1)n

Wa(t)
=
∑
I$Sa

(−1)|I|

W (I)(t)
= (−1)n(1− t)n

n∏
i=1

1− tdi−1

1− tdi
,

so in particular

Wa(t) =
1

(1− t)n
n∏
i=1

1− tdi
1− tdi−1

.

The equality involving W (t) follows from Theorem 3.28. �

Remark 4.20. This proof is due to Steinberg [St]. �

4.6. Affine permutation groups. We now give combinatorial descriptions for each of the
4 infinite series of affine Weyl groups. Some of this material is taken from [BB, Chapter 8].

4.6.1. Type Ãn−1. For n ≥ 2, let S̃n be the set of bijections σ : Z→ Z such that σ(i+ n) =
σ(i) +n for all i ∈ Z and that such

∑n
i=1 σ(i) =

(
n+1
2

)
. We represent an element in “window

notation” by [σ(1), . . . , σ(n)].
The first condition implies that we have an induced bijection σ : Z/n → Z/n, so that

σ(1), . . . , σ(n) represent different cosets of Z/n.

Lemma 4.21. S̃n is a group under composition.

This is the affine symmetric group.

Proof. First, the identity belongs to S̃n since 1+ · · ·+n =
(
n+1
2

)
. Second, suppose σ, τ ∈ S̃n.

Then σ(τ(i + n)) = σ(τ(i) + n) = σ(τ(i)) + n. We can find unique integers k1, . . . , kn so
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that 1 ≤ τ(i) + kin ≤ n. In particular, {τ(1) + k1n, . . . , τ(n) + knn} = {1, . . . , n}, so∑n
i=1(τ(i) + kin) =

(
n+1
2

)
, which forces

∑n
i=1 ki = 0. Finally,(

n+ 1

2

)
=

n∑
i=1

σ(τ(i) + kin) =
n∑
i=1

(σ(τ(i)) + kin) =
n∑
i=1

σ(τ(i)),

so στ ∈ S̃n.
Third, consider τ−1(i+ n)− n. If we apply τ to it, we get i, so since it is a bijection, the

original expression is τ−1(i). We have
n∑
i=1

τ−1(i) =
n∑
i=1

(τ−1(τ(i) + kin)) =
n∑
i=1

(τ−1(τ(i)) + kin) =

(
n+ 1

2

)
,

so τ−1 ∈ S̃n. �

Let L = {x ∈ Zn | x1 + · · ·+xn = 0}. Then L = L∨. For x ∈ L, we let tx ∈ S̃n be defined
by tx(i) = i+xin for all i = 1, . . . , n. If we extend the notation xi to mean xi′ where i′ ∈ [n]
is the coset representative of i, then tx(i) = i+ xin for all i and hence tx(i+ n) = tx(i) + n
for all i. Then txty = tx+y and t−1x = t−x. We let TL = {tx | x ∈ L}.

As said before, we have a surjective map π : S̃n → Sn by considering the induced bijection
on Z/n. An element σ ∈ kerπ satisfies σ(i) ≡ i (mod n) for all i. Then σ(i) = i + xin for
some integers xi such that x1+· · ·+xn = 0, so σ = tx. Furthermore it is clear that TL ⊆ kerπ
and so ker π = TL.

Also, we have an injective homomorphism Sn → S̃n where the window notation of σ ∈ Sn

is simply [σ(1), . . . , σ(n)].

In particular, we have distinguished right coset representatives {TLw | w ∈ Sn} for S̃n/TL,
and so every element is of the form txw for unique choices of x ∈ L and w ∈ Sn. Next,
wtxw

−1(i) = i+ xw−1(i)n = i+ (wx)in, so wtxw
−1 = twx. Hence txwtx′w

′ = txtwx′ww
′.

Now let Wa be the affine Coxeter group of type Ãn−1. The coroot lattice of Sn is identified
with L, so by Corollary 4.9 we get the following result.

