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1. Definitions

1.1. Set theory preliminaries. A lot of this course is going to involve working with oper-
ations on sets, so let’s set up some common notation and conventions.

First, we need to address indexing objects by a set I. This just means that for each
element i ∈ I, we have some object, usually a set, or a number, that we might denote with a
subscript, like Ui or xi, etc. You’re probably used to the situation where I is a set of integers
like 1, 2, . . . , but we need to be more flexible and can’t always use this. We’ll denote the
objects by notation like {Ui}i∈I .

Usually I has some natural meaning to our context. For example, suppose I = R is the
set of real numbers and Ui is the interval of length 2 centered at i: Ui = [i− 1, i+ 1].

Now let’s focus on the case that we have a fixed set X and our indexed objects are subsets
Ui of X. Then we can define the union and intersection of all of the subsets in the usual way
and we denote them by ⋃

i∈I

Ui,
⋂
i∈I

Ui.

If I is empty, then the standard conventions are that the union of 0 subsets is the empty
set, while the intersection of 0 subsets is all of X.

Here’s a useful identity: let I, J be index sets and let {Ui}i∈I and {Vj}j∈J be subsets of
X indexed by I and J , respectively. Then

(
⋃
i∈I

Ui) ∩ (
⋃
j∈J

Vj) =
⋃
i∈I

⋃
j∈J

(Ui ∩ Vj)

(exercise: prove it).

1.2. What is a topological space? The basic objects of study in this course are topological
spaces and continuous functions.

What “counts” as a topological space has changed over time and while there is now a
standard definition (which we will give soon), it is important to note here that even now
how we think about or define topological spaces can change based on context. Simply put,
while we have a fairly general and elegant definition, it is sometimes “too general” and there
are really pathological examples that we may want to eliminate. A standard way is to define
properties and only consider spaces which satisfy those properties, but other approaches
involve giving different definitions altogether (we may touch on this towards the end).

The definition we will use is via “open sets”. You have likely encountered this idea in
calculus or real analysis via a δ-ε definition. Intuitively, open sets are supposed to be subsets
which have “wiggle room”.

Given a set X, let 2X denote its power set, i.e., the set of all subsets of X.

Definition 1.2.1. Let X be a set. A topology on X is a subset T ⊆ 2X satisfying the
following properties:

(1) ∅ ∈ T.
(2) X ∈ T.
(3) (Finite intersections): For any finite subset {U1, . . . , Un} ⊆ T, their intersection also

belongs to T:

U1 ∩ U2 ∩ · · · ∩ Un ∈ T.
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(4) (Arbitrary unions): For any index set I and collection {Ui}i∈I where Ui ∈ T, their
union is also in T: ⋃

i∈I

Ui ∈ T. �

For (4), it’s important to keep in mind that I does not have to be finite (or even countable).
We really have to allow for all possible index sets.

Definition 1.2.2. A topological space is a pair (X,T) where T is a topology on X. Usually
we’ll just write “X is a topological space” with the unspoken assumption that the information
T is also there to avoid having clunky notation.

If T is a topology on X, then any element of T is called an open subset of X. �

In other words a topology tells us which sets are called “open”. We can rephrase the
definition as saying that we have a topology if and only if the following properties are true:

(1) The empty set is open.
(2) The whole set X is open.
(3) Any finite intersection of open sets is again open.
(4) Any union (including infinite ones) of open sets is again open.

Remark 1.2.3. Using induction, we can replace condition (3) by only requiring that the
intersection of any two open subsets is open (but you cannot do this for (4)!). �

Example 1.2.4. Let X be any set. There are always 2 obvious topologies we can put on
X:

(1) We can take T = 2X . Then every subset is open and it is clear that the conditions
hold. This is called the discrete topology on X.

(2) We can take T = {∅, X}. This is the bare minimum we could possibly do and it
works also. This is the indiscrete topology on X. �

Example 1.2.5. Let X = R be the set of real numbers. We will call a subset U open
if it has the following property: for any x ∈ U , there exists ε > 0 such that the interval
(x− ε, x+ ε) is contained in U . I won’t verify the conditions that these define a topology on
R (you should try it yourself) since in any case this will be a special case of something we
discuss soon. Note that U = ∅ is open: the condition holds automatically because we never
have to test it (there is no x such that x ∈ ∅)! Intuitively, a subset of R is open if every
point has “wiggle room”: you can move a little bit and stay inside of the subset. We will
call this the Euclidean topology on R and it is the default one for R if we don’t specify. �

In this course, we’ll focus more on “natural” examples and “good” properties, but it’s
good to keep in mind that the definition we’ve given is very flexible and general. For that
reason it’s not easy to have a good intuition about arbitrary topological spaces. For example,
try to think about what “wiggle room” means here:

Example 1.2.6. Let X = {1, 2, 3}. Then T = {∅, {1}, {1, 2}, {1, 2, 3}} is a topology on
X. �

Nonetheless, it is good practice to see how far we can go before specializing or tacking on
extra properties. The notion of a topological space is fairly ubiquitous in diverse parts of
mathematics and what is considered pathological in one application might be quite common
in another.

Finally, it will be convenient to compare topologies on the same set.
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Definition 1.2.7. If T1 and T2 are both topologies on a set X, then we say that T1 refines
T2 if T2 ⊆ T1, that is, if being open in T2 implies being open in T1 (or another way, T1 has
all of the open sets of T2 and possibly more). We will also say that T2 is coarser than T1.
We will also write T1 ≥ T2. �

Example 1.2.8. The discrete topology on X refines all topologies on X. The indiscrete
topology is coarser than all topologies on X. So they are, respectively, the biggest and
smallest topology you can put on a set in the language of the above notation. �

Remark 1.2.9. Keep in mind that given two topologies, they might not be comparable at
all, i.e., it might be that neither refines the other (this is an example of a partial ordering).

For example, take X = {1, 2, 3} and consider the topologies T1 = {∅, {1}, {1, 2}, {1, 2, 3}}
and T2 = {∅, {3}, {2, 3}, {1, 2, 3}}. Then neither refines the other. The topology T3 =
{∅, {1}, {2}, {1, 2}, {1, 2, 3}} refines T1 but is incomparable with T2.

We will often be interested in the coarsest topology on a set X satisfying some certain
property (because refinement is a partial ordering, depending on the property, such a topol-
ogy might not exist). �

1.3. Subbases and bases. It is not always convenient to have to specify every single subset
that is open. Instead, we might describe a smaller collection S of subsets and consider the
topology that is “generated” by these subsets, i.e., the coarsest topology that contains S.
For example, for R, every open subset is a union of open intervals, so these open intervals
“generate” the topology: the topology on R is the coarsest one that contains all of the open
intervals. Let’s make this idea more precise.

Definition 1.3.1. Let X be a set and let S ⊆ 2X be a collection of subsets.
Let S ′ ⊆ 2X be the collection of subsets which can be obtained by intersecting any finite

number (including zero) of elements of S.
Finally, the topology T generated by S is denoted T(S), and is the collection of subsets

which are unions (finite or not) of elements of S ′, and S is called a subbasis of T(S).
Remember that the union of 0 sets is empty and that the intersection of 0 sets is all of X,

so T(S) contains both the empty set and X.1 �

That is a mouthful, but to say it another way: first we take all possible intersections of
finitely many elements of S, then we take all unions of the resulting subsets. What does
an element of T(S) look like? It’s a union, over some index set I, of finite intersections of
elements of S. For i ∈ I, let ni be the number of sets that are being intersected. So we can
write it as ⋃

i∈I

(αi,1 ∩ · · · ∩ αi,ni
)

where αi,k ∈ S.
We called the result a topology, but we should first prove that it has the required properties:

Proposition 1.3.2. T(S) is a topology on X.

Proof. We just need to check that the 4 axioms of a topology are satisfied:
(1) The empty set is in T(S) by the reminder given in the definition.
(2) Similarly, the whole set X is in T(S) because of the reminder in the definition.

1Munkres adds the requirement that the union of all of the elements of S gives X, because we want X ∈ T(S).
But this is unnecessary because of the convention about empty intersections.
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(3) We need to check that finite intersections of elements in T(S) are also in T(S). We
actually just need to check that the intersection of two elements U1 and U2 in T(S) is also
in T(S). From what we said above, we can write

U1 =
⋃
i∈I

(αi,1 ∩ · · · ∩ αi,ni
)

where αi,k ∈ S and

U2 =
⋃
j∈J

(βj,1 ∩ · · · ∩ βj,mj
)

where βj,k ∈ S. We have the following formula for their intersection:⋃
i∈I

(αi,1 ∩ · · · ∩ αi,ni
) ∩
⋃
j∈J

(βj,1 ∩ · · · ∩ βj,mj
) =

⋃
i∈I

(⋃
j∈J

αi,1 ∩ · · · ∩ αi,ni
∩ βj,1 ∩ · · · ∩ βj,mj

)
.

Finally, each term αi,1 ∩ · · · ∩ αi,ni
∩ βj,1 ∩ · · · ∩ βj,mj

is also an element of S ′. The double
union can be rewritten as a single union if we use I × J as our indexing set:⋃

(i,j)∈I×J

(αi,1 ∩ · · · ∩ αi,ni
∩ βj,1 ∩ · · · ∩ βj,mj

).

Hence the result is also an element in T(S).
(4) The idea for this one is actually easier than (3), but the notation is more complicated,

so let’s just say it in words. We’re supposed to take a union of elements in T(S) and show it
is also an element in T(S). But each element of T(S) is a union of elements in S ′. But what
is a union of unions? It’s just an even larger union. (exercise: Write out this argument using
notation like in (3). It might be confusing at first, but it’s really useful to do carefully.) �

In fact, T(S) is the coarsest topology that contains S (exercise: prove this). Said differ-
ently, any topology that has all of the elements of S as being open must be a refinement of
T(S). So if we want everything in S to be an open set, we must make all of the elements of
T(S) open as well, and this is the bare minimum that is needed.

Hence, every collection of subsets can be used to create a topology, but the resulting open
subsets are obtained via a 2-step process.

Example 1.3.3. Go back to the case X = R. We take our subbasis S to be the set of open
intervals together with ∅. Then T(S) is the Euclidean topology. However, the open sets in
R are unions of open intervals, there was no mention of taking intersections. That’s because
this example satisfies an extra property: the intersection of two open intervals is again an
open interval, so we have S = S ′. �

Example 1.3.4. What topology do we get if we take S = ∅? What about if S only contains
the singleton subset {x} for some x ∈ X? More generally what if S = {{x1}, . . . , {xn}} for
some x1, . . . , xn ∈ X? �

In general, we can avoid having to take intersections if our subbasis satisfies an extra
condition (which is not as restrictive as the example above):

Definition 1.3.5. Let X be a set and B ⊆ 2X . We call B a basis (for a topology on X),
and the elements of B basis elements if the following condition holds:

(∗) For all x ∈ X, if x belongs to two basis elements b1 and b2, then there is a basis
element b′ such that x ∈ b′ and b′ ⊆ b1 ∩ b2. �
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Alternatively, condition (∗) just says that the intersection of any two basis elements can
be written as the union of other basis elements.

By induction, condition (∗) is equivalent to the following statement (exercise: prove it):

(∗′) For all x ∈ X, if x belongs to n basis elements b1, . . . , bn, then there is a basis element
b′ such that x ∈ b′ and b′ ⊆ b1 ∩ · · · ∩ bn.

Condition (∗) allows us to avoid having to first construct the intermediate set S ′ of finite
intersections as shown by the next result:

Proposition 1.3.6. Let B be a basis. Every open set (except possibly X)2 in the topology
T(B) is a union of elements of B.

Proof. As in the last proof, a general element U ∈ T(B) is of the form

U =
⋃
i∈I

(αi,1 ∩ · · · ∩ αi,ni
)

for some index set I and αi,k ∈ B. We want to argue that we can rewrite this in a way that
does not use intersections. Focus on an element i ∈ I. Set Ai = αi,1 ∩ · · · ∩ αi,ni

. For each
x ∈ Ai, using condition (∗′), there exists a basis element, call it βi,x, such that x ∈ βi,x and
βi,x ⊆ Ai. In other words, we have

Ai =
⋃
x∈Ai

βi,x.

Hence we can rewrite U as
U =

⋃
i∈I

⋃
x∈Ai

βi,x,

which can be written as a single union if we wanted, but the point is that it is nothing more
than a union of basis elements. �

Warning 1.3.7. In linear algebra, a spanning set is a collection of vectors that allows us
to obtain all vectors by taking linear combinations. In that sense, a basis for a topology is
like a spanning set where “linear combination” is replaced by “taking unions”. However it is
not like a linear algebra basis which required everything to be obtained uniquely (different
unions of basis elements in the topology sense could be equal, and this is allowed). �

Hence we can think of subbases and bases as compressing the information required for
specifying a topology. We don’t need to spell out what all of the open sets are, just certain
ones, and the rest can be deduced via the operations of intersection and union (depending on
which one we’re dealing with). Bases are useful because we don’t need to take intersections
to get everything, but as for giving information, subbases can be much more compressed, so
there is a tradeoff.

