Math 190A, Fall 2022 Homework 2 Due: October 14, 2022 11:59PM via Gradescope (late submissions allowed up until October 15, 2022 11:59PM with -25% penalty)

Solutions must be **clearly** presented. Incoherent or unclear solutions will lose points.

- (1) Let $f: X \to Y$ be a function between topological spaces. Let S be a subbasis for Y. Prove that f is continuous if and only if for all $s \in S$, $f^{-1}(s)$ is open in X.
- (2) As usual, define

$$(a,b) = \{x \in \mathbf{R} \mid a < x < b\},\$$
$$(c,\infty) = \{x \in \mathbf{R} \mid c < x\},\$$
$$(-\infty,d) = \{x \in \mathbf{R} \mid x < d\},\$$

and give them all the subspace topology from \mathbf{R} . Prove that

 $(a, b), (c, \infty), (-\infty, d), \mathbf{R}$

are all homeomorphic to each other for any a, b, c, d such that a < b. You are free to use any standard functions from calculus and you do not have to reprove that they are continuous.

- (3) Let X, Y be topological spaces and let $A \subseteq X$ and $B \subseteq Y$ be subsets.
 - (a) If A is closed in X and B is closed in Y, prove that $A \times B$ is closed in $X \times Y$.
 - (b) In general, prove that $\overline{A \times B} = \overline{A} \times \overline{B}$ as subsets of $X \times Y$. To be more precise about the notation, we want $\operatorname{Cl}_{X \times Y}(A \times B) = \operatorname{Cl}_X(A) \times \operatorname{Cl}_Y(B)$.
- (4) Let $f: X \to Y$ be a continuous function. Define $g: X \to X \times Y$ by g(x) = (x, f(x)). Prove that g is an embedding.
- (5) Let A, B, C, D be topological spaces and let $f: A \to C$ and $g: B \to D$ be continuous functions. Define $h: A \times B \to C \times D$ by h(a, b) = (f(a), g(b)). Prove that h is continuous.

OPTIONAL PROBLEMS (DON'T TURN IN)

- (6) Let $f: X \to Y$ be a function between topological spaces. Prove that the following are equivalent:
 - (a) f is continuous.

 - (b) For every subset $B \subseteq Y$, we have $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$. (c) For every subset $B \subseteq Y$, we have $f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ}$.
- (7) Let $X = S^1 \setminus \{(0,1)\}$, given the subspace topology from \mathbb{R}^2 . Define a function $f: X \to \mathbf{R}$ as follows. Given $(a, b) \in X$, there is a unique line through (0, 1) and (a, b) which intersects the x-axis at a point (0, c); define f(a, b) = c. Prove that f is a homeomorphism.

[Hint: You can find explicit formulas for f and its inverse and then conclude that both are continuous using standard calculus facts.]

Find and prove the analogous statement about $S^n \setminus \{(0, 0, \dots, 0, 1)\}$ and \mathbb{R}^n .

(8) Let I be an index set and suppose for each $i \in I$, we have a topological space X_i and a basis B_i for the topology on X_i . Define B to be the collection of $\prod_{i \in I} b_i$ where $b_i \in B_i \cup \{X_i\}$ and $b_i = X_i$ for all but finitely many $i \in I$. Prove that B is a basis for the product topology on $\prod_{i \in I} X_i$.