Proposition 4.22. We have an isomorphism Wa → S̃n given by txw 7→ txw where x ∈ L
and w ∈ Sn.

We can make this more explicit. Pick w ∈ S̃n. For x ∈ Rn, we define xi+kn = xi − k for
any integer k. Then we define wx ∈ Rn by (wx)i = xw−1(i). Then the action of w ∈ Sn is
by permutations as usual and (tyx)i = xi−yin = xi + yi, so TL acts by translations as usual.

Tracing through the isomorphism, the Coxeter generators are si = [1, . . . , i + 1, i, . . . , n],
the (i, i+1) transposition in the copy of Sn, for i = 1, . . . , n, and s0 = [0, 2, . . . , n−1, n+1].

Proposition 4.23. For all w ∈ S̃n, we have

`(w) =
∑

1≤i<j≤n

∣∣∣∣⌊w(j)− w(i)

n

⌋∣∣∣∣ .
Proof. By Corollary 4.17, `(w) is the number of hyperplanes Hα,k that separate A◦ and wA◦.
The relevant hyperplanes in question are of the form xi − xj = k for i < j and k ∈ Z. Note
that x ∈ A◦ if and only if 0 < xi − xj < 1 for i < j. Hence if y ∈ wA◦, the number of
hyperplanes separating y from A◦ is

∑
i<j |byi − yjc|. Our goal is to rewrite this expression

in terms of w.
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Fix a point x ∈ A◦ and let y = wx. There is a unique permutation σ ∈ Sn and integers
k1, . . . , kn so that w−1(i) = σ(i) + kin for i = 1, . . . , n. Then

|byi − yjc| = |bxw−1(i) − xw−1(j)c|
= |bxσ(i) − xσ(j) + kj − kic|

=

∣∣∣∣⌊σ(j)− σ(i)

n
+ kj − ki

⌋∣∣∣∣
=

∣∣∣∣⌊w−1(j)− w−1(i)n

⌋∣∣∣∣ ,
where in the third equality, we use that the sign of xσ(i) − xσ(j) is the same as the sign of
(σ(j) − σ(i))/n, and that both have absolute value between 0 and 1. Finally, we conclude
by noting that `(w) = `(w−1). �

4.6.2. Type C̃n. For n ≥ 2, set N = 2n + 1. We let S̃C
n be the set of bijections σ : Z → Z

such that σ(i + N) = σ(i) + N and σ(−i) = −σ(i) for all i. Via composition, these are

exactly the σ ∈ S̃N that commute with the bijections i 7→ i + N and i 7→ −i, so S̃C
n is a

subgroup of S̃N .
Let L∨ = {(x−n, . . . , xn) ∈ ZN | x−i = −xi} ∼= Zn. For x ∈ L∨, we define tx(i) = i + xiN

for i = −n, . . . , n. Then for general i, we have tx(i) = i + xi′N where −n ≤ i′ ≤ n is the
representative of i modulo N . Then txty = tx+y and t−1x = t−x, and we set TL∨ = {tx | x ∈ L}.

Let W = W (Bn) be the Weyl group of type Bn. We realize this as the permutations σ

of [−n, n] such that σ(−i) = −σ(i) for all i. We have a surjective map π : S̃C
n → W (Bn)

by considering the induced bijection modulo N (and using [−n, n] as representatives). As

before, ker π = TL∨ and we can show that S̃C
n
∼= TL∨ oW (Bn).

Recall that the root system of type Cn consists of the vectors ei± ej and ±2ei for i, j ≤ n.
Hence the coroot lattice is Zn with the usual action of W by signed permutation matrices.
So the action of W on L∨ can be identified with the action of W on its coroot lattice. Let
Wa be the affine Weyl group of type C̃n; Corollary 4.9 gives the following identification.

Proposition 4.24. We have an isomorphism Wa
∼= S̃C

n .