Example 1.3.8. Now we consider X = Rn. For x ∈ Rn and a positive integer ε, the open
ball centered at x of radius ε is

B(x, ε) = {y ∈ Rn | |y − x| < ε},
i.e., all points at distance less than ε from x. This forms a basis (we’ll check this in a more
general context soon, but you might want to do it yourself), and the resulting topology is

2This is only because in our definition of subbasis, we do not assume that the union of all elements is X.
This isn’t really that important, but to be completely correct, we should point this out.
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called the Euclidean topology on Rn and is the familiar one. When n = 1, the intersection
of two open balls is again an open ball (they’re just intervals), but this fails for n > 1. This
is one example where it’s useful not to require that the intersection of basis elements is again
a basis element. �

1.4. Subspaces. Let X be a topological space and let A ⊆ X be a subset.

Definition 1.4.1. Let (X,T) be a topological space and A ⊆ X a subset. The subspace
topology TA on A is defined by

TA = {A ∩ U | U ∈ T}. �

As usual, we have to get this out of the way:

Proposition 1.4.2. The subspace topology on A is a topology.

Proof. We check the 4 conditions:
(1) ∅ ∈ TA since ∅ = A ∩∅.
(2) A ∈ TA since A = A ∩X.
(3) Finite intersections: pick n elements of TA which we write as A∩U1, . . . , A∩Un where

Ui ∈ T. Then
(A ∩ U1) ∩ · · · ∩ (A ∩ Un) = A ∩ (U1 ∩ · · · ∩ Un).

(4) Unions: pick an index set I and a collection of elements {A ∩ Ui}i∈I from TA where
Ui ∈ T for all i ∈ I. Then ⋃

i∈I

(A ∩ Ui) = A ∩
⋃
i∈I

Ui. �

Proposition 1.4.3. Let B be a basis for the topology T on X. Then

BA = {A ∩ b | b ∈ B}
is a basis for the subspace topology on A. Furthermore, TA = T(BA).

Proof. To check that BA is a basis, we need to check the condition (∗) of the definition.
Suppose x ∈ A and that x ∈ A ∩ b1 and x ∈ A ∩ b2 for some b1, b2 ∈ B. In particular, we
also have x ∈ b1 and x ∈ b2, so since B is a basis for T, there exists b′ ∈ B such that x ∈ b′
and b′ ⊆ b1 ∩ b2. But now we’re done because x ∈ A ∩ b′ and A ∩ b′ ⊆ (A ∩ b1) ∩ (A ∩ b2).

The proof that TA = T(BA) is left as an exercise. �

This gives us an easy way to construct new topological spaces from ones that we already
know. Our main example right now is Rn and taking subsets of Rn will be a good source of
examples for us.

Example 1.4.4. For all n ≥ 0, we define the n-sphere Sn to be the set of unit vectors in
Rn+1:

Sn = {(x1, . . . , xn+1) ∈ Rn+1 |
√
x21 + · · ·+ x2n+1 = 1}.

(The square root is unnecessary in this case.) This is given the subspace topology from
Rn+1.

• When n = 0, S0 is two points: S0 = {1,−1} ⊆ R. The subspace topology on S0 is
the just the discrete topology.
• When n = 1, S1 is the familiar unit circle in R2.
• When n = 2, S2 is the unit sphere in R3 and is what we usually think of as a sphere.
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We number them this way because Sn is “n-dimensional”. We won’t discuss what that means
precisely (this topic is covered in Math 150B), but you can intuitively understand that from
the examples above. �

Example 1.4.5. For all n ≥ 1, the n-dimensional ball Bn is the set of vectors with length
at most 1 in Rn:

Bn = {(x1, . . . , xn) ∈ Rn |
√
x21 + · · ·+ x2n ≤ 1}.

(The square root is unnecessary in this case.) This is given the subspace topology from Rn

and is essentially the “inside” of Sn−1:

• When n = 1, B1 is the interval [−1, 1].
• When n = 2, B1 is the unit disk in R2.

Again, Bn is “n-dimensional”, which is why we index them in this way. �

Example 1.4.6. We can approximately think of the world around us as being R3 so it has
the Euclidean topology. Hence every object around us (like you or your desk, ...) inherits
the subspace topology from R3. �

Remark 1.4.7. If we have a topological space, we might wonder if it can be realized as a
subspace of Rn for some n so that its topology is just the subspace topology from Rn (this
is an instance of an “embedding problem”). In general, the answer is no because being a
subspace of Rn forces extra properties on the topology, but time permitting, we’ll discuss
when the answer is yes. �

Finally, we need to address a possible ambiguity. If A ⊆ X is a subset, then subsets of A
are also subsets of X. However, a set which is open in A might not be open in X:

Example 1.4.8. Take X = R and A = [−1, 1]. Then the set U = (0, 1] is open in A because
(0, 1] = A∩ (0, 2), for example. But it’s not open in R: there is no open interval centered at
1 which stays inside of U . �

So we should introduce new terminology. If U ∈ TA, then we will say that U is open in
A, or open relative to A. As we just saw, being open in A does not imply being open in
X. There is a special case where we don’t need to separate these notions:

Proposition 1.4.9. If A ⊆ X is an open set, then for U ⊆ A, U is open in A if and only
if U is open in X.

Proof. If U is open in X, then we also know that U is open in A because we can write
U = A ∩ U . Conversely, if U is open in A, then by definition, we have U = A ∩ V for
some open set V in X. But A is also open in X, so the same is true for U since it is the
intersection of two open sets. �

1.5. Closed sets. So far, to “know” a topological space, we need to know which subsets
are considered open. The obvious way to do that is to have a list of all of them. But you
could also explain that information in a different way. Here’s an example.

Definition 1.5.1. If X is a topological space, then a subset Z ⊆ X is called closed if its
complement Zc = X \ Z is open. �

Example 1.5.2. For R, the “closed intervals” [a, b] = {x | a ≤ x ≤ b} are closed: its
complement is (−∞, a) ∪ (b,∞) which is open. �
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So if you know what all of the closed subsets are, then you can also determine what the
open subsets are (just take their complements).

By translating the 4 axioms for open sets, we get some basic properties for closed sets:

Proposition 1.5.3. Let X be a topological space. Then:

(1) ∅ is closed.
(2) X is closed.
(3) The union of finitely many closed sets is closed.
(4) The intersection of any collection of closed sets is closed.

Proof. (1) ∅ = X \X.
(2) X = X \∅.
(3) If Z1, . . . , Zn are closed, then Ui = X \ Zi is open and

Z1 ∪ · · · ∪ Zn = (X \ U1) ∪ · · · ∪ (X \ Un) = X \ (U1 ∩ · · · ∩ Un)

and U1 ∩ · · · ∩ Un is open.
(4) If I is an index set and {Zi}i∈I is a collection of closed sets, set Ui = X \Zi. We have⋂

i∈I

Zi =
⋂
i∈I

(X \ Ui) = X \ (
⋃
i∈I

Ui)

and
⋃
i∈I Ui is open. �

Remark 1.5.4. In fact, we could have replaced Definition 1.2.1 (let’s call this the “open set
definition”) with a definition that told us which subsets are closed (let’s call this the “closed
set definition”) and use the properties from the previous result as our axioms.

Is there any reason to prefer the “open set definition” over the “closed set definition”?
Not really, it’s just a matter of convention. Some things might be easier to define in terms
of open sets while others might be easier in terms of closed sets. We’ll just do whatever is
most convenient. �

Warning 1.5.5. In everyday language, “open” is the opposite of “closed”, i.e., something
can’t be both open and closed, but this is not true in topology! For instance, the empty set
is always open, and it’s always closed (same with X). In the discrete topology, every subset
is open and also closed! It’s a rather unfortunate use of language, but it’s so ingrained that
we just have to deal with it. A set which is both open and closed is called clopen. �

Let’s see how closed sets interact with subspaces. If A ⊆ X has the subspace topology,
then by analogy with open sets, we’ll say that a subset Z of A is closed in A, or closed
relative to A, if it is a closed set in the subspace topology on A.

Proposition 1.5.6. Let A ⊆ X be equipped with the subspace topology. A subset Z of A is
closed in A if and only if there exists a closed subset Z ′ of X such that Z = A ∩ Z ′.

Proof. First suppose that Z is closed in A and set U = A \Z. Then U is open in A, so there
exists an open set U ′ of X such that U = A ∩ U ′. But

Z = A \ U = A \ (A ∩ U ′) = A ∩ (X \ U ′)
and X \ U ′ is closed in X. Conversely, suppose that there exists a closed subset Z ′ of X
such that Z = A ∩ Z ′. But then A \ Z = A ∩ (X \ Z ′) and X \ Z ′ is open in X, so A \ Z is
open in A, which means that Z is closed in A. �
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Proposition 1.5.7. If A is closed in X, then for Z ⊆ A, Z is closed in A if and only if Z
is closed in X.

Proof. Same as Proposition 1.4.9. �

1.6. Closure and interior.

Definition 1.6.1. Let X be a topological space and let A be a subset of X.
The interior of A is denoted A◦, or IntX(A), and is the union of all open subsets of X

that are also subsets of A.
The closure of A is denoted A, or ClX(A), and is the intersection of all closed subsets of

X that contain A. �

Just some basic properties that follow from the definitions:

• A◦ is open and A◦ ⊆ A. Furthermore, it contains every other open subset that is
contained in A. Another way to say this is: A◦ is the largest open subset inside of A.
• A is closed and A ⊇ A. Furthermore, it is contained in every other closed subset that

contains A. Another way to say this is: A is the smallest closed subset that contains
A.
• If B ⊆ A, then B ⊆ A and B◦ ⊆ A◦.

Warning 1.6.2. To make sure we understand “largest open set” and “smallest closed set”,
consider a variation. We might want to consider the “largest closed set” contained in A or
the “smallest open set” containing A instead. But actually it might not exist. For example,
take X = R and A = [0, 1]. For every open set that contains A, you can always find a
smaller one that also contains A (why?). Similarly, if A′ = (0, 1), then for every closed set
in A′, you can always find a larger one that is also in A′ (why?). �

It will follow from a homework problem that

A◦ = X \ (X \ A), A = X \ (X \ A)◦

so if we study one of these operations, we technically can translate them to the other one.
We’ll pick closure to focus on.

Let’s give another way to characterize closures. First, some definitions:

Definition 1.6.3. If x ∈ X is a point and U is an open subset that contains x, we say that
U is a neighborhood of x. �

Definition 1.6.4. If two subsets A and B have nonempty intersection, then we say that A
intersects B. �

Proposition 1.6.5. Let A be a subset of a topological space X. Then x ∈ A if and only if
every neighborhood of x intersects A.

Proof. First assume that x ∈ A. Let U be a neighborhood of x. Suppose, for the sake of
contradiction, that U does not intersect A. But then X \ U is a closed set that contains A.
In particular, A ⊆ X \ U . But x ∈ A and x /∈ X \ U , so we have a contradiction. We have
just shown that every neighborhood of x intersects A.

Conversely, now assume that every neighborhood of x intersects A. To show that x ∈ A,
we need to argue that every closed set that contains A must also contain x. So let Z be a
closed set that contains A. Again, for contradiction’s sake, suppose that x /∈ Z. But then
X \Z is a neighborhood of x, and our assumption implies that X \Z intersects A. But that
contradicts the fact that Z contains A. We conclude that x ∈ A. �
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Corollary 1.6.6. Let Y be a subspace of X and let A be a subset of Y . Then ClY (A) =
ClX(A) ∩ Y .

To be clear, ClX(A) is the closure of A when thought of as a subset in the topological
space X, and ClY (A) is the closure of A when thought of as a subset of Y , given the subspace
topology from X. These are different things, but the result tells us that they are very closely
related.

Proof. Pick x ∈ ClY (A). By definition, x ∈ Y . Let U be a neighborhood of x in X. By
definition, Y ∩ U is a neighborhood of x in the subspace topology for Y , and it intersects
A by Proposition 1.6.5. Hence U also intersects A, and since U was general, we again use
Proposition 1.6.5 to conclude that x ∈ ClX(A).

Conversely, suppose that x ∈ ClX(A) ∩ Y . A general neighborhood of x in Y is of the
form Y ∩U where U is a neighborhood of x in X. By Proposition 1.6.5, U intersects A. But
since A ⊆ Y , we can also say that Y ∩ U intersects A since (Y ∩ U) ∩ A = U ∩ A. Using
Proposition 1.6.5 one more time, we conclude that x ∈ ClY (A). �

Example 1.6.7. Take X = R and Y = (−1, 1) and A = (0, 1). Then ClX(A) = [0, 1] and
ClY (A) = [0, 1). �

Definition 1.6.8. Let A be a subset of a topological space X. A point x is a limit point
(also less commonly called cluster point or point of accumulation) of A if x ∈ A \ {x}.
Note that we do not require that x ∈ A (if x /∈ A then A \ {x} = A). �

Using Proposition 1.6.5, x is a limit point if and only if every neighborhood of x intersects
A \ {x}.

Proposition 1.6.9. Let A′ be the set of limit points of A. Then

A = A ∪ A′.

Proof. We will first show that A ∪ A′ ⊆ A. By definition, we have A ⊆ A, so we just need
to show that A′ ⊆ A. So pick a point x ∈ A′. By definition, x ∈ A \ {x}, but A \ {x} ⊆ A,
so x ∈ A, and we have shown that A′ ⊆ A.

