Math 190A, Fall 2022 Homework 3 Due: October 28, 2022 11:59PM via Gradescope (late submissions allowed up until October 29, 2022 11:59PM with -25% penalty)

Solutions must be **clearly** presented. Incoherent or unclear solutions will lose points.

(1) Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$ be a function such that

$$d_Y(f(a), f(b)) = d_X(a, b)$$

for all $a, b \in X$. Prove that f is an embedding.

(2) Let X be a topological space and define $\Delta_X \subseteq X \times X$ by

$$\Delta_X = \{ (x, x) \mid x \in X \}.$$

Prove that X is Hausdorff if and only if Δ_X is closed.

- (3) Let I be an index set and X_i a topological space for each $i \in I$. Let $x(1), x(2), \ldots$ be a sequence of elements in $\prod_{i \in I} X_i$. Given $x \in \prod_{i \in I} X_i$, prove that $x(1), x(2), \ldots$ converges to x if and only if for all $j \in I$, the sequence $x(1)_j, x(2)_j, \ldots$ converges to x_j .
- (4) Let $f: X \to Y$ be a surjective continuous function and assume that for all open sets $U \subseteq X$, f(U) is also open. Define an equivalence relation \sim on X by $x \sim y$ if f(x) = f(y). Prove that $X/\sim \cong Y$.
- (5) (a) Finish the missing detail in Example 2.4.7 from the notes: given the function $f: [0,1] \to S^1$ defined by $f(x) = (\cos(2\pi x), \sin(2\pi x))$, prove that for 0 < a < b < 1, the images f((a,b)) and $f([0,a) \cup (b,1])$ are open in S^1 .
 - (b) Define an equivalence relation \sim on **R** by $x \sim y$ if x y is an integer. Prove that $\mathbf{R}/\sim \cong S^1$.

Optional problems (don't turn in)

- (6) Let d be a metric on a set X. Prove that $d: X \times X \to \mathbf{R}_{\geq 0}$ is continuous, where X has the metric topology.
- (7) Let d be a metric on a set X. Define $d': X \times X \to \mathbf{R}_{\geq 0}$ by

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

Prove that d' is a metric and that d and d' give X the same metric topology.

[Hint: Define $f: \mathbf{R}_{\geq 0} \to \mathbf{R}$ by f(x) = x/(1+x). To show that d' satisfies the triangle inequality, first prove that f is increasing and that for all $a, b \in \mathbf{R}_{\geq 0}$, we have $f(a) + f(b) \geq f(a+b)$.]

[Remark: d' is *bounded* since the distance between any two points is bounded from above by a constant (in this case 1). This exercise shows that every metrizable space always comes from a bounded metric. In particular, a metric being bounded has no interesting implication on the resulting topology!]