4.6.3. Type B̃n. The type B̃n affine Weyl group is very closely related to type C̃n since the
corresponding finite Weyl group is the same. The main difference is the coroot lattice. Recall
that the roots of the Bn root system are the vectors ei ± ej and ei for i, j ≤ n. Hence the
coroot lattice is {(x1, . . . , xn) ∈ Zn | x1 + · · ·+ xn is even} which is closed under the action
of signed permutation matrices.

For σ ∈ S̃C
n and integers i, j, define

σ[i, j] = |{a ∈ Z | a ≤ i, σ(a) ≥ j}|.

Define

S̃B
n = {σ ∈ S̃C

n | σ[n, n+ 1] is even}.

Lemma 4.25. For σ ∈ S̃C
n , we have

σ[n, n+ 1] =
n∑
i=1

⌊
|σ(i)|+ n

N

⌋
.
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Proof. More specifically,⌊
|σ(i)|+ n

N

⌋
= |{k ∈ Z≥0 | σ(i− kN) > n}|+ |{k ∈ Z≥0 | σ(−i− kN) > n}|.

Summing the right side over i = 1, . . . , n gives σ[n, n+ 1]. �

If σ ∈ W (Bn), then σ[n, n + 1] = 0, so W (Bn) ⊆ S̃B
n . If σ ∈ S̃C

n is translation by

(x−n, . . . , xn), then σ[n, n+ 1] = x1 + · · ·+xn, so the translation subgroup of S̃C
n intersected

with S̃B
n is translation by the type Bn coroot lattice. As before, we use Corollary 4.9 to

conclude the following result.

Proposition 4.26. S̃B
n is isomorphic to the type B̃n affine Weyl group.

4.6.4. Type D̃n. The type D̃n affine Weyl group is closely related to the type B̃n affine Weyl
group. The coroot lattice is the same since the type Dn root system consists of the vectors
ei ± ej. However, the finite Weyl group changes: W (Dn) consists of signed permutation
matrices with an even number of signs.

Define

S̃D
n = {σ ∈ S̃B

n | σ[0, 1] is even}.

We still maintain the notation N = 2n+ 1.

Lemma 4.27. For σ ∈ S̃C
n , we have

σ[0, 1] =
n∑
i=1

⌊
|σ(i)|
N

⌋
+ |{i | 1 ≤ i ≤ n, σ(i) < 0}|.

Proof. More specifically, we have⌊
|σ(i)|
N

⌋
= |{k ∈ Z>0 | σ(i− kN) > 0}|+ |{k ∈ Z>0 | σ(−i− kN) > 0}|.

The sum of the right hand side is σ[0, 1] minus the number of i between 1 and n such that
σ(i) < 0. �

In particular, if σ ∈ W (Bn), then σ[0, 1] = |{i | 1 ≤ i ≤ n, σ(i) < 0}, so we see

that W (Bn) ∩ S̃D
n = W (Dn). Next, consider the translation tx element which satisfies

tx(i) = i+ xiN for i = 1, . . . , n. Then σ[0, 1] = x1 + · · ·+ xn which we already know is even

from the condition of being in S̃B
n . As before, we use Corollary 4.9 to conclude the following

result.

Proposition 4.28. S̃D
n is isomorphic to the type D̃n affine Weyl group.

5. Kazhdan–Lusztig polynomials

Throughout, (W,S) is a fixed Coxeter group.
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5.1. Hecke algebras. Let A be a commutative ring. Let E be the free A-module with basis
{Tw | w ∈ W}.

Theorem 5.1. Let a, b ∈ A. There is a unique associative algebra structure on E such that
for all s ∈ S and w ∈ W :

TsTw =

{
Tsw if `(sw) > `(w)

aTw + bTsw if `(sw) < `(w)
.

This algebra will be denoted EA(a, b).
Uniqueness is clear: the relations say that Tw = Ts1 · · ·Tsr whenever s1 · · · sr is a reduced

expression for w (and T1 is the multiplicative identity). Hence, the product TvTw for any
v, w ∈ W can be deduced from the relations above.