Now we show the reverse inclusion A ⊆ A∪A′. For that, pick x ∈ A. If x ∈ A, then we’re
done, so let’s focus on the case that x /∈ A. But then A \ {x} = A, and so x ∈ A = A \ {x},
which means x ∈ A′ by definition. �

This lets us connect the ideas of closed sets and limit points:

Corollary 1.6.10. A is closed if and only if it contains all of its limit points.

Proof. By definition, A is closed if and only if A = A. By the previous formula, the condition
A = A is equivalent to A′ ⊆ A, i.e., A contains all of its limit points. �

1.7. Continuous functions. It will be important to consider functions between topolog-
ical spaces, and especially those that preserve the topology. Continuous functions are the
standard way to do that. By analogy with abstract algebra, these play the role of homomor-
phisms.

Given a function f : A→ B and a subset S ⊆ B, recall that the preimage of S is

f−1(S) = {a ∈ A | f(a) ∈ S}.
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Definition 1.7.1. Let X and Y be topological spaces. A function f : X → Y is continuous
if, for every open subset U ⊆ Y , the preimage f−1(U) ⊆ X is also open. �

At this point, it’s natural to ask if this coincides with other definitions of continuous, like
in calculus (when X = Y = R). It does, but it will be easier to explain this after developing
a few more definitions and results.

Also, we never have to check the condition in this definition for U = ∅ and U = Y because
f−1(∅) = ∅ and f−1(Y ) = X. This doesn’t usually save us any time, but it’s good to point
out.

Remark 1.7.2. It’s probably not clear why this is a good definition (wouldn’t it be more
natural to ask that if V ⊆ X is open then so is f(V ) ⊆ Y ?). I don’t have a good explanation
for why this is what we want, but it turns out to work out really nicely, so we’ll accept for
the moment that this is the better idea to focus on. �

Note that if X has the discrete topology, then any function f : X → Y for any topological
space Y is continuous. Similarly, if Y has the indiscrete topology, then any function f : X →
Y for any topological space X is continuous.

Remark 1.7.3. The intuition here is that the more open sets X has, the easier it is for
functions out of it to be continuous, and the less open sets Y has, the easier it is for functions
into it to be continuous. �

Proposition 1.7.4. The composition of continuous functions is continuous, i.e., if f : X →
Y and g : Y → Z are continuous, then so is g ◦ f : X → Z.

Proof. Let U ⊆ Z be an open subset. Since g is continuous, g−1(U) ⊆ Y is open. Since f is
continuous, f−1(g−1(U)) ⊆ X is also open. Finally,

f−1(g−1(U)) = {x ∈ X | f(x) ∈ g−1(U)}
= {x ∈ X | g(f(x)) ∈ U}
= (g ◦ f)−1(U).

So we have shown that for every open subset of Z, its preimage under g ◦ f is also open,
which means that g ◦ f is continuous. �

Proposition 1.7.5. Let B be a basis for the topology on Y and let f : X → Y be a function.
Then f is continuous if and only if, for all b ∈ B, we have that f−1(b) is open.

Proof. First suppose that f is continuous. Since each b ∈ B is in fact open, we must have
that f−1(b) is open.

Now suppose that for all b ∈ B, we have that f−1(b) is open. Let U ⊆ Y be an open subset
not equal to Y . Then we can write U as a union of basis elements, write it as U =

⋃
i∈I bi

for some index set I. But then

f−1(U) =
⋃
i∈I

f−1(bi).

By our assumption, each f−1(bi) is open, and the union of open sets is again open. In
particular, f−1(U) is open. Since U was arbitrary, this shows that f is continuous. �

It will be convenient to have different ways to check that a function is continuous. First,
we need a definition.
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Definition 1.7.6. Let f : X → Y be a function between topological spaces and pick x ∈ X.
We say that f is continuous at x if, for each neighborhood V of f(x), there is a neighborhood
U of x such that f(U) ⊆ V . �

Example 1.7.7. What does this say when X = Y = R? I claim that is equivalent to
the usual δ-ε definition of continuity at a point x. For now we’ll call it “RA (real analysis)
continuous” to distinguish it from our current definition.

Recall what that says: a function f : R→ R is RA continuous at x, if for all ε > 0, there
exists δ > 0 such that f((x− δ, x+ δ)) ⊆ (f(x)− ε, f(x) + ε) (I’ve used interval notation to
make the translation smoother).

If we assume that a function is continuous at x, then it is RA continuous at x: (f(x) −
ε, f(x) + ε) is a neighborhood of f(x) and (x− δ, x+ δ) is a neighborhood of x.

What about the converse? If f is RA continuous at x, is it continuous at x? Yes: pick
any neighborhood V of f(x). By definition, V must contain an open interval that contains
f(x), and if we shrink it appropriately, we may assume that it is centered at f(x), so it is
of the form (f(x) − ε, f(x) + ε) for some ε > 0. Now since f is RA continuous at x, there
exists δ > 0 such that f((x− δ, x+ δ)) ⊆ (f(x)− ε, f(x) + ε) ⊆ V . Since V was arbitrary, f
is continuous at x. �

What we’d like to know is: if f is continuous at x for all x ∈ X, is that the same as f
being continuous? We’ll prove that in the next result, and when specialized to X = Y = R,
it says that our general topology definition of continuous agrees with the calculus definition
(so we can stop saying “RA continuous”).

Theorem 1.7.8. Let f : X → Y be a function between topological spaces X and Y . The
following statements are equivalent:

(1) f is continuous.

(2) For every subset A ⊆ X, we have that f(A) ⊆ f(A).
(3) For every closed subset Z ⊆ Y , we have that f−1(Z) is closed in X.
(4) For every x ∈ X, we have that f is continuous at x.

Proof. (1) =⇒ (2): First assume that f is continuous. We will show that this implies (2).

So pick a subset A ⊆ X and pick x ∈ A. We need to show that f(x) ∈ f(A), and by
Proposition 1.6.5, it is enough to show that every neighborhood of f(x) intersects f(A).
Let U be a neighborhood of f(x). Since f is continuous, f−1(U) is open, and hence a
neighborhood of x, and so it intersects A (again by Proposition 1.6.5). So we can find an
element y ∈ f−1(U) ∩ A. But then f(y) ∈ U ∩ f(A), so we see that U intersects f(A).

(2) =⇒ (3): Now suppose that (2) holds; we will show it implies (3). Let Z ⊆ Y be a closed

subset and define A = f−1(Z), so that f(A) ⊆ Z. Using (2), we know that f(A) ⊆ f(A) ⊆ Z,
but since Z is closed, we have Z = Z, so in fact f(A) ⊆ Z.

Now we claim that A = A. If x ∈ A, then f(x) ∈ Z, so by definition, we have x ∈
f−1(Z) = A. This proves the claim, and so the inverse image of Z is closed.

(3) =⇒ (4): Now we show that (3) implies (4). Pick a point x ∈ X and a neighborhood
V of f(x). Define Z = Y \ V , which is closed. By (3), f−1(Z) is also closed. Now set
U = X \ f−1(Z), which is open. Note that U contains x: if not, then f(x) ∈ Z, but that’s
not the case. To finish showing that f is continuous at x, it suffices to show that f(U) ⊆ V .
If y ∈ U , then f(y) /∈ Z, which means that f(y) ∈ V , which is what we want.
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(4) =⇒ (1): Finally, we show that (4) implies (1). So pick an open set U ⊆ Y . We want
to show that f−1(U) is open. If f−1(U) = ∅, we can stop, otherwise, pick x ∈ f−1(U). Then
U is a neighborhood of f(x). Since f is continuous at x by (4), there is a neighborhood of
x, let’s call it αx, such that f(αx) ⊆ U . This also means that αx ⊆ f−1(U). This discussion
implies that

f−1(U) =
⋃

x∈f−1(U)

αx

and now we’re done because a union of open sets is again open. �

Now we discuss how continuous functions interact with subspaces.

Proposition 1.7.9. Let A be a subspace of X.

(1) The inclusion i : A→ X defined by i(a) = a is continuous.
(2) (Restricting codomain) If f : Z → X is any continuous function whose image is a

subset of A, then the function g : Z → A defined by g(z) = f(z) is also continuous.
(3) (Expanding codomain) Conversely, if g : Z → A is a continuous function, then the

function f : Z → X given by f(z) = g(z) is also continuous.
(4) (Restricting domain) If f : Z → X is continuous and B ⊆ Z is a subspace, then the

restriction f |B : B → X defined by f |B(x) = f(x) for all x ∈ B is also continuous.

Proof. (1) Let U be any open set in X. Then i−1(U) = A ∩ U is, by definition, open in A.
Hence i is continuous.

(2) Any open set in A can be written as A∩U where U is open in X. Then g−1(A∩U) =
f−1(U) because if x ∈ U \A, then f−1(x) is empty by assumption. But f−1(U) is open since
f is continuous, so we see that g is also continuous.

(3) We have f = i ◦ g where i : A → X is the inclusion map, so f is continuous by (1)
together with Proposition 1.7.4.

(4) Let i : B → Z be the inclusion, which we have seen is continuous. Then f |B = f ◦i. �

Example 1.7.10. Consider the function f : R → R2 given by f(x) = (cosx, sinx). From
basic trigonometry, we know that the image of f is contained in the unit circle S1. You
know from calculus that f is continuous (we’ll discuss a bit more about this later). Hence
the previous result says that the associated function g : R→ S1 with g(x) = (cosx, sinx) is
also continuous. �

Definition 1.7.11. Let I be an index set and {Ui}i∈I a collection of open sets in X. Then
{Ui} is an open covering of X if

⋃
i∈I Ui = X. �

Proposition 1.7.12 (Local formation of continuity). Let {Ui}i∈I be an open covering of X
and equip each Ui with the subspace topology. Let Y be a topological space and let f : X → Y
be a function. Then f is continuous if and only if the restriction f |Ui

: Ui → Y is continuous
for all i ∈ I.

Proof. First assume that f is continuous. Then for all i ∈ I, f |Ui
is continuous by Proposi-

tion 1.7.9(4).
Conversely, assume that each f |Ui

is continuous. Let V ⊂ Y be an open set. Then

f−1(V ) =
⋃
i∈I

f−1(V ) ∩ Ui
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because
⋃
i∈I Ui = X. Next f−1(V ) ∩ Ui = (f |Ui

)−1(V ) and hence is open in Ui. Since
Ui is open in X, there is no difference between being open in Ui or being open in X (see
Proposition 1.4.9) and so we conclude that f−1(V ) ∩ Ui is open in X for all i ∈ I. But then
f−1(V ) is a union of open sets, so is itself open. �

Finally, here’s a useful way to define continuous functions in a piecewise way.

Lemma 1.7.13 (Pasting lemma). Suppose A1, A2 ⊆ X are closed subsets such that A1 ∪
A2 = X. Let Y be a topological space and let f1 : A1 → Y and f2 : A2 → Y be continuous
functions such that for all x ∈ A1 ∩ A2, we have f1(x) = f2(x). Then define g : X → Y by
g(x) = f1(x) if x ∈ A1 and g(x) = f2(x) if x ∈ A2 (by our assumption, there is no ambiguity
if x ∈ A1 ∩ A2). Then g is also continuous.

Proof. By Theorem 1.7.8, it is enough to show that if Z ⊆ Y is any closed subset, then
g−1(Z) is also closed. So let Z be a closed subset. Then g−1(Z) = f−11 (Z)∪ f−12 (Z) because
A1 ∪A2 = X. Since f1, f2 are continuous, f−1i (Z) is closed in Ai for i = 1, 2, and hence also
closed in X by Proposition 1.5.7. So g−1(Z) is also closed in X and we’re done. �

We can extend the previous result to n closed subsets A1, . . . , An and the same proof
works, but we just did n = 2 to make the notation simpler.

Example 1.7.14. You’ve seen this when defining piecewise functions. For example, consider
the function g : R→ R defined by

g(x) =

{
x if x ≤ 0

x2 if x ≥ 0
.

This fits into the pasting lemma situation by taking A1 = (−∞, 0] and A2 = [0,∞) with
f1(x) = x and f2(x) = x2. Then A1 ∩A2 = {0} and f1(0) = 0 = f2(0). Since both f1 and f2
are continuous, we conclude that g is also continuous. �

1.8. Homeomorphisms and embeddings. Finally, we come to the notion of “isomor-
phism”. But we call it something different in topology:

Definition 1.8.1. Let X, Y be topological spaces. A function f : X → Y is a homeomor-
phism if:

(1) f is continuous,
(2) f is a bijection, and
(3) its inverse f−1 is also continuous. �

If a homeomorphism exists between X and Y , then we say that X and Y are homeomorphic
and also write X ∼= Y .

Warning 1.8.2. In abstract algebra, if f is a bijective homomorphism between two groups,
then its inverse f−1 is automatically a homomorphism, so we might think that (3) above is
superfluous. But this is not so, i.e., a continuous bijection could have an inverse which fails
to be continuous. See the next example. �

Example 1.8.3. Let X be any set with at least 2 elements and consider the identity function
f : X → X. If the first X is given the discrete topology and the second X is given any topol-
ogy that is not the discrete topology (like the indiscrete topology), then f is automatically
continuous but f−1 will not be. �
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Proposition 1.8.4. Let f : X → Y be a continuous bijection. Then f is a homeomorphism
if and only if, for all open subsets U ⊆ X, the image f(U) is also open in Y .

