Math 188, Fall 2022
Homework 4
Due: November 5, 2022 11:59PM via Gradescope
(late submissions allowed up until November 6, 2022 11:59PM with -25% penalty)
Solutions must be clearly presented. Incoherent or unclear solutions will lose points.
(1) (a) Let r be a fixed nonnegative integer. Show that both $S(n+r, n)$ and $c(n+r, n)$ are polynomial functions of n of degree $2 r$ for $n \geq 0$.
(b) Compute these polynomials for $r=2,3$.
(2) For $n>0$, let a_{n} be the number of partitions of n such that every part appears at most twice, and let b_{n} be the number of partitions of n such that no part is divisible by 3 . Set $a_{0}=b_{0}=1$. Show that $a_{n}=b_{n}$ for all n.
(3) Let y be a variable. Prove the following generalization of Example 3.27

$$
\prod_{i \geq 0}\left(1+x^{2 i+1} y\right)=\sum_{r \geq 0} \frac{x^{r^{2}} y^{r}}{\left(1-x^{2}\right)\left(1-x^{4}\right) \cdots\left(1-x^{2 r}\right)}
$$

Hint on next page.
(4) (a) Use the following q-analogue of Pascal's identity (you don't need to prove it)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} \quad(\text { for } n \geq k>0)
$$

to show that if d is a non-negative integer, then

$$
\sum_{n \geq 0}\left[\begin{array}{c}
n+d \\
n
\end{array}\right]_{q} x^{n}=\prod_{i=0}^{d}\left(1-q^{i} x\right)^{-1}=\frac{1}{(1-x)(1-q x) \cdots\left(1-q^{d} x\right)}
$$

(b) Give a direct explanation (i.e., independent of the Schubert decomposition explanation from lecture) for why the coefficient of x^{n} of the right side is the sum $\sum_{\lambda} q^{|\lambda|}$ over all integer partitions λ whose Young diagram fits in the $n \times d$ rectangle.
(5) Let V, W be \mathbf{F}_{q}-vector spaces with $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$.
(a) How many linear maps $V \rightarrow W$ are there?
(b) Suppose $n \geq m$. How many surjective linear maps $V \rightarrow W$ are there?
(c) Pick $k \leq \min (m, n)$. How many rank k linear maps $V \rightarrow W$ are there?

See next page for some hints.

Hints

3: If you expand this out, the coefficient of x^{n} is a polynomial in y. If we set $y=1$, this is just Example 3.27 and the coefficient of x^{n} counts some special kind of partitions of n on each side which are in bijection. By examining that proof more carefully, figure out what the coefficient of $y^{k} x^{n}$ means on each side and show that these descriptions match up under the bijection.

5a: Picking bases for V and W, you can represent a linear map uniquely as a matrix.
5c: A rank k linear map is essentially the same thing as a surjective linear map onto some k-dimensional subspace of W.

Optional problems (DON'T TURN in)

(6) This one is challenging (I can't see a solution that is simple, but it doesn't require anything outside of this class). Prove:

$$
\sum_{n \geq 1} x^{n(n-1) / 2}=\prod_{n \geq 1} \frac{1-x^{2 n}}{1-x^{2 n-1}}
$$

(7) Pick integers satisfying $1 \leq k_{1}<\cdots<k_{r} \leq n$. Let X be the set of subspaces W_{1}, \ldots, W_{r} of \mathbf{F}_{q}^{n} such that $\operatorname{dim} W_{i}=k_{i}$ for all i and $W_{i} \subset W_{i+1}$ for $i<r$.
(a) Find a formula for $|X|$ using by generalizing Example 3.39, i.e., use a q-analogue of a multinomial coefficient.
(b) $|X|$ is also a polynomial in q; find an explicit description of this polynomial using a generalization of the Schubert decomposition of the Grassmannian.