We remark that if `(sw) > `(w), then TwTs = Ts1 · · ·TsrTs = Tws since all suffixes of the
reduced expression s1 · · · srs are also reduced expressions.

We will sketch the proof of existence, deferring to [H1, §§7.2, 7.3] for missing details.
The key is to construct a subalgebra of End(E) which is isomorphic to E as an A-module

and that satisfies the multiplication above. To that end, for each s ∈ S, define λs, ρs ∈
End(E) by

λs(Tw) =

{
Tsw if `(sw) > `(w)

aTw + bTsw if `(sw) < `(w)
, ρs(Tw) =

{
Tws if `(ws) > `(w)

aTw + bTws if `(ws) < `(w)
.

We let L denote the subalgebra of End(E) generated by the λs for s ∈ S.

Lemma 5.2. For all s, t ∈ S, λsρt = ρtλs. In particular, ρt commutes with L.

Since λs, ρt are defined piecewise, there are several cases to consider, but we omit the
proof.

Lemma 5.3. The map ϕ : L→ E defined by ϕ(λ) = λ(T1) is an isomorphism of A-modules.

Proof. The fact that ϕ is A-linear is clear. For w ∈ W , pick a reduced expression w =
s1 · · · sr. Then Tw = ϕ(Ts1 · · ·Tsr), so ϕ is surjective.

Finally, suppose that ϕ(λ) = 0. We claim that λ = 0. It suffices to show that λ(Tw) = 0
for all w ∈ W , and prove this by induction on `(w). If `(w) = 0, then w = 1, and then
λ(T1) = ϕ(λ) = 0. In general, if `(w) > 0, write w = vs for s ∈ S and `(v) < `(w). Then
λ(Tv) = 0 by induction, and so

λ(Tw) = λ(ρs(Tv)) = ρs(λ(Tv)) = 0. �

In particular, for w ∈ W , we can define λw = λs1 · · ·λsr for any reduced expression s1 · · · sr
of w, and this is independent of the choice of reduced expression.

Lemma 5.4. We have

λsλw =

{
λsw if `(sw) > `(w)

aλw + bλsw if `(sw) < `(w)
.

Proof. Let s1 · · · sr be a reduced expression for w. If `(sw) > `(w), then ss1 · · · sr is a reduced
expression for sw, so λsw = λsλw.

Otherwise, we have `(sw) < `(w). Using the first case, we have λsλsw = λw, and hence
λsλw = λ2sλsw.
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So it suffices to show that λ2s = aλs + b. We apply both sides to a basis element Tv. If
`(sv) > `(v), then

λ2s(Tv) = λs(Tsv) = aTsv + bTv = (aλs + b)(Tv).

If `(sv) < `(v), then
λ2s(Tv) = λs(aTv + bTsv) = aλs(Tv) + bTv. �

Let A = Z[q±1/2] (this is the ring of Laurent polynomials in q with a square root of q
adjoined). The Hecke algebra of (W,S) is H = EA(q − 1, q).

Remark 5.5. If we specialize q = 1, then H becomes the group algebra of W . �

5.2. R-polynomials. For s ∈ S, we have T 2
s = (q − 1)Ts + q in H, which we rewrite as

Ts(Ts + 1− q) = q. Hence Ts is invertible with

T−1s = q−1(Ts − (q − 1)).(5.6)

This implies that Tw is invertible in general. Our first goal is to prove that the change of
basis between the inverses and the Tv is lower-triangular with respect to the Bruhat order.
For w ∈ W , we write εw = (−1)`(w).

Theorem 5.7. For x ≤ w, there exist polynomials Rx,w(q) of degree `(w) − `(x) such that
Rw,w(q) = 1 and

T−1w−1 = εwq
−`(w)

∑
x≤w

εxRx,w(q)Tx.

Furthermore, these polynomials are nonzero.