Proof. To avoid confusion, let g be the inverse of f . Then for any subset U ⊆ X, we have
f(U) = g−1(U). In particular, f is a homeomorphism if and only if g is continuous (it is the
only extra condition we need to check), and by the identity f(U) = g−1(U), this is equivalent
to f(U) being open for any open subset U . �

Proposition 1.8.5. Let f : X → Y and g : Y → Z be homeomorphisms. Then:

(a) f−1 : Y → X is a homeomorphism.
(b) g ◦ f : X → Z is a homeomorphism.

Proof. (a): First we check that f−1 is also a homeomorphism, so we need to check that the
3 conditions in the definition are true:

(1) Since f is a homeomorphism, we are guaranteed that f−1 is continuous by definition.
(2) Since f is a bijection, the same is true for f−1.
(3) Finally, (f−1)−1 = f , which is continuous because f is a homeomorphism.

(b): Now we check that g◦f is a homeomorphism, again by checking that the 3 conditions
in the definition are true:

(1) g ◦ f is continuous because f, g both are (now use Proposition 1.7.4).
(2) The composition of bijective functions is again bijective.
(3) Finally, (g ◦ f)−1 = f−1 ◦ g−1, and both f−1 and g−1 are continuous since f, g are

homeomorphisms, so again we use Proposition 1.7.4 to conclude that f−1 ◦ g−1 is
continuous. �

Definition 1.8.6. Let f : X → Y be an injective (i.e., one-to-one) continuous function
between topological spaces. We say that f is an embedding if it defines a homeomorphism
of X with its image f(X), where f(X) is given the subspace topology from Y . �

If f is an embedding, then we are free to identify X and its image since they have the
same topology.

Example 1.8.7. Consider the function f : R→ R2 given by f(x) = (x, x2). This is contin-
uous and injective and is also an embedding. For that, we just need to check that f sends
open sets to open sets in the image of f (which is a parabola) and actually we only need to
check that f sends the basis of open intervals to open sets. Let’s consider an open interval
(a, b). The image is the set {(x, x2) | a < x < b}. This is the intersection of the parabola
with the set {(x, y) | a < x < b} which is open (check it). �

Example 1.8.8. Consider the function f : [0, 2π)→ R2 given by f(x) = (sin x, cosx). This
is continuous and injective, but is not an embedding. For example, the subset [0, π/2) is open
in [0, 2π). (no picture here, but will draw in lecture) Its image under f contains the point
(1, 0) but no points in the southeast quadrant. However, for any ε > 0, the ε-ball centered at
(1, 0) will always contain a point on the unit circle which is in the southeast quadrant (this
is a little messy so we’ll avoid doing the calculation rigorously, but you should check it). �

2. Basic constructions

We’ll go through some ways to build new topological spaces using existing ones. Through-
out, we want to keep in mind the intuition from Remark 1.7.3. While the definitions may
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seem arbitrary at first glance, they become more natural if we keep in mind that they are
defined that way so that certain functions are automatically continuous. These are examples
of “universal properties” which you may learn about in more detail in later courses.

2.1. Product spaces. Let I be an index set and suppose we are given a topological space
Xi for each i ∈ I. We define the product

∏
i∈I Xi to be the set of tuples (xi)i∈I where

xi ∈ Xi. When I = {1, . . . , n}, this is the usual product X1 × · · · ×Xn.
Our goal is to discuss how to put a topology on the product.
Given j ∈ I, the projection map

πj :
∏
i∈I

Xi → Xj, πj((xi)i∈I) = xj

simply picks out the element that is indexed by j. Next, suppose we are given subsets
Ai ⊆ Xi for all i ∈ I. Then we can think of the product

∏
i∈I Ai as a subset of

∏
i∈iXi.

Definition 2.1.1. Notation as above, let S be the collection of subsets of
∏

i∈I Xi which are

of the form π−1j (Uj) for some j ∈ I and for some open subset Uj ⊆ Xj. The topology T(S)
generated by S is called the product topology on

∏
i∈I Xi. �

If we define Vi = Xi for i 6= j and Vj = Uj, then π−1j (Uj) =
∏

i∈I Vi.

Example 2.1.2. Suppose that I = {1, 2} so we’re just dealing with two spaces X1, X2.
Given an open subset U1 ⊆ X1, we have π−11 (U1) = U1×X2 and similarly, for an open subset
U2 ⊆ X2, we have π−12 (U2) = X1 ×U2. Hence our set S is all subsets which are either of the
form U1 ×X2 or X1 × U2 where U1, U2 are open. �

Remark 2.1.3. Is the Euclidean topology on Rn the same as the product topology (of n
copies of R)? It is, but we’ll postpone that proof until the next section. �

For the next result, given a collection of subsets Ui ⊆ Xi for i ∈ I, we say that “Ui = Xi

for all but finitely many i” if the set {j ∈ I | Uj 6= Xj} is finite.

Proposition 2.1.4. Let B be the collection of subsets of
∏

i∈I Xi of the form
∏

i∈I Ui where
Ui ⊆ Xi is open, and Ui = Xi for all but finitely many i. Then B is a basis for the product
topology.

Proof. Keep the notation from the definition, so that the product topology is T(S) where S
is the set defined above. We need to check that B is a basis, and that T(B) = T(S).

First, let’s check that B is a basis using the definition. So pick two elements
∏

i∈I Ui and∏
i∈I U

′
i in B. Then (∏

i∈I

Ui

)
∩

(∏
i∈I

U ′i

)
=
∏
i∈I

(Ui ∩ U ′i).

Also

{j ∈ I | Uj ∩ U ′j 6= Xj} = {j ∈ I | Uj 6= Xj} ∪ {j ∈ I | U ′j 6= Xj}
is a union of two finite sets and hence is also finite. This shows that the intersection of two
elements in B is again an element in B. This automatically implies that B is a basis (in the
notation of the definition, we just take b′ = b1 ∩ b2).
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Now we need to check that T(B) = T(S). Actually we’ll prove that B = S ′, the set of
finite intersections of elements in S, which implies this. Pick a finite subset J of I and open
sets Uj ⊆ Xj for j ∈ J . Then if we set Vj = Uj for j ∈ J and Vk = Xk for k /∈ J , then⋂

j∈J

π−1j (Uj) =
∏
i∈I

Vi,

so S ′ = B. �

Here’s the main reason why this is a good definition.

Proposition 2.1.5. (1) The projection maps πj :
∏

i∈I Xi → Xj are continuous for all
j ∈ I.

(2) Let Y be a topological space and suppose we are given functions fi : Y → Xi for all
i ∈ I. Define f : Y →

∏
i∈iXi by f(y) = (fi(y))i∈I . Then f is continuous if and only

if, for all i ∈ I, fi is continuous.

Proof. (1) Let U ⊆ Xj be an open subset. Then π−1j (U) is, by definition, open in
∏

i∈I Xi.
(2) First suppose that f is continuous. Then fi = πi ◦ f , and hence it is a composition of

continuous functions.
Conversely, suppose that fi is continuous for all i ∈ I. We have defined a basis B in the

previous result. To show that f is continuous, it suffices to show that for all b ∈ B, we have
that f−1(b) is open in Y . We can write b =

∏
i∈I Ui where Ui ⊆ Xi is open and Ui = Xi for

all but finitely many i. Then f−1(b) =
⋂
i∈I f

−1
i (Ui). If Ui = Xi, then f−1i (Ui) = Y , and so

we can exclude that term from the intersection without affecting it. So in fact, f−1(b) is an
intersection of finitely many sets of the form f−1i (Ui). Each one is open since fi is continuous,
so we see that f−1(b) is also open. �

Remark 2.1.6. The above result is about functions being continuous where the product is
the domain (first part) and where it is the codomain (second part). Our general heuristic
is that having more open sets makes it easier for the first part to be true, but that would
make it harder for the second part to be true. So actually, we see that the product topology
is “optimal” and has exactly enough open sets for both statements to be true. �

Example 2.1.7. In Proposition 2.1.4, we could instead consider the collection of subsets of
the form

∏
i∈I Ui where Ui ⊆ Xi is open, with no further conditions. This also forms a basis,

and generates a topology on
∏

i∈I Xi called the box topology. If I is finite, then there is
no difference, but otherwise, it refines the product topology and is different from it. The
box product can be useful for constructing counterexamples, but otherwise we’re not really
going to talk about it. �

2.2. Metric spaces. You may have seen metric spaces in your real analysis class, but we’ll
redo some of the basics from scratch. We’ll skip a lot of what’s in Munkres’ text since it
has more to do with analysis than topology, but I at least want to explain why what we’re
talking about is compatible with what you have learned previously. Let R≥0 denote the set
of non-negative real numbers.

Definition 2.2.1. Let X be a set and let d : X ×X → R≥0 be a function. We say that d is
a metric if the following 3 conditions hold:

(1) For all x, y ∈ X, we have d(x, y) = 0 if and only if x = y.
(2) (Symmetry) For all x, y ∈ X, we have d(x, y) = d(y, x).
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(3) (Triangle inequality) For all x, y, z ∈ X, we have d(x, y) + d(y, z) ≥ d(x, z).

The pair (X, d) is called a metric space. �

Example 2.2.2. (1) For X = Rn, the Euclidean metric is defined by

d((x1, . . . , xn), (y1, . . . , yn)) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

It takes some work to show that this satisfies the triangle inequality, but we will skip
that (it should have been covered in Math 140/142).

For n = 1, this can be simplified to d(x, y) = |x− y|.
(2) Let X be any set and define d(x, y) = 1 for all x 6= y and d(x, x) = 0 for all x. This

defines a metric, as is easy to check directly.
(3) (p-adic metric) Fix a prime number p. Given a nonzero integer x, define vp(x) to be

the exponent of the largest power of p that divides x. We get a metric d on the set
of integers Z by

d(x, y) =

{
0 if x = y

p−vp(x−y) else
. �

Definition 2.2.3. Let (X, d) be a metric space. Given x ∈ X and ε > 0, we define the
ε-ball centered at x by

Bd(x, ε) = {y ∈ X | d(x, y) < ε}.
We will just write B(x, ε) if there is no ambiguity about what the metric d is. �

Lemma 2.2.4. The set {Bd(x, ε) | x ∈ X, ε > 0} is a basis for a topology.

Let’s explain the intuition behind the formula you’re about to see. We need to do this:
given balls B(x1, ε1) and B(x2, ε2) and y in their intersection, we need to find δ > 0 such
that

B(y, δ) ⊆ B(x1, ε1) ∩B(x2, ε2).

The key idea is to use the triangle inequality: if z ∈ B(y, δ), we have for i = 1, 2:

d(z, xi) ≤ d(z, y) + d(y, xi) < δ + d(y, xi).

We’d be done if we know how to choose δ so that the last quantity is less than εi. There’s a
lot of ways to do this, but we’ll take δ = min(ε1 − d(y, x1), ε2 − d(y, x2)).

Proof. We need to check the definition. Pick two balls B(x1, ε1) and B(x2, ε2) and suppose
there is a point y in their intersection. Set δ = min(ε1 − d(y, x1), ε2 − d(y, x2)), which is
positive. The argument above shows that B(y, δ) ⊆ B(x1, ε1)∩B(x2, ε2), so we’re done. �

Remark 2.2.5. The “intuition” part above could have been integrated directly into the
proof to make the overall text shorter. Namely, we could have immediately just given the
definition of δ before understanding why and then explain why it works. We have separated
it here for instructive purposes. When writing your own proofs you can do it either way. �

Definition 2.2.6. The topology coming from ε-balls is called the metric topology on X.
In other words: a subset U ⊆ X is open if and only if for all x ∈ U , there exists ε > 0

such that B(x, ε) ⊆ U . �

Keep in mind that X can have many different metrics, and different metrics can give
different topologies, so the notation should technically still refer to d.



20 STEVEN V SAM

Example 2.2.7. (1) When X = Rn, we’ve already introduced this definition where d is
the Euclidean metric.

(2) If X is a finite set with a metric, then the metric topology is always the discrete
topology (why?).

(3) If d(x, y) = 1 for all x, y ∈ X with x 6= y, again the metric topology is the discrete
topology. �

In any case, if we have a metric space (X, d), then we will always automatically think of
this as a topological space with the metric topology unless stated otherwise.

Remark 2.2.8. You may have seen the definition of a continuous function between metric
spaces before using δ-ε: given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is
continuous at x ∈ X if for all ε > 0, there exists δ > 0 such that f(BdX (x, δ)) ⊆ BdY (f(x), ε).
This is equivalent to f being continuous in our sense using the metric topology: the proof
we gave for X = Y = R in Example 1.7.7 carries over with some small changes. �

We should check how this interacts with other constructions: subspaces and products.
For subspaces: if X has a metric d, and A ⊆ X is a subset, then d also defines a metric

on A, which we’ll denote by dA for the next result.

Proposition 2.2.9. Let A ⊆ X be a subset of a metric space. The metric topology on A
given by dA is the same as the subspace topology coming from the metric topology on X.

Proof. The main point is that BdA(x, ε) = Bd(x, ε) ∩ A for any x ∈ A. I’ll leave the rest to
you. �

How about products? For simplicity, we’ll just discuss products of finitely many metric
spaces, but see Munkres for how to deal with arbitrary products.

Definition 2.2.10. Let (X1, d1) and (X2, d2) be metric spaces. The sup metric d on X1×X2

is defined by

d((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)).

