Math 188, Fall 2022
Homework 2
Due: October 15, 2022 11:59PM via Gradescope
(late submissions allowed up until October 16, 2022 11:59PM with -25% penalty)
Solutions must be clearly presented. Incoherent or unclear solutions will lose points.
(1) Let $F(x)$ be a formal power series with $F(0)=0$.
(a) Show that there exists a formal power series $G(x)$ with $G(0)=0$ such that $F(G(x))=x$ if and only if $\left[x^{1}\right] F(x) \neq 0$.
(b) Assuming $\left[x^{1}\right] F(x) \neq 0$, show that $G(x)$ is unique and also satisfies $G(F(x))=x$. You may use without proof that composition of formal power series is associative.
(2) Evaluate the following sums:
(a) $\sum_{i=0}^{n}\binom{n}{i} \frac{1}{2^{i}}$
(b) $\sum_{i=0}^{n} i^{2}\binom{n}{i} 3^{i}$
(3) Let a, b be non-negative integers.
(a) By comparing coefficients in $(1+x)^{a+b}=(1+x)^{a}(1+x)^{b}$, prove that for any non-negative integer n, we have

$$
\binom{a+b}{n}=\sum_{i=0}^{n}\binom{a}{i}\binom{b}{n-i}
$$

(b) Now prove this identity using a counting argument. [Hint: Consider choosing n animals from a dogs and b cats...]
(4) How many ways can we arrange the letters of: MISSISSIPPI ?
(5) Let $f(t)=\sum_{k=0}^{d} f_{k} t^{k}$ be a degree d polynomial with rational coefficients. From lecture, we know that there exist unique rational numbers g_{0}, \ldots, g_{d} such that

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{g_{0}+g_{1} x+\cdots+g_{d} x^{d}}{(1-x)^{d+1}}
$$

Now assume that $f(a)$ is an integer for $a=0, \ldots, d$. (The f_{k} don't have to be integers for this to be true, for example $f(n)=n(n-1) / 2$ has this property.)

Prove that this implies that the g_{k} are all integers and that $f(a)$ is an integer whenever a is an integer.
[Hint: first prove that

$$
f(t)=\sum_{k=0}^{d} g_{k}\binom{d+t-k}{d}
$$

as an identity of polynomials in t, and then consider the system of equations you get from $t=0, \ldots, d$.]

Optional problems (DON't TURN IN)

(6) Let $n \geq 2$ be an integer.
(a) Prove that

$$
\sum_{i=0}^{n} i\binom{n}{i}(-1)^{i-1}=0
$$

(b) Compute

$$
\sum_{\substack{0 \leq i \leq n \\ i \text { even }}} i\binom{n}{i}
$$

(7) (a) Let a, b be rational numbers. Show that for any formal power series $A(x)$ with $A(0)=1$, we have

$$
A(x)^{a} A(x)^{b}=A(x)^{a+b}
$$

[Remember that we defined rational powers in a very specific way, so your proof needs to use this definition.]
(b) Deduce from (a) that

$$
\binom{a+b}{n}=\sum_{i=0}^{n}\binom{a}{i}\binom{b}{n-i}
$$

for all non-negative integers n.
(8) Assume now that we deal with complex-coefficient formal power series. Define the following sets of formal power series:

$$
\begin{aligned}
V & =\{F(x) \mid F(0)=0\}, \\
W & =\{G(x) \mid G(0)=1\} .
\end{aligned}
$$

(a) Given $F \in V$, show that $\mathbf{E}(F)=\sum_{n \geq 0} \frac{F(x)^{n}}{n!}$ is the unique formal power series $G \in W$ such that $D G=D F \cdot G$. This defines a function $\mathbf{E}: V \rightarrow W$.
[Convention: $F(x)^{0}=1$ even if $F(x)=0$.]
(b) Given $G \in W$, show that there is a unique formal power series $F \in V$ such that $D F(x)=D G(x) / G(x)$. We define the function $\mathbf{L}: W \rightarrow V$ by $\mathbf{L}(G)=F$.
[For the rest, it is unnecessary to use explicit formulas for \mathbf{L} and \mathbf{E} and in fact it may be easier to only use the uniqueness properties above.]
(c) Show that \mathbf{E} and \mathbf{L} are inverses of each other.
(d) Show that $\mathbf{E}\left(F_{1}+F_{2}\right)=\mathbf{E}\left(F_{1}\right) \mathbf{E}\left(F_{2}\right)$ for all $F_{1}, F_{2} \in V$.
(e) Show that $\mathbf{L}\left(G_{1} G_{2}\right)=\mathbf{L}\left(G_{1}\right)+\mathbf{L}\left(G_{2}\right)$ for all $G_{1}, G_{2} \in W$.
(f) If m is a positive integer and $G \in W$, show that $\mathbf{E}\left(\frac{\mathbf{L} G}{m}\right)$ is an m th root of G. [This gives an alternative proof for the existence of m th roots and in fact we can now define powers for any complex number $m: F^{m}=\mathbf{E}(m \mathbf{L}(F))$.
(g) Show that if $\sum_{i \geq 0} F_{i}(x)$ converges to $F(x)$, then $\prod_{i \geq 0} \mathbf{E}\left(F_{i}\right)$ converges to $\mathbf{E}(F)$.
(h) Show that if $\prod_{i \geq 0}^{\geq 0} G_{i}(x)$ converges to $G(x)$, then $\sum_{i \geq 0} \mathbf{L}\left(G_{i}\right)$ converges to $\mathbf{L}(G)$.