Proof. We prove this by induction on `(w), the case `(w) = 0 being obvious since T−11 = T1.
If `(w) > 0, write w = sv for s ∈ S and `(v) = `(w) − 1. Then using induction and (5.6),
we have

T−1w−1 = T−1s T−1v−1

= q−1(Ts − (q − 1))εvq
−`(v)

∑
y≤v

εyRy,v(q)Ty

= εvq
−`(w)

∑
y≤v

εyRy,v(q)TsTy − εvq−`(w)
∑
y≤v

εy(q − 1)Ry,v(q)Ty

= εvq
−`(w)

∑
y≤v

`(sy)>`(y)

εyRy,v(q)Tsy + εvq
−`(w)

∑
y≤v

`(sy)<`(y)

εyRy,v(q)((q − 1)Ty + qTsy)

− εvq−`(w)
∑
y≤v

εy(q − 1)Ry,v(q)Ty

We can cancel the first term in the second sum with some of the summands in the third
sum:

= εvq
−`(w)

∑
y≤v

`(sy)>`(y)

εyRy,v(q)Tsy + εvq
−`(w)

∑
y≤v

`(sy)<`(y)

εyRy,v(q)qTsy

− εvq−`(w)
∑
y≤v

`(sy)>`(y)

εy(q − 1)Ry,v(q)Ty
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In the first sum, we see Tsy with sy > y and y ≤ v. Then there is a reduced expression for
v which contains a reduced expression for y as a subword. Multiplying this on the left by s,
we see that a reduced expression for sy is a subword of a reduced expression for sv = w, so
sy ≤ w. In the second sum, we see Tsy with sy ≤ y ≤ v ≤ w. So all of the terms Tx above
satisfy x ≤ w.

Now pick x ≤ w and consider the coefficient of Tx. We break this up into two cases
depending on whether x > sx or not. In case 1, suppose x > sx. Then Tx appears only
in the first sum with y = sx, so we set Rx,w(q) = Rsx,sw(q) which is nonzero by induction.
Then

degRx,w(q) = `(sw)− `(sx) = `(w)− 1− (`(x)− 1) = `(w)− `(x).

Furthermore, for x = w, we have Rw,w(q) = Rsw,sw(q) = 1.
For case 2, suppose that x < sx. Then Tx does not appear in the first sum, but potentially

appears in the second sum with y = sx and appears in the third sum with y = x, so we set
Rx,w(q) = qRsx,sw(q) + (q − 1)Rx,sw(q). Here we take the convention that Ra,b = 0 if a 6≤ b.
Then

deg(qRsx,sw(q)) = 1 + `(sw)− `(sx) = 1 + (`(w)− 1)− (`(x) + 1) = `(w)− `(x)− 1

while

deg((q − 1)Rx,sw(q)) = 1 + `(sw)− `(x) = `(w)− `(x),

so degRx,w(q) = `(w) − `(x). Since Rx,sw(q) is nonzero by induction, the same is true for
Rx,w(q). �

We call the Rx,w(q) the R-polynomials. The proof gives the following recursion for
computing them.

Corollary 5.8. With the convention that Ra,b(q) = 0 if a 6≤ b, pick s ∈ S so that w > sw.
Then for x ≤ w, we have

Rx,w(q) =

{
Rsx,sw(q) if x > sx

qRsx,sw(q) + (q − 1)Rx,sw(q) if x < sx
.

Corollary 5.9. For all x ≤ w, we have

Rx,w(q−1) = εxεwq
`(x)−`(w)Rx,w(q).

Proof. We check this by induction on `(w). If `(w) = 0, then R1,1(q) = 1, so the formula
holds. In general, pick s ∈ S such that sw < w. We have two cases to check.

If x > sx, then

Rx,w(q−1) = Rsx,sw(q−1) = εsxεswq
`(sx)−`(sw)Rsx,sw(q) = εxεwq

`(x)−`(w)Rx,w(q).