More generally, if we have n metric spaces (X1, d1), . . . , (Xn, dn), we can define the sup
metric on X1 × · · · ×Xn by

d((x1, . . . , xn), (y1, . . . , yn)) = max(d1(x1, y1), . . . , dn(xn, yn)). �

Proposition 2.2.11. The sup metric on X1 × · · · ×Xn is a metric.

Proof. The first two properties are straightforward, so let’s focus on the triangle inequality.
Pick points xi, yi, zi ∈ Xi for i = 1, . . . , n. For each i = 1, . . . , n, since di is a metric, we have

di(xi, zi) ≤ di(xi, yi) + di(yi, zi)

≤ max(d1(x1, y1), . . . , dn(xn, yn)) + max(d1(y1, z1), . . . , dn(yn, zn))

= d((x1, . . . , xn), (y1, . . . , yn)) + d((y1, . . . , yn), (z1, . . . , zn))

Since this is true for all i, we conclude that

max(d1(x1, z1), . . . , dn(xn, zn)) ≤ d((x1, . . . , xn), (y1, . . . , yn)) + d((y1, . . . , yn), (z1, . . . , zn)),

which is what we want to show because the left side is d((x1, . . . , xn), (z1, . . . , zn)). �
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Example 2.2.12. If (Xi, di) is R with the Euclidean metric for i = 1, . . . , n, then the sup
metric on Rn is

d((x1, . . . , xn), (y1, . . . , yn)) = max(|x1 − y1|, . . . , |xn − yn|).

This is also called the square metric on Rn: for n = 2, the open balls are squares, and for
higher n, they are n-dimensional cubes. �

Proposition 2.2.13. Let X1, . . . , Xn be metric spaces. The metric topology on X1×· · ·×Xn

coming from the sup metric is the same as the product topology.

Proof. From Proposition 2.1.4, we have the following basis for the product topology: subsets
of the form U = U1 × · · · × Un where Ui ⊆ Xi is an open set. We first show that these
are open in the topology coming from the sup metric. By definition, given xi ∈ Ui for
each i, there exists εi > 0 such that Bdi(xi, εi) ⊆ Ui. Now let ε = min(ε1, . . . , εn). Then
Bd((x1, . . . , xn), ε) ⊆ U (exercise: check this). So this proves that U is open in the sup metric
topology and hence the sup metric topology refines the product topology.

To prove that they are equal, we need to also show that the product topology refines the
sup metric topology. The latter has a basis of open balls: Bd((x1, . . . , xn), ε) for ε > 0 and
xi ∈ Xi. We will show that every open ball is also open in the product topology. This follows
from the following identity:

Bd((x1, . . . , xn), ε) = π−11 (Bd1(x1, ε)) ∩ · · · ∩ π−1n (Bdn(xn, ε))

because both sides are the set of tuples (y1, . . . , yn) such that di(yi, xi) < ε (exercise: check
this). By definition, each π−1i (Bdi(xi, ε)) is open in the product topology, and we’re just
taking a finite intersection of open sets, so Bd((x1, . . . , xn), ε) is also open. �

Next, two different metrics on X can actually give the same topology.

Proposition 2.2.14. Let d and d′ be metrics on X, and let T and T′ be the corresponding
metric topologies. Then T′ refines T if and only if the following condition holds:

(∗) For all x ∈ X, for all ε > 0, there exists δ > 0 such that Bd′(x, δ) ⊆ Bd(x, ε).

Proof. First suppose that T′ refines T. By definition, every open set in T is also open in T′.
In particular, for any x ∈ X and ε > 0, we have that Bd(x, ε) is open in T by definition, and
hence also open in T′. But again by definition, that means that for every y ∈ Bd(x, ε), there
is an open ball (with respect to d′) centered at y that is contained in Bd(x, ε). Now apply
that to y = x and we see that the condition (∗) is true.

Conversely, suppose that (∗) is true. Let U be an open set in T. To show that it is open
in T′, we need to say that for all x ∈ U , there exists δ > 0 such that Bd′(x, δ) ⊆ U . So pick
x ∈ U . Since U is open in T, there exists ε > 0 such that Bd(x, ε) ⊆ U . The existence of δ
is now guaranteed by (∗). �

Corollary 2.2.15. The Euclidean metric and square metric on Rn give the same topology,
which is also the product topology (using that Rn = R× · · · ×R).

Proof. Let d be the Euclidean metric, and temporarily let ρ be the square metric.
To show that their metric topologies are the same, it is the same to say that the Euclidean

metric topology and the square metric topology mutually refine each other. So we need
to verify condition (∗) from the previous result in both directions. This follows from the
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following identity:

Bρ

(
(x1, . . . , xn),

ε√
n

)
⊆ Bd((x1, . . . , xn), ε) ⊆ Bρ((x1, . . . , xn), ε).

The second inclusion is easy to see directly, and the first one says that a cube with radius
ε/
√
n fits inside of a sphere of radius ε (exercise: check this).

Finally, the square metric topology is the same as the product topology by Proposi-
tion 2.2.13. �

That was a lot of work, but the main point is that we have confirmed that all of the
topological concepts encountered in 140/142 are special cases of the definitions in this class.

Finally, one more definition.

Definition 2.2.16. A topological space X is metrizable if there exists a metric d such that
the topology on X is the metric topology from d. �

In other words, metric spaces give us topological spaces, and whatever we get from that
process is called metrizable. We know that not everything is metrizable (for example, any
finite topological space with something that is not the discrete topology). Metrizability is a
“topological property”: if X ∼= Y , then X is metrizable if and only if Y is metrizable. If we
have time, we’ll discuss some theorems at the end of the course about what properties of a
topological space imply that it is metrizable.

2.3. Hausdorff spaces. This is not a construction, but rather a particular property that
topological spaces might possess and is a natural topic to follow metric spaces, so we discuss
it now.

Definition 2.3.1. A topological space X is Hausdorff if, for every pair of points x, y with
x 6= y, there exists a neighborhood U of x and a neighborhood V of y such that U∩V = ∅. �

In other words, in a Hausdorff space, we can always “separate” two different points with
neighborhoods that don’t intersect.

As with metrizability, being Hausdorff is a topological property.

Remark 2.3.2. These spaces are named in honor of Felix Hausdorff. According to Wikipedia,
Hausdorff’s original definition of a topological space included this property as an axiom. It’s
a good property, but given the wide uses of topology in mathematics (including spaces that
fail to have this property), there are plenty of reasons not to require it in the definition. �

Let’s knock out a few properties related to our previous definitions.

Proposition 2.3.3. Every metrizable space X is Hausdorff.

Proof. Suppose X has the metric topology from a metric d. Pick distinct points x, y and let
ε = d(x, y). Set U = B(x, ε/2) and V = B(y, ε/2), which are open since ε/2 > 0. I claim
that U ∩ V = ∅: if not, pick z ∈ U ∩ V . Then

ε = d(x, y) ≤ d(x, z) + d(z, y) < ε/2 + ε/2 = ε,

which is a contradiction. �

Proposition 2.3.4. Every subspace A of a Hausdorff space X is also Hausdorff.
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Proof. Pick distinct x, y ∈ A. Since X is Hausdorff, there exist neighborhoods U, V of x, y
in X that don’t intersect. But then U ∩ A and V ∩ A are neighborhoods of x, y in A that
again don’t intersect. �

Proposition 2.3.5. Every product of Hausdorff spaces is Hausdorff.

Proof. Let I be an index set and suppose we are given a Hausdorff space Xi for each i ∈ I.
Pick two distinct tuples (xi) and (yi) in

∏
i∈I Xi. By definition, there is some index j ∈ I

such that xj 6= yj. Since Xj is Hausdorff, we can find neighborhoods U and V of xj and yj,
respectively, that don’t intersect. But then π−1j (U) and π−1j (V ) are neighborhoods of (xi)
and (yi), respectively, and they don’t intersect. �

Remark 2.3.6. That covers a lot of ground for us already: Rn is metrizable and hence
Hausdorff, and so any subspace of Rn is also metrizable and also Hausdorff. It’s natural
to wonder if there are Hausdorff spaces which are not metrizable. In fact, they do exist.
Depending on how far we get, we’ll see other stronger properties that metrizability implies.
Still, constructing a Hausdorff space which is not metrizable (with proof) involves some
work, so we won’t think too hard about it right now. �

Remark 2.3.7. Having more open sets makes it more likely that a space is Hausdorff. More
formally, if X is a set and T is a Hausdorff topology, then any other topology that refines T

is also Hausdorff.
An extreme example of a non-Hausdorff space is the indiscrete topology (assuming that

X has more than 1 point). �

This is also a good place to discuss sequential limits.

Definition 2.3.8. Let x1, x2, . . . be a sequence of elements of a topological space X. Given
x ∈ X, the sequence converges to x if, for every neighborhood U of x, there exists a positive
integer N such that xn ∈ U for all n ≥ N (in other words, every neighborhood of x must
contain the sequence except for finitely many exceptions). �

Make sure you understand the order of quantifiers here: the value N is allowed to depend
on the neighborhood, so there is no requirement that a single value of N works for every
neighborhood at the same time.

Proposition 2.3.9. If x1, x2, . . . belong to a subset A and converges to x, then x ∈ A.

Proof. By definition, every neighborhood of x contains some xi, so intersects A. �

In general, the converse need not hold, i.e., if x ∈ A, there might not be a sequence of
elements of A converging to x. But it does hold for metrizable spaces.

Proposition 2.3.10. If X is metrizable, and A ⊆ X is a subset, then for any x ∈ A, there
exists a sequence x1, x2, · · · ∈ A that converges to x.

Proof. Let d be a metric giving the topology on X. Since x ∈ A, for each positive integer n,
the neighborhood Bd(x, 1/n) intersects A; let xn be any point inside that intersection. We
claim that x1, x2, . . . converges to x. So let U be any neighborhood of x. There exists ε > 0
such that Bd(x, ε) ⊆ U . So if 1/n < ε, then xn ∈ U . So take N in the definition to be any
integer such that N > 1/ε. �
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If you unpackage this definition for X = R, you get the usual δ-ε definition of convergence.
But be warned: some very strange behavior can happen for general topological spaces.
First, a sequence might not converge to anything (this should not be surprising, this already
happens in R). Second, a sequence might converge to multiple different points!

Example 2.3.11. Let X be any set with the indiscrete topology. Then every sequence
converges to every point. �

Proposition 2.3.12. If X is Hausdorff, then every sequence converges to at most one point.

Proof. Let x1, x2, . . . be a sequence and assume that there are two different points x and y
which the sequence converges to. Since X is Hausdorff, we can find neighborhoods U and
V of x and y, respectively, that don’t intersect. By definition of convergence, there exists N
such that xn ∈ U for n ≥ N , and similarly, there exists N ′ such that xn ∈ V for n ≥ N ′.
But then xm ∈ U ∩ V for m = max(N,N ′), which is a contradiction. �

2.4. Quotient spaces. First, let’s remind ourselves what an equivalence relation is.

Definition 2.4.1. Let X be a set. An equivalence relation on X is a subset R ⊆ X ×X
(the notation is x ∼ y if (x, y) ∈ R) such that:

(1) For all x ∈ X, we have x ∼ x.
(2) (Symmetric) If x ∼ y, then y ∼ x.
(3) (Transitive) For all x, y, z ∈ X, if x ∼ y and y ∼ z, then x ∼ z.

We use the phrase “∼ is an equivalence relation on X” and we write x 6∼ y if (x, y) /∈ R.
A subset S ⊆ X is an equivalence class if:

(1) If x, y ∈ S, then x ∼ y.
(2) If x ∈ S and y /∈ S, then x 6∼ y.

In words, an equivalence class is a subset of elements which are all equivalent to each other,
and contains all of the elements that are equivalent to any of its members.

Every element belongs to an equivalence class, and X/∼ is notation for the set of equiva-
lence classes. For x ∈ X, we use [x] to mean the equivalence class that contains x. There is a
surjective function π : X → X/∼ given by π(x) = [x], which we call the quotient map. �

Remark 2.4.2. When specifying an equivalence relation, we generally need to specify all
pairs that are equivalent, but it can get tedious to have to say things like x ∼ x for all x
(because it must always be true) and also to specify consequences of the transitive property,
i.e., if we say that x ∼ y and y ∼ z, it is understood that we don’t also need to say that
x ∼ z because it’s forced. So we’ll usually just specify the interesting equivalences and omit
the forced ones. �

Example 2.4.3. If X = Z, declaring that x ∼ y if they have the same parity (both odd
or both even) is an equivalence relation, and it has two equivalence classes: the set of even
integers and the set of odd integers, and Z/∼ is also usually called Z/2. Then π(x) is the
set of even integers if x is even and otherwise π(x) is the set of odd integers. �

Now we come to the setting where X has a topology and an equivalence relation. Then
we say that a subset U ⊆ X/∼ is open if π−1(U) is open in X. We call this the quotient
topology on X/∼ and it is the default topology that we use unless otherwise specified.

Proposition 2.4.4. The quotient topology is a topology.
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The proof is left as a homework problem.
Of course, the quotient map π : X → X/∼ is, by definition, continuous.

The quotient topology has a very important property. Suppose f : X → Y is a continuous
function such that f is constant on equivalence classes of ∼, i.e., if x ∼ x′, then f(x) = f(x′).
Then we can define a function g : X/∼ → Y where for any equivalence class S, g(S) is defined
to be f(x) for any x ∈ S (by assumption, it does not matter which element of S is picked).

Proposition 2.4.5. g : X/∼ → Y is continuous.

Proof. First, note that f = g ◦ π by definition. Let U ⊆ Y be an open subset. Then
π−1(g−1(U)) = f−1(U), and f−1(U) is open in X since f is continuous. But then by the
definition of quotient topology, we see that g−1(U) is open in X/∼. �

Remark 2.4.6. The quotient topology is in fact the unique topology on X/∼ such that the
quotient map is continuous, and the above result holds. Compare this to the situation of the
product topology (it solves an optimization problem of having just enough open sets). �

This actually gives us a lot of new examples and new ways to view spaces from before.

Example 2.4.7. Consider X = [0, 1] with the usual subspace topology from R. Define
0 ∼ 1 (remember, we’re omitting spelling out the forced things like x ∼ x, so I won’t say
that next time). I claim that X/∼ is homeomorphic to the circle S1.

First, as in Example 1.7.10 we have a continuous function f : X → R2 given by f(x) =
(cos(2πx), sin(2πx)) whose image lies in S1, so we can replace R2 with S1. Also, f is constant
on equivalence classes, so we have a continuous function g : X/∼ → S1. We also know from
trigonometry that g is a bijection. To show that g is a homeomorphism, we need to show
that if U ⊆ X/∼ is open then so is g(U).

To do that rigorously, let’s consider two separate cases. If U does not contain the equiv-
alence class {0, 1}, then U consists of singleton equivalence classes, and π−1(U) is an open
set in [0, 1] that does not contain 0 or 1, and hence is a union of open intervals. The image
of an open interval in S1 is an arc (minus its end points) which is open in S1 (draw picture
here), so the image of U is a union of open arcs and hence open. If U contains {0, 1}, then
the only difference is that now π−1(U) contains both 0 and 1, so is a union of open intervals
together with the half-intervals [0, a) and (b, 1] for some a, b ∈ (0, 1). But f([0, a) ∪ (b, 1]) is
also an open arc (draw picture here), so this case is also ok. �

That last verification that g−1 is continuous was annoyingly complicated. We’ll see later
how it can be simplified once we talk about compact spaces.

Example 2.4.8. If X is Hausdorff, then is X/∼ also Hausdorff? Unfortunately, this can
fail. Here’s an example we can try to visualize. Start with X = R2 and declare that x ∼ y
if x is a nonzero multiple of y. Then {(0, 0)} is an equivalence class, as is every line through
the origin with (0, 0) removed. But then every neighborhood of the origin intersects every
other equivalence class, so there is no way to separate it from another equivalence class.

What about conditions that guarantee that X/∼ is Hausdorff? There are various theorems
of this form, but probably too complicated to go into, so we’ll just settle for studying special
examples. �

Let’s finish with a few more examples.
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Example 2.4.9. Let n ≥ 0 be an integer and start with X = Rn+1 \ {(0, . . . , 0)}, thought
of as a subspace of Rn+1. Define two points to be equivalent if one is a (nonzero) scalar
multiple of the other. The quotient space X/∼ is called real projective space and is usually
denoted by RPn or Pn

R. This is a Hausdorff space, but I’ll leave the details for you.
If n = 0, this is just a single point, so there’s no mystery about its topology.
If n = 1, then RP1 turns out to be homeomorphic to the circle S1. This is a little involved,

so let’s skip the details for now.
For n ≥ 2, these spaces are new examples for us. RP2 is also called the real projective

plane. It can’t be embedded into R3 so it’s hard to think about or draw, though look up
“Boy’s surface” for an approximation. �

Example 2.4.10. Now let’s consider X = [0, 1] × [0, 1], a unit length square. There are
some interesting quotient spaces we can take by identifying points on the boundary.

(1) Tube (S1 × [0, 1]). For this one, we have (0, y) ∼ (1, y) for all y ∈ [0, 1]. Pictorially,
we draw this as the following diagram:

If you take a (square) sheet of paper and tape together one pair of opposite sides,
that’s the space you get.

(2) Möbius band. For this identify the sides in an opposite way: (0, y) ∼ (1, 1 − y) for
all y ∈ [0, 1]:

Again, take a sheet of paper and tape together one pair of opposite sides, but first
twist it once. This is a surface with only “one side”.

(3) Torus. Now let’s identify both pairs of opposite sides: (0, y) ∼ (1, y) for all y and
(x, 0) ∼ (x, 1) for all x:

Start with the tube in example (1) and now tape together the circles on both sides
without any twisting.

(4) Klein bottle. Identify one pair of sides the normal way and then identify the other
pair in the opposite way: (1, 1− y) ∼ (0, y) for all y and (x, 0) ∼ (x, 1) for all x:

This one you cannot physically do: you would have to take the ring in (1) and
identify the opposite circles in a completely reversed way. The problem is that this
quotient space cannot be embedded in R3 (but it can be embedded in R4). We won’t
prove that though.

(5) Real projective plane. The last variation is to identify sides in the reversed way both
times:

We won’t prove that this is homeomorphic to RP2, but I just wanted to say it for
completeness. �
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There’s another common way that quotient spaces are used, and that is to “glue” together
two topological spaces X and Y along a common subspace. First, the disjoint union X q Y
has the following topology: open sets are the subsets of the form U q V for open subsets
U ⊆ X and V ⊆ Y . Let A ⊆ X be a subspace and suppose we are given a continuous
function f : A→ Y . Then we define ∼ on X q Y by a ∼ f(a) for all a ∈ A (plus everything
else we need to do: f(a) ∼ a and identifying everything with itself). The intuition is that
we are gluing X onto Y along A in a way prescribed by f .

Example 2.4.11. Take X = Y = S1 and take A = {(0, 1)} a single point. Define f(0, 1) to
be any point (it doesn’t matter, but for concreteness, take (0, 1) again). The quotient space
can be drawn as an infinity symbol ∞ (first we’d have to embed this into R2 but let’s skip
the formula). �

Remark 2.4.12. This construction is crucial for the definition of a “CW complex” which
is an important object in algebraic topology. In that case, we’re building spaces by gluing
balls onto existing spaces along its sphere boundary (so X = Bn and A = Sn−1). �

3. Connected spaces

3.1. Definitions and first properties.

Definition 3.1.1. Let X be a (nonempty) topological space. A separator of X is a pair of
nonempty open subsets U and V such that U ∩V = ∅ and U ∪V = X. If X has a separator,
we say that X is disconnected. Otherwise, we say that X is connected. �

Alternatively, X is connected if and only if its only clopen subsets are ∅ and X.
Being connected is a topological property: if X ∼= Y then X is connected if and only if Y

is connected.

Remark 3.1.2. Given how “connected” is defined (the non-existence of something), it will
usually be most natural to prove that a space is connected by assuming that it is not and
arriving at a contradiction. �

Remark 3.1.3. Technically, the empty set can be considered a topological space. Should
it be considered connected? There seem to be good reasons for both possible conventions.
This won’t be an issue for us though, so we don’t need to address it.

Below, when referencing connected spaces, we’ll always assume they are nonempty even
if we forget to specify. �

Example 3.1.4. (1) Let X = {1, 2}. If it has the discrete topology, then {1} and {2}
form a separator, so X is disconnected. If it has the indiscrete topology, then there
is no separator, so X is connected.

(2) If X = [0, 1] ∪ [2, 3], a subset of R, then [0, 1] and [2, 3] give a separator, so X is
disconnected. We will prove soon that intervals are always connected.

(3) Consider the rational numbers Q as a subset of R. Then any subset A of Q with
at least 2 elements is disconnected. For example, if x, y ∈ A and x < y, then we
can always find an irrational number r such that x < r < y, so A ∩ (−∞, r) and
A∩ (r,∞) form a separator for A. Each is nonempty because the first contains x and
the second contains y. �

Definition 3.1.5. Let A ⊆ R be a nonempty set of real numbers. We say that A is convex
if, given a, b ∈ A such that a < b, we have [a, b] ⊆ A. �
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Example 3.1.6. Any interval (with either side open or closed, and allowed to be ±∞) is
convex. In particular, R is convex. �

The following result is very important.

Theorem 3.1.7. A (nonempty) subspace A of R is connected if and only if it is convex.

Proof. First, assume that A is not convex. Then there exist a < c < b with a, b ∈ A but
c /∈ A. Then U = (−∞, c) ∩A and V = (c,∞) ∩A is a separator for A: both are nonempty
because a ∈ U and b ∈ V , they clearly do not intersect, and their union is all of A because
c /∈ A. Hence A is disconnected.

Now assume that A is convex. We prove that A is connected by contradiction. So assume
there is a separator U ′, V ′ for A. Pick a ∈ U ′ and b ∈ V ′. Without loss of generality, we
can assume that a < b (if not, just rename U ′ and V ′). Since A is convex, [a, b] ⊆ A and so
U = U ′ ∩ [a, b] and V = V ′ ∩ [a, b] give a separator for [a, b].

Let c = supU , which recall is the least upper bound of all of the elements in U . From
real analysis, we know both that c exists and c ∈ [a, b]. Then either c ∈ U or c ∈ V , and we
consider both cases separately.

Case 1. Suppose that c ∈ U . Since U is open in [a, b], there exists ε > 0 such that
(c− ε, c+ ε)∩ [a, b] ⊆ U , and since b /∈ U , we know that b /∈ (c− ε, c+ ε) and so [c, c+ ε) ⊆ U .
But c+ ε/2 > c, which contradicts the fact that c is an upper bound for U .

Case 2. Suppose that c ∈ V . As before, since V is open in [a, b], there exists ε > 0 so that
(c− ε, c+ ε)∩ [a, b] ⊆ V . Again, since a /∈ V , we have a /∈ (c− ε, c+ ε), and so (c− ε, c] ⊆ V .
But then c− ε/2 must also be an upper bound for U , which is again a contradiction.

Since both possibilities lead to a contradiction, we must conclude that a separator does
not exist, and hence A is connected. �

We’re now going to examine how the connected property interacts with our previous
definitions.

Proposition 3.1.8. Let f : X → Y be a continuous function. If X is connected, then so is
the image f(X).

Proof. We will prove the contrapositive. Assume that f(X) is disconnected; we will prove
that X is also disconnected. Then we can find a separator U, V for f(X). By definition
of subspace topology, there exist open sets U ′, V ′ of Y such that U = U ′ ∩ f(X) and
V = V ′ ∩ f(X).

Now define A = f−1(U ′) and B = f−1(V ′), which we claim is a separator for X. First,
they are open because f is continuous. Next, they are nonempty: since U is nonempty and
is contained in the image of f , there exists x ∈ X such that f(x) ∈ U ; then x ∈ A, and
similarly for B. Finally, A ∪B = X: for all x ∈ X, we have f(x) ∈ U ∪ V since their union
is f(X), and so x ∈ A ∪B. �

Corollary 3.1.9. Let f : X → Y be a continuous function. If A ⊆ X is a subspace which is
connected, then f(A) is connected.

Proof. Apply the previous result to the continuous function f |A : A→ Y . �

Corollary 3.1.10. If X is connected and ∼ is an equivalence relation, then the quotient
space X/∼ is connected.
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Proof. We have a surjective continuous function π : X → X/∼. �

We’ll mention some examples later when we have more results.

Remark 3.1.11. What about preimages of connected spaces? Take X = [0, 1] ∪ [2, 3] and
take Y = {0}. The (only) function f : X → Y is continuous and Y is connected, but f−1(Y )
is disconnected. So we can’t draw any general conclusions about preimages without further
information. �

Before continuing, let’s combine the above to prove a familiar result in calculus:

Theorem 3.1.12 (Intermediate value theorem). Given a < b ∈ R, let f : [a, b] → R be a
continuous function. For all x, y ∈ [a, b], if r ∈ R satisfies f(x) < r < f(y), then there exists
c ∈ [a, b] such that f(c) = r.

Proof. The conclusion just says that the image is convex. But we know that is true because
[a, b] is connected, which implies that its image is connected, and we just proved that’s the
same as being convex (for subsets of R). �

Knowing how the proof works, you can see that the domain being a closed interval isn’t
crucial: it can be any convex subset of R. But actually it’s not really more general to do
that since once you have a convex set, you can always restrict the function to [x, y] to reduce
to the above statement.

Example 3.1.13. The intermediate value theorem has a lot of applications in calculus,
but that is better suited for another course. Instead, as an application, let’s solve this
exercise from Munkres: if f : S1 → R is continuous, then there exists x ∈ S1 such that
f(x) = f(−x) (−x just comes from thinking of S1 as a subset of R2). Alternatively, there
is a pair of antipodal points that have the same image. Define a function g : S1 → R by
g(x) = f(x)− f(−x). It is equivalent to show that 0 is in the image of g.

First, since S1 is connected (for example, it’s a quotient of an interval as shown in Exam-
ple 2.4.7), the image of g is a convex set. Now pick a point x ∈ S1. If f(x) = f(−x), we’re
done. Otherwise, g(x) is either positive or negative. But g(−x) has the opposite property.
Now by convexity, 0 must be in the image. �

Let’s continue with more properties.

