Math 190A, Fall 2022
Homework 2
Due: October 14, 2022 11:59PM via Gradescope
(late submissions allowed up until October 15, 2022 11:59PM with -25% penalty)
Solutions must be clearly presented. Incoherent or unclear solutions will lose points.
(1) Let $f: X \rightarrow Y$ be a function between topological spaces. Let S be a subbasis for Y. Prove that f is continuous if and only if for all $s \in S, f^{-1}(s)$ is open in X.
(2) As usual, define

$$
\begin{aligned}
(a, b) & =\{x \in \mathbf{R} \mid a<x<b\}, \\
(c, \infty) & =\{x \in \mathbf{R} \mid c<x\}, \\
(-\infty, d) & =\{x \in \mathbf{R} \mid x<d\},
\end{aligned}
$$

and give them all the subspace topology from \mathbf{R}. Prove that

$$
(a, b),(c, \infty),(-\infty, d), \mathbf{R}
$$

are all homeomorphic to each other for any a, b, c, d such that $a<b$. You are free to use any standard functions from calculus and you do not have to reprove that they are continuous.
(3) Let X, Y be topological spaces and let $A \subseteq X$ and $B \subseteq Y$ be subsets.
(a) If A is closed in X and B is closed in Y, prove that $A \times B$ is closed in $X \times Y$.
(b) In general, prove that $\overline{A \times B}=\bar{A} \times \bar{B}$ as subsets of $X \times Y$. To be more precise about the notation, we want $\mathrm{Cl}_{X \times Y}(A \times B)=\mathrm{Cl}_{X}(A) \times \mathrm{Cl}_{Y}(B)$.
(4) Let $f: X \rightarrow Y$ be a continuous function. Define $g: X \rightarrow X \times Y$ by $g(x)=(x, f(x))$. Prove that g is an embedding.
(5) Let A, B, C, D be topological spaces and let $f: A \rightarrow C$ and $g: B \rightarrow D$ be continuous functions. Define $h: A \times B \rightarrow C \times D$ by $h(a, b)=(f(a), g(b))$. Prove that h is continuous.

Optional problems (DON'T TURN IN)

(6) Let $f: X \rightarrow Y$ be a function between topological spaces. Prove that the following are equivalent:
(a) f is continuous.
(b) For every subset $B \subseteq Y$, we have $\overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$.
(c) For every subset $B \subseteq Y$, we have $f^{-1}\left(B^{\circ}\right) \subseteq\left(f^{-1}(B)\right)^{\circ}$.
(7) Let $X=\mathrm{S}^{1} \backslash\{(0,1)\}$, given the subspace topology from \mathbf{R}^{2}. Define a function $f: X \rightarrow \mathbf{R}$ as follows. Given $(a, b) \in X$, there is a unique line through $(0,1)$ and (a, b) which intersects the x-axis at a point $(0, c)$; define $f(a, b)=c$. Prove that f is a homeomorphism.
[Hint: You can find explicit formulas for f and its inverse and then conclude that both are continuous using standard calculus facts.]

Find and prove the analogous statement about $\mathrm{S}^{n} \backslash\{(0,0, \ldots, 0,1)\}$ and \mathbf{R}^{n}.
(8) Let I be an index set and suppose for each $i \in I$, we have a topological space X_{i} and a basis B_{i} for the topology on X_{i}. Define B to be the collection of $\prod_{i \in I} b_{i}$ where $b_{i} \in B_{i} \cup\left\{X_{i}\right\}$ and $b_{i}=X_{i}$ for all but finitely many $i \in I$. Prove that B is a basis for the product topology on $\prod_{i \in I} X_{i}$.