Otherwise, if x < sx, then

Rx,w(q−1) = q−1Rsx,sw(q−1) + (q−1 − 1)Rx,sw(q−1)

= q−1εsxεswq
`(sx)−`(sw)Rsx,sw(q) + (q−1 − 1)εxεswq

`(x)−`(sw)Rx,sw(q)

= εxεwq
`(x)−`(w)+1Rsx,sw(q) + (q − 1)εxεwq

`(x)−`(w)Rx,sw(q)

= εxεwq
`(x)−`(w)Rx,w(q). �

This immediately implies the following formula.
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Corollary 5.10. For all w ∈ W , we have

T−1w−1 =
∑
x≤w

q−`(x)Rx,w(q−1)Tx.

5.3. Kazhdan–Lusztig polynomials. Define ι : H → H on Z[q±1/2] by ι(q1/2) = q−1/2

and extend it to H on basis elements by ι(Tw) = T−1w−1 .

Lemma 5.11. ι is a ring homomorphism, so in particular, ι2 = 1.

Proof. It’s enough to show that ι(Ts)ι(Tw) = ι(TsTw) for all s ∈ S and w ∈ W , since then we
get that ι(Tv)ι(Tw) = ι(TvTw) for all v, w ∈ W since we have an expression Tv = Ts1 · · ·Tsr .

We have two cases depending on whether sw > w or not. If sw > w, then

ι(TsTw) = ι(Tsw) = T−1w−1s = (Tw−1Ts)
−1 = T−1s T−1w−1 = ι(Ts)ι(Tw).

Otherwise, if sw < w, then

ι(TsTw) = ι((q − 1)Tw + qTsw) = (q−1 − 1)T−1w−1 + q−1T−1w−1s

and by (5.6), we have ι(Ts) = q−1(Ts − (q − 1)), so

ι(Ts)ι(Tw) = q−1TsT
−1
w−1 + (q−1 − 1)T−1w−1 .

Since Bruhat order is invariant under inversion, we have w−1 > w−1s, and hence

Tw−1sTsT
−1
w−1 = Tw−1T−1w−1 .

This shows that TsT
−1
w−1 = T−1w−1s, so we’re done showing that ι is a ring homomorphism.

For the last statement, ι2(Tw) = ι(T−1w−1) = ι(Tw−1)−1 = (T−1w )−1 = Tw where in the middle
we used that ι is a ring homomorphism. �

Corollary 5.12. For all x ≤ w we have∑
x≤y≤w

εxεyRx,y(q)Ry,w(q) = δx,w.

Proof. Applying ι to Corollary 5.10 gives

Tw = ι(T−1w−1) =
∑
y≤w

q`(y)Ry,w(q)T−1y−1

=
∑
y≤w

q`(y)Ry,w(q)εyq
−`(y)

∑
x≤y

εxRx,y(q)Tx

=
∑

x≤y≤w

εxεyRx,y(q)Ry,w(q)Tx.

Now compare the coefficient of Tx between the first and last expression: in the first, it is δx,w
and in the last it is the sum that we claim. �

Theorem 5.13. For each w ∈ W , there exists a unique Cw ∈ H such that

(1) ι(Cw) = Cw,
(2) there exist polynomials Px,w(q) for x ≤ w such that Pw,w(q) = 1 and degPx,w(q) ≤

1
2
(`(w)− `(x)− 1) for x < w, and

Cw = εwq
`(w)/2

∑
x≤w

εxq
−`(x)Px,w(q−1)Tx.
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The Px,w(q) are the Kazhdan–Lusztig polynomials. We will indicate some of their
applications in the next section, though they go beyond the scope of this course.