Lemma 3.1.14. Let X be a disconnected space and let U, V be a separator for X. If Y ⊆ X
is a connected subspace, then we must have either Y ⊆ U or Y ⊆ V .

Proof. Consider the subsets Y ∩ U and Y ∩ V . They are open, don’t intersect, and their
union is all of Y . Hence if both are nonempty, they would be a separator for Y . But since
Y is connected, this is not possible, so one of them must be empty. If Y ∩U = ∅, then since
U ∪ V = X, we must have Y ⊆ V . And if Y ∩ V = ∅, then we have Y ⊆ U . �

Proposition 3.1.15. Let X be a topological space and let A be a connected subspace. If
B ⊆ X is a subspace such that A ⊆ B ⊆ A, then B is also connected.

Proof. Suppose for contradiction that B has a separator U, V . Since A is connected, we have
either A ⊆ U or A ⊆ V by Lemma 3.1.14. Without loss of generality, we can assume that
A ⊆ U (rename U and V otherwise). But then A ⊆ U , and also U ⊆ B ⊆ A which means
that U = B and hence B = U ∩ B. By Corollary 1.6.6, we have U ∩ B = ClB(U). Finally,
U is closed relative to B (because V is open relative to B), so we have ClB(U) = U . In
conclusion, B = U , which contradicts that V is nonempty. �
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In particular, the closure of a connected subspace is connected, i.e., adding all of the limit
points does not destroy the connected property. But more generally, adding only some of
the limit points also preserves the connected property.

Remark 3.1.16. The corresponding statement with interiors can fail. For example, take
two closed balls in R2 that intersect in exactly one point. Then their interior is a union of
open balls that don’t intersect, and this is disconnected. �

Proposition 3.1.17. Let X be a topological space and let I be an index set. Suppose for
each i ∈ I, we have a connected subspace Ai ⊆ X. If

⋂
i∈I Ai 6= ∅, then

⋃
i∈I Ai is also

connected.

Proof. We prove this by contradiction, so assume that
⋃
i∈I Ai has a separator U, V . Pick a

point x ∈
⋂
i∈I Ai. Then either x ∈ U or x ∈ V ; without loss of generality, we may assume

that x ∈ U (just rename U and V otherwise). By Lemma 3.1.14, since for each i ∈ I, Ai
is connected, we must have either Ai ⊆ U or Ai ⊆ V . Since x /∈ V and x ∈ Ai, it must
be that Ai ⊆ U for all i. But that implies that

⋃
i∈I Ai ⊆ U , which contradicts that V is

nonempty. �

Remark 3.1.18. Of course, the assumption that the intersection is nonempty is crucial.
For instance, [0, 1] and [2, 3] are connected subspaces of R, but their union is not. �

Finally, we consider product spaces. Let’s just consider the finite case. The infinite case
is more involved, so we’ll leave it as an optional homework problem. First, let’s handle the
product of two spaces.

Proposition 3.1.19. If X, Y are connected, then so is X × Y .

(For a visual aid for the next proof, see Figure 23.2 in Munkres’ book.)

Proof. First, for any y ∈ Y , the subspace X×{y} is homeomorphic to X and for any x ∈ X,
{x}×Y is homeomorphic to Y (left as exercises). In particular, both types of subspaces are
connected. For x ∈ X and y ∈ Y , define

Tx,y = (X × {y}) ∪ ({x} × Y ).

Since this is a union of two connected subspaces with nonempty intersection ((x, y) is in it),
Tx,y is also connected by Proposition 3.1.17.

Now pick a point b ∈ Y . Then

X × Y =
⋃
x∈X

Tx,b

because for any (x, y) ∈ X × Y , we have (x, y) ∈ {x} × Y ⊆ Tx,b. But also, X × {b} ⊆⋂
x∈X Tx,b, so again we conclude from Proposition 3.1.17 that X × Y is connected. �

Corollary 3.1.20. If X1, . . . , Xn are connected topological spaces, then so is X1× · · · ×Xn.

Proof. We can generalize the previous proof, but the notation is a little messy. Instead,
let’s just reduce to the n = 2 case using induction on n. If n = 1, there is nothing to do.
Otherwise, assume we know that the product n − 1 connected spaces is always connected.
The main observation is that X1 × · · · × Xn is homeomorphic to (X1 × · · · × Xn−1) × Xn

(left as an exercise), and the latter is a product of two connected spaces, which we know is
connected by the previous result. �
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Example 3.1.21. All of the examples of quotient spaces we gave like the torus, Möbius
band, and Klein bottle are connected since they are quotient spaces of the unit square which
is the product of two intervals (and hence connected). �

Finally, as mentioned earlier, being connected is a topological property. So if one space
is connected and the other is not, they cannot be homeomorphic. By itself, this is fairly
limited, but there are some variations that give us new information.

If X is connected, define x ∈ X to be a cut point if X \{x} is disconnected. If f : X → Y
is a homeomorphism and x ∈ X, then x is a cut point if and only if f(x) is a cut point of
Y because f restricts to a homeomorphism between X \ {x} and Y \ {f(x)} (check this).
In particular, homeomorphic spaces must have the same number of cut points (whether this
is a finite number or not). If they both have infinitely many, it can also be useful to count
how many non-cut points they have.

Example 3.1.22. In Example 1.8.8, we considered the function g : [0, 2π) → S1 and ex-
plained why it is not a homeomorphism. In fact, these spaces are not homeomorphic because
S1 has no cut points (why?), but [0, 2π) does have cut points (in fact, everything except 0 is
a cut point). So changing the function will not help. �

You can find more examples of this idea in homework.

3.2. Path-connected spaces. Connectedness can be hard to check. There’s a stronger
condition, called “path-connected”, that is easier to check (but then some connected spaces
don’t satisfy it) and it crucially uses the fact that closed intervals in R are connected, which
we proved in the last section. Fortunately, for a large class of examples, such as open
subspaces of Rn, these notions turn out to be equivalent.

Definition 3.2.1. Let X be a (nonempty) topological space. Given x, y ∈ X, a path from
x to y is a continuous function γ : [a, b]→ X for some real numbers a < b such that γ(a) = x
and γ(b) = y.

We say that X is path-connected if, given any two points x, y ∈ X, there exists a path
from x to y. �

“Path-connected” is a topological property.
For c < d, we know (from homework) that there is a homeomorphism f : [a, b] → [c, d],

and we can even find one such that f(a) = c and f(b) = d. In particular, in the definition
of path, the actual choice of a and b does not really matter, since γ ◦ f−1 : [c, d]→ X is also
a path from x to y. So in fact, we could have required that the domain of γ is always [0, 1]
and the definition would logically be equivalent. But it is useful to be flexible because it can
be annoying to have to reparametrize in the middle of a definition or a proof. On the other
hand, sometimes we will deal with several paths at the same time and it can be useful to
force them all to have the same domain. Also, it can be useful to use [0, 1] to avoid having
too many letters, so we’ll usually do that for convenience.

Proposition 3.2.2. If X is path-connected, then X is connected.

Proof. Assume not, so that there is a separator U, V for X. Pick x ∈ U and y ∈ V . Since
X is path-connected, there is a path γ : [0, 1] → X with γ(0) = x and γ(1) = y. But then
γ−1(U) and γ−1(V ) are both open, their union is all of [0, 1] since U ∪ V = X, and are both
nonempty since 0 ∈ γ−1(U) and 1 ∈ γ−1(V ). But we already know that [0, 1] is connected,
so we have a contradiction. �
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The converse is not true, i.e., there exist connected spaces which are not path-connected.
The standard example is the “topologist’s sine curve”, which we’ll discuss soon. We’ll also
want to examine if the results in the previous section hold if we replace “connected” with
“path-connected”. Some do, and with easier proofs, but some are false. Let’s do one since
it will give more information about the topologist’s sine curve example and then do the rest
after the example.

Proposition 3.2.3. If f : X → Y is a continuous function and X is path-connected, then
f(X) is also path-connected.

Proof. Pick two points in f(X). We can write them as f(x) and f(y) for some x, y ∈ X. Let
γ : [0, 1]→ X be a path from x to y. Then f ◦ γ : [0, 1]→ Y is a path from f(x) to f(y). �

Example 3.2.4. Consider the function f : Rn \ {(0, . . . , 0)} → Sn−1 given by f(x) = x/|x|.
This is continuous and surjective. If n ≥ 2, then the domain is path-connected (why?),
so we see that Sn−1 is also path-connected. For n = 1, R \ {0} is disconnected, and so is
S0 = {1,−1}. �

Example 3.2.5. Consider the continuous function f : (0,∞)→ R2 given by f(x) = (x, sin( 1
x
)).

Let X be the image of f . Since the domain is path-connected, X is also path-connected,
and in particular X is connected. The closure X is called the topologist’s sine curve. The
new points that get added are {(0, y) | −1 ≤ y ≤ 1}. I won’t prove that completely, but let
me explain why (0, 0) ∈ X: every neighborhood contains an ε-ball, and we can always find a
positive integer n so that ε > 1/2πn, and f(1/2πn) = (1/2πn, 0) is then in the corresponding
neighborhood of (0, 0).

In any case, X is connected because it is the closure of a connected space (Proposi-
tion 3.1.15). I claim that X is not path-connected. More specifically, there is no path that
begins at a point in the y-axis and ends at a point in X.

Suppose for contradiction that there is such a path, and call it γ : [a, b] → X. Write the
component functions of γ as γ1(t) and γ2(t) so that γ(t) = (γ1(t), γ2(t)). Then γ−11 (0) is a
closed subset of [a, b], let c be its supremum. Since γ(1) ∈ X, we have c < b, and we now
consider the path g : [c, b]→ X obtained by restricting the domain. Now reparametrize the
domain so that our function is actually g : [0, 1]→ X (this will make some formulas simpler),
and let g1 and g2 be its component functions. In particular, g1(0) = 0 and g1(t) > 0 for all
t ∈ (0, 1].

To get a contradiction, we find a sequence of points t1, t2, . . . in [0, 1] such that limn→∞ tn =
0 and g2(tn) = (−1)n: this will show that g2 is not continuous since limn→∞ g2(tn) does not
exist. To define tn, first pick u ∈ (0, g1(1/n)) such that sin(1/u) = (−1)n (this essentially
amounts to taking u to be the reciprocal of a large integer multiple of π). By the intermediate
value theorem applied to the restriction of g1 to [0, 1/n], there exists tn ∈ [0, 1/n] such that
g1(tn) = u. This is the sequence that we want, so we see that X is not path-connected.

Here are some important points that this example illustrates.

• First, a connected space can fail to be path-connected. Furthermore, X is metrizable
because it is a subset of R2, so being connected and metrizable still does not imply
path-connected.
• Second, the closure of a path-connected space can fail to be path-connected, so the

analogue of Proposition 3.1.15 with “connected” replaced with “path-connected” is
not valid. This fails in the worst possible way in this example: any subset Y with
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X $ Y ⊆ X is also not path-connected (the argument above works as long as there
is at least one point on the y-axis in Y ). �

Let’s generalize convexity to subsets of Rn.

Definition 3.2.6. Let A be a (nonempty) subset of Rn. We say that A is convex if, given
a, b ∈ A, the line segment between a and b, {(1− t)a+ tb | t ∈ [0, 1]}, is contained in A. �

Note that for n = 1, this agrees with our previous definition. The next result follows from
the definition.

Proposition 3.2.7. Convex subsets of Rn are path-connected, and hence also connected.

Example 3.2.8. Unlike the n = 1 case, connected subsets need not be convex. For example
take n = 2 and A = R2 \ {(0, 0)}. This is not convex (the line segment through (1, 1) and
(−1, 1) goes through (0, 0)) but it is path-connected. �

Example 3.2.9. A closed or open ball is convex. For simplicity, consider the case of the
open ball B centered at the origin of radius 1. If x, y ∈ B, then for t ∈ [0, 1], we have, using
the triangle inequality

|(1− t)x+ ty| ≤ |(1− t)x|+ |ty| = (1− t)|x|+ t|y| < (1− t) + t = 1. �

Finally, we consider the other results proven. Here it will be convenient to discuss con-
catenation of paths. Say we have 3 points x, y, z ∈ X and that there is a path γ from x to
y and a path γ′ from y to z. From our discussion of reparametrizing the domain, let’s just
assume that the domain of γ is [0, 1] and the domain of γ′ is [1, 2]. Define γ′′ : [0, 2]→ X by

γ′′(t) =

{
γ(t) if 0 ≤ t ≤ 1

γ′(t) if 1 ≤ t ≤ 2
.

By the pasting lemma (Lemma 1.7.13), γ′′ is also continuous, and gives a path from x to z.
This is the concatenation of the paths, and we will denote it by γ′′ = γ ∗ γ′. This is one
instance where it can be annoying to always use the same domain for our paths and why it
is convenient to reparametrize.

We can get a much stronger version of the union of connected subspaces result:

Proposition 3.2.10. Let X be a topological space and let I be an index set. Suppose for
each i ∈ I, we have a path-connected subspace Ai ⊆ X. If Ai ∩Aj 6= ∅ for any i, j ∈ I, then⋃
i∈I Ai is also path-connected.

