Math 190A, Fall 2022
Homework 1
Due: October 7, 2022 11:59PM via Gradescope
(late submissions allowed up until October 8, 2022 11:59PM with -25% penalty)
Solutions must be clearly presented. Incoherent or unclear solutions will lose points.
(1) (a) Let X be a set and let I be an index set. Suppose that for each $i \in I$, we have a topology \mathcal{T}_{i} on X.
Prove that $\mathcal{T}=\bigcap_{i \in I} \mathcal{T}_{i}$ is also a topology on X.
Prove that $\mathcal{T} \leq \mathcal{T}_{i}$ for all $i \in I$, and in fact, if there is another topology \mathcal{T}^{\prime} such that $\mathcal{T}^{\prime} \leq \mathcal{T}_{i}$ for all $i \in I$, then $\mathcal{T}^{\prime} \leq \mathcal{T}$ (i.e., \mathcal{T} is the "greatest lower bound" of all of the \mathfrak{T}_{i}).
(b) Let $X=\{1,2,3\}$ and find two topologies \mathfrak{T}_{1} and \mathcal{T}_{2} on X such that $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is not a topology.
(2) Let X be a topological space with topology \mathcal{T}, let A be a subset of X, and let B be a subset of A, i.e., $B \subseteq A \subseteq X$. There are two potentially different topologies we can put on B : First, B is a subset of X so we can give it the subspace topology \mathcal{T}_{B}. Second, we can give A the subspace topology \mathcal{T}_{A} from X, and then give B the subspace topology $\left(\mathcal{T}_{A}\right)_{B}$ that comes from being a subset of A.

Prove that they are actually the same: $\mathcal{T}_{B}=\left(\mathcal{T}_{A}\right)_{B}$.
(3) Let X be a topological space and let A be a subspace. Prove that if U is open in A, then for any other subset B of $X, U \cap B$ is open in the subspace $A \cap B$.
(4) Let X be a topological space and let A, B be subsets of X.
(a) Prove that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
(b) Prove that $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$.
(c) Give an example where $\bar{A} \cap \bar{B}$ is not equal to $\overline{A \cap B}$.
[Hint: There is an example where $X=\mathbf{R}$ and A, B are open intervals.]
(5) Let X be a topological space and let A be a subset of X. Prove the identities

$$
X \backslash \bar{A}=(X \backslash A)^{\circ}, \quad X \backslash A^{\circ}=\overline{X \backslash A}
$$

Optional problems (DON't TURN IN)

(6) Let I be an index set and suppose we have a topological space X_{i} for each $i \in I$. Let X be the disjoint union of all of the X_{i} :

$$
X=\coprod_{i \in I} X_{i} .
$$

Formally, this is the set of pairs $\left\{(i, x) \mid i \in I, x \in X_{i}\right\}$. Let \mathcal{T} be the collection of subsets U of X such that for all $i \in I$, the set $U_{i}=\left\{x \in X_{i} \mid(i, x) \in U\right\}$ is open in X_{i}. Prove that \mathcal{T} is a topology for X.
(7) Let $X=\mathbf{Z}$ be the set of integers. For each pair of integers m, n such that $m \neq 0$, define the subset

$$
b_{m, n}=\{m x+n \mid x \in \mathbf{Z}\} .
$$

(a) Prove that the collection of $b_{m, n}$ (with $m \neq 0$ but no restriction on n) form a basis for a topology, which we will just call \mathcal{T}.
[Remark: Since each $b_{m, n}$ is infinite, all non-empty open sets in \mathcal{T} are infinite.]
(b) Prove that each $b_{m, n}$ is both open and closed in \mathcal{T}.
(c) Prove that

$$
\mathbf{Z} \backslash\{1,-1\}=\bigcup_{p} b_{p, 0}
$$

where the union is over all prime numbers p.
(d) Using the above facts, conclude that there must be infinitely many primes.
[Hint: use proof by contradiction.]
(8) (a) Let X be a topological space. Given a subset A, define $f(A)=\bar{A}$, so that we have a function $f: 2^{X} \rightarrow 2^{X}$ which we call closure. Prove that f satisfies these 4 properties:
(i) $f(\varnothing)=\varnothing$.
(ii) For all $A \subseteq X$, we have $A \subseteq f(A)$.
(iii) For all $A \subseteq X$, we have $f(A)=f(f(A))$.
(iv) For all $A, B \subseteq X$, we have $f(A) \cup f(B)=f(A \cup B)$.
(b) Conversely, suppose that Y is a set and we are given a function $g: 2^{Y} \rightarrow 2^{Y}$ satisying the 4 conditions above. Prove that there is a unique topology on Y so that g is the closure function of this topology.
In particular, this says that we could define topologies in terms of functions satisfying (i)-(iv) instead of with open sets.
(c) Find and prove the analogous statement for the function that takes a subset to its interior.