Proof. Pick w ∈ W . Consider an element of the form

C ′w = εwq
`(w)/2

∑
y≤w

εyq
−`(y)P ′y,w(q−1)Ty

where for the moment the P ′ are arbitrary polynomials. We will show that the conditions
the P ′ need to satisfy force them to be unique and then show that they can be satisfied. We
have

ι(C ′w) = εwq
−`(w)/2

∑
y≤w

εyq
`(y)P ′y,w(q)

∑
x≤y

εyq
−`(y)εxRx,y(q)Tx

= εwq
−`(w)/2

∑
y≤w

∑
x≤y

εxP
′
y,w(q)Rx,y(q)Tx

For x ≤ w, the coefficient of Tx in εwεxq
`(x)/2(C ′w − ι(C ′w)) is

q`(w)/2−`(x)/2P ′x,w(q−1)− q−`(w)/2+`(x)/2P ′x,w(q)−
∑

x<y≤w

q−`(w)/2+`(x)/2P ′y,w(q)Rx,y(q).(5.14)

The theorem is equivalent to saying that there exist unique polynomials P ′x,w(q) of degree

≤ 1
2
(`(w) − `(x) − 1) and such that P ′w,w(q) = 1 that make all of the expressions (5.14)

equal to 0. We prove that we can choose such polynomials that make (5.14) by induction on
`(w)− `(x). For the base case, we need to set P ′w,w(q) = 1.

Now pick x < w. With the degree assumption, the first quantity is a polynomial in q1/2

while the second quantity is a polynomial in q−1/2. In particular, no terms get cancelled, so
at most one solution P ′x,w(q) exists.

Hence we are forced to set the coefficients of P ′x,w(q) so that the first term matches up

with the sum of the positive powers of q1/2 in the sum. So a solution exists if and only if the
sum of the negative powers of q1/2 in the sum agree with the second term. We see that this
is equivalent to the condition ι(α) = −α, where α is the sum in the above expression. So
our final task is to verify this (in the second equality, we use Corollary 5.9 and (5.14) with
z in place of x, and in the fourth equality, we use Corollary 5.12):

ι(α) =
∑

x<z≤w

Rx,z(q
−1)q`(w)/2−`(x)/2P ′z,w(q−1)

=
∑

x<z≤w

εxεzq
`(x)−`(z)Rx,z(q)q

`(z)/2−`(x)/2
∑
z≤y≤w

q−`(w)/2+`(z)/2P ′y,w(q)Rz,y(q)

=
∑

x<y≤w

q`(x)/2−`(w)/2P ′y,w(q)
∑
x<z≤y

εxεzRx,z(q)Rz,y(q)

=
∑

x<y≤w

q`(x)/2−`(w)/2P ′y,w(q)(−Rx,y(q)) = −α. �

5.4. Further remarks. The applications of Kazhdan–Lusztig polynomials goes beyond the
scope of the course, but we list a few references:

• For representations of Hecke algebras (and at q = 1, the corresponding Coxeter
groups), see [BB, Chapter 6] for an introduction.
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• The finite Weyl groups play a prominent role in the representation theory of semisim-
ple Lie algebras. See [H2, Chapter 8] for the role of Kazhdan–Lusztig polynomials in
describing characters of irreducible representations.
• See [H2, Chapter 8] also for a connection between Kazhdan–Lusztig polynomials

and Schubert varieties. In fact, this was one of the early proofs that they have
non-negative coefficients in the case when the Coxeter group is the Weyl group of
a semisimple Lie algebra (or more generally, a Kac–Moody algebra). The general
situation was resolved in [EW].

Some other things:

• I believe that it is still an open problem (interval conjecture) to determine if Px,y(q) is
a combinatorial invariant of the interval [x, y] in Bruhat order. That is, [x, y] carries
a poset structure and if this is isomorphic to [x′, y′] for some other elements in a
Bruhat order, does this force Px,y(q) = Px′,y′(q)?
• There are also parabolic analogues of Kazhdan–Lusztig polynomials which are in-

dexed by elements of W P rather than W . These are well-suited for representation
theory problems as above in relative settings (parabolic category O or partial flag
varieties, etc.) The case where P comes from a Hermitian symmetric space is partic-
ularly well understood, see [EHP].
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