Proof. Pick x, y ∈
⋃
i∈I Ai. Then there exists j, k ∈ I so that x ∈ Aj and y ∈ Ak. Pick

p ∈ Aj ∩ Ak. Since Aj is path-connected, there is a path from x to p inside Aj (and hence
also in

⋃
i∈I Ai). Similarly, there is a path from p to y in

⋃
i∈I Ai. Now just concatenate the

paths. �

Proposition 3.2.11. Let I be an index set and let Xi be a path-connected space for all i ∈ I.
Then

∏
i∈I Xi is also path-connected.

Proof. Pick tuples (xi) and (yi) in
∏

i∈I Xi. Since Xi is path-connected, there is a path γi
from xi to yi. We may assume the domain is [0, 1]. Now define γ : [0, 1] →

∏
i∈I Xi by

γ(t) = (γi(t)). Since its components are all continuous, γ is also continuous, and it goes
from (xi) to (yi). �
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3.3. Components and local properties. Although general spaces need not be (path-
)connected, we can break them into pieces, called components, which are. We handle the
connected version first.

Definition 3.3.1. Let X be a (nonempty) topological space. For x, y ∈ X, define x ∼ y if
there exists a connected subspace A ⊆ X such that x, y ∈ A. We will show that ∼ is an
equivalence relation soon, but assuming that it is, the equivalence classes of ∼ are called the
connected components of X. �

Lemma 3.3.2. ∼ is an equivalence relation.

Proof. For all x ∈ X, A = {x} is connected, so x ∼ x.
It is clear from the definition that if x ∼ y, then also y ∼ x.
Now suppose x ∼ y and y ∼ z. Then there exist connected subspaces A and B so that

x, y ∈ A and y, z ∈ B. But then A ∩ B 6= ∅ since it contains y, so A ∪ B is connected (by
Proposition 3.1.17) and contains x and z, so x ∼ z. �

Proposition 3.3.3. (1) If A is any connected subspace of X, then A is contained in
some connected component.

(2) Each connected component is a connected subspace of X.
(3) Any distinct pair of connected components don’t intersect, and the union of all con-

nected components is X.

Proof. (1) If not, then A intersects two different equivalence classes, so that there exists x, y
such that x 6∼ y but x, y ∈ A. But that contradicts the definition of ∼.

(2) Let C be a connected component of X and pick any point x ∈ C. For all y ∈ C,
we have x ∼ y and hence there is a connected subspace Ay of X such that x, y ∈ Ay. We
have Ay ⊆ C by (1). Next x ∈

⋂
y∈C Ay, so this intersection is nonempty, hence

⋃
y∈C Ay is

connected (by Proposition 3.1.17), but this union is just C.
(3) This is a general fact about equivalence classes. �

It follows from the above result that a subspace A is a connected component if it is
connected, and given any other connected subspace B such that A ⊆ B, we must have
A = B, i.e., A is a maximal (with respect to inclusion) connected subset.

Example 3.3.4. If X = [0, 1]∪ [2, 3], then it has two connected components, which are [0, 1]
and [2, 3], since they are both connected, and not properly contained in any other connected
subspace of X. �

Next, we deal with the path-connected version.

Definition 3.3.5. Let X be a topological space. For x, y ∈ X, define x ∼ y if there is a
path from x to y. We will show that ∼ is an equivalence relation soon, but assuming that it
is, The equivalence classes of ∼ are called the path components of X. �

Lemma 3.3.6. ∼ is an equivalence relation.

Proof. For all x ∈ X, there is a constant path γ : [0, 1]→ X given by γ(t) = x for all t. It is
clearly continuous.

If there is a path γ : [0, 1]→ X with γ(0) = x and γ(1) = y, then define γ′ : [0, 1]→ X by
γ′(t) = γ(1− t). This is a path from y to x.

Finally, for the transitive property, we can concatenate paths, which was discussed in the
last section. �
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Proposition 3.3.7. (1) If A is a path-connected subspace of X, then A is contained in
some path component.

(2) Each path component is a path-connected subspace of X.
(3) Any distinct pair of path components don’t intersect, and their union is all of X.

The proof is similar to the previous version, so we we’ll leave it as an exercise. Also, similar
comments apply here: the path components are exactly the subspaces which are maximal
path-connected subspaces.

Corollary 3.3.8. Every path component of X is contained in a connected component of X.

Proof. A path component is path-connected, and hence connected, and we’ve already seen
that each connected subspace is contained in some connected component. �

Example 3.3.9. Consider the topologist’s sine curve X (use the same notation from Ex-
ample 3.2.5). Then X is connected, so it only has one component. The path components
of X are X = X ∩ {(x, y) | x > 0} and the line segment between (0,−1) and (0, 1). Both
are path-connected, and the argument in the example shows that there is no path that joins
points between these two subsets. �

Now we address the following question: if X is connected, what further property can we
require so that X must also be path-connected? There are local versions of (path-)connected
that help us here.

Definition 3.3.10. Let X be a topological space and pick x ∈ X.
Then X is locally connected at x if, for every neighborhood U of x, there exists a

connected neighborhood V of x such that V ⊆ U .
Similarly, X is locally path-connected at x if, for every neighborhood U of x, there exists

a path-connected neighborhood V of x such that V ⊆ U .
If X is locally connected at all points, then X is called locally connected. Similarly, if X

is locally path-connected at all points, then X is called locally path-connected. �

We call these “local” properties because they concern the behavior near points, i.e., one
may discard parts of the space without affecting the validity of the definition of being locally
(path-)connected at x. The original properties, by contrast, are “global” properties.

Proposition 3.3.11. If X is locally connected, then so is every open subspace. Similarly, if
X is locally path-connected, then so is every open subspace.

Proof. This follows from the definitions: if A is an open subspace and x ∈ A, then a neigh-
borhood U of x in A is also a neighborhood of x in X, so we can find a neighborhood V of x
contained in U which is either connected or path-connected (depending on which case we’re
discussing). �

Now we have 4 properties: connected, path-connected, locally connected, and locally
path-connected. We already know that path-connected implies connected, and so locally
path-connected implies locally connected.

It’s a little unintuitive, but the local and global properties are essentially independent of
each other.

Example 3.3.12. Let X = [0, 1] ∪ [2, 3]. Then X is locally path-connected (and hence
locally connected) but not path-connected, or even connected. So neither local property
implies either global property. �
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Example 3.3.13. Let K be the set {0} ∪ {1/n | n ∈ Z>0}. Define the comb space X as
the following subspace of R2:

X = {(x, y) | x ∈ K, 0 ≤ y ≤ 1} ∪ {(x, 0) | 0 ≤ x ≤ 1}.
Here is a visualization:

(I only used {0, 1, 1/2, . . . , 1/50} from K since there isn’t enough resolution to distinguish
any further, but there would not be a “gap” between the black bar and the rightmost line if
we used all of K.)

Then X is path-connected, and hence connected: any point has a path to some point on
the bottom segment just by going straight down, and any two points on the bottom segment
are connected by a path as well.

However, I claim that X is not locally connected at a = (0, 1) (and hence also not locally
path-connected at (0, 1)). Let U = X ∩ B(a, 1), which is a neighborhood that does not
intersect the bottom segment. Now let V be any neighborhood of x that is contained in
U . Since V is open, there exists ε > 0 such that X ∩ B(a, ε) ⊆ V . Let n be a positive
integer such that 1/n < ε, and let δ be any irrational number in the interval (0, 1/n).
Then V ∩ {(x, y) | x < δ} and V ∩ {(x, y) | x > δ} are both open subsets of V , both are
nonempty (the first contains (0, 1) and the second contains (1/n, 1)), and their union is all
of V because no point of V has an irrational x-coordinate (remember, V doesn’t intersect
the bottom segment). So V is disconnected, and we’ve established that X is not locally
connected at (0, 1). �

We already know that connected does not imply path-connected, so all that remains is
asking if locally connected implies locally path-connected. Again there is a counterexample,
but we’ll skip that discussion.

Now let’s see what these local conditions imply.

Proposition 3.3.14. Let X be a topological space.

(1) X is locally connected if and only if for every open subspace U ⊆ X, every connected
component of U is open in X.

(2) X is locally path-connected if and only if for every open subspace U ⊆ X, every path
component of U is open in X.

Proof. (1) First suppose that X is locally connected. Let U be an open subspace and let C
be a connected component of U and pick x ∈ C. Since X is locally connected, there is a
connected neighborhood Vx of x such that Vx ⊆ U . Since Vx is connected and intersects C,
we must in fact have Vx ⊆ C. But then C =

⋃
x∈C Vx, so C is open in X since each Vx is

open in X.
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Now suppose that every connected component of every open subspace is open in X. We
will show that X is locally connected. Pick x ∈ X and a neighborhood U of x. Let V be
the connected component of U that contains x. By assumption, V is open in X, and hence
we see that the definition of locally connected is satisfied.

(2) Same as above, just replace “connected” with “path-connected” and “connected com-
ponent” with “path component” everywhere. �

Proposition 3.3.15. Let X be locally path-connected. Then every connected component of
X is path-connected. In particular, every path component is a connected component and
every connected component is a path component.

Proof. Let C be a connected component of X and pick x ∈ C. Let P be the path component
that contains x. We know that P ⊆ C, and I claim that P = C. If this fails, then we can
write C \ P as a union of path components. Since locally path-connected implies locally
connected, we know from the previous result that C is open in X, and that each path
component of C (these are also path components of X) is open in X, and so we see that P
and C \ P give a separator for C, which contradicts that C is connected. �

Corollary 3.3.16. If X is locally path-connected and U ⊆ X is an open connected subspace,
then U is path-connected.

Proof. We’ve already seen that U is locally path-connected, so we can apply the previous
result to U , noting that U is a connected component of itself. �

Remark 3.3.17. Euclidean space Rn is locally path-connected since we’ve already seen that
(open) balls are path-connected and every neighborhood always contains an open ball.

(1) This previous result then tells us that there is no distinction between connected and
path-connected for open subsets of Rn. This is good because path-connected is a
more intuitive notion and is probably what we think of when we think about being
“connected” in a colloquial sense. Non-open subspaces are a different story (as we’ve
seen with the topologist’s sine curve).

(2) “n-Manifolds” are spaces such that every point has a neighborhood that is home-
omorphic to Rn (there are more conditions but we’re not defining manifold here).
This is a large class of important topological spaces, and the previous result says that
they are connected if and only if they are path-connected. Examples of manifolds
that we’ve seen include Euclidean space itself, spheres, and projective space. �

4. Compact spaces

4.1. Definitions and first steps. The definition of compact was likely covered in your
analysis class, but we’ll revisit it from the topological perspective.

Recall that an open covering of a topological space X is a collection of open sets {Ui}i∈I ,
where I is some index set, such that

⋃
i∈I Ui = X.

Definition 4.1.1. Let X be a topological space. We say that X is compact if, given any
open covering {Ui}i∈I of X, there exists a finite subset J ⊆ I such that {Uj | j ∈ J} is also
an open covering of X. We will call {Uj | j ∈ J} a finite subcovering. �

Without the symbols: a space is compact if every open covering has a finite subcollection
which is also an open covering.

As with our other definitions, being compact is a topological property.
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Example 4.1.2. We can’t do much with just the definition, but here are some examples of
compact spaces.

(1) If X is finite, then it is automatically compact.
(2) If x1, x2, . . . is any sequence of points in a space X with a limit point x, then the subspace
{x, x1, x2, . . . } is compact: given an open covering, one of the open sets in that covering
contains x and hence contains all but finitely many of the xi. Now pick one open set in
the covering for each of the remaining points to get a finite subcovering. For a concrete
example, take {0, 1, 1/2, 1/3, 1/4, . . . } as a subspace of R. �

Example 4.1.3. And here are some examples of non-compact spaces.

(1) R is not compact: we can cover it with the open subsets (i− 1, i+ 1) where i varies
over all integers. But there’s no way to reduce that to a finite subset which also covers
R. More generally, Rn is not compact for any n ≥ 1 by considering the collection of
open balls {B(x, 1) | x ∈ Zn}.

(2) Any open interval in R, such as (0, 1) is not compact: consider the open covering
{(1/n, 1) | n ∈ Z>0}. �

Our first main goal is to give necessary and sufficient conditions for subspaces of Rn to be
compact (the Heine–Borel theorem). This will give a large class of examples; in the process,
we’ll develop some general results. The necessary conditions are easier and apply to all
metrizable spaces, so we’ll do that first. First, it’s useful to extend the covering definition
to subspaces of X.

Definition 4.1.4. Let Y be a subspace of X. Let I be an index set and Ai a subset of X
for each i ∈ I. We say that {Ai}i∈I covers Y if Y ⊆

⋃
i∈I Ai. �

Lemma 4.1.5. Let Y ⊆ X be a subspace. Then Y is compact if and only if for every
covering {Ai}i∈I of Y such that Ai is an open subset of X for all i ∈ I, there is a finite
subset J ⊆ I such that {Aj}j∈J covers Y .

Proof. First suppose that Y is compact. Let {Ai}i∈I be a covering of Y where the Ai are
open subsets of X. Then {Ai ∩ Y }i∈I is an open covering of Y , so there is a finite subset
J ⊆ I such that {Aj ∩ Y }j∈J is also an open covering of Y . But then {Aj}j∈J covers Y .

Conversely, suppose that every covering of Y by open subsets of X has a finite subset that
also covers Y . Let {Ui}i∈I be an open covering of Y . By definition of subspace topology, for