Math 190A, Fall 2022 Homework 6 Due: Friday, December 2, 2022 11:59PM via Gradescope (late submissions allowed up until December 3, 2022 11:59PM with -25% penalty)

Solutions must be **clearly** presented. Incoherent or unclear solutions will lose points.

- (1) Let X and Y be spaces and set {p} = X* \ X and {q} = Y* \ Y. Prove that (X II Y)* ≅ (X* II Y*)/~ where the only nontrivial relation is p ~ q. [Recall that II means "disjoint union", and if A and B are spaces, then a subset U of A II B is open if and only if U ∩ A and U ∩ B are open in A and B, respectively.]
- (2) Let $X = \mathbf{Z}_{>0}$ be the set of positive integers with the discrete topology.
 - (a) Prove that X is locally compact, Hausdorff, and not compact.
 - (b) Prove that X^* is homeomorphic to the subspace $\{0\} \cup \{1/d \mid d \in \mathbb{Z}_{>0}\}$ of **R**.
- (3) Let Y be a Hausdorff space and let $X \subseteq Y$ be a locally compact subspace such that $\overline{X} = Y$. Prove that X is an open subset of Y. Hints at end.
- (4) Let $n \ge 1$ be an integer. Recall that $\mathbf{RP}^n = (\mathbf{R}^{n+1} \setminus \{\mathbf{0}\})/\sim$ where $x \sim y$ if there exists $\lambda \in \mathbf{R} \setminus \{0\}$ such that $x = \lambda y$. Write $[x_1 : \cdots : x_{n+1}]$ for the equivalence class of (x_1, \ldots, x_{n+1}) . Our goal is to show that \mathbf{RP}^n is a compactification of \mathbf{R}^n ; since it's a bit lengthy this problem will be worth 40 points rather than the usual 20.

Define $U \subseteq \mathbb{RP}^n$ to be the subset of equivalence classes of the form $[x_1 : \cdots : x_{n+1}]$ where $x_{n+1} \neq 0$ (this makes sense since whether or not x_{n+1} is 0 does not depend on the actual representative).

(a) Prove that the function $g: U \to \mathbf{R}^n$ given by

$$g([x_1:\dots:x_{n+1}]) = \left(\frac{x_1}{x_{n+1}},\dots,\frac{x_n}{x_{n+1}}\right)$$

is well-defined (i.e., does not depend on the choice of representative for the equivalence class) and is a homeomorphism. Hint at end.

- (b) Prove that $\overline{U} = \mathbf{RP}^n$.
- (c) Finally, prove that \mathbf{RP}^n is Hausdorff.

[You may use that the restriction $\pi|_{S^n} \colon S^n \to \mathbf{RP}^n$ is a quotient map, i.e., $U \subseteq \mathbf{RP}^n$ is open if and only if $(\pi|_{S^n})^{-1}(U)$ is open. This does not follow from definitions and requires a proof, but you can take it for granted for this problem.]

(d) When n = 1, explain why $\mathbb{RP}^1 \setminus U$ is a single point and explain how this implies that $\mathbb{RP}^1 \cong S^1$.

HINTS

3: Hint 1: By Proposition 4.3.19 (taking U = X), each $x \in X$ has a neighborhood $V \subseteq X$ which is open in X such that $\operatorname{Cl}_X(V)$ is compact. Prove that V is also open in Y (see next hint for more help).

Hint 2: Continuing from hint 1, $V = X \cap W$ for some open set W in Y. Explain why each of the following equalities holds:

$$W \subseteq \operatorname{Cl}_Y(W) = \operatorname{Cl}_Y(V) = \operatorname{Cl}_X(V) \subseteq X$$

4a: To show that g is continuous: let $\widetilde{U} = \pi^{-1}(U)$ where $\pi \colon \mathbf{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbf{RP}^n$ is the quotient map. Define $f \colon \widetilde{U} \to \mathbf{R}^n$ by the same formula as g and show that $f(x) = g(\pi(x))$ for all $x \in \widetilde{U}$. Now use an argument very similar to the proof of Proposition 2.4.5.

OPTIONAL PROBLEMS (DON'T TURN IN)

- (5) How do you describe $(X \times Y)^*$ in terms of X^* and Y^* ?
- (6) Prove that \mathbf{CP}^n is a compactification of \mathbf{C}^n and that $\mathbf{CP}^1 \cong \mathbf{S}^2$.
- (7) Pick 0 < k < n. Prove that $\mathbf{Gr}_k(\mathbf{R}^n)$ is a compactification of \mathbf{R}^n and that $\mathbf{Gr}_k(\mathbf{C}^n)$ is a compactification of \mathbf{C}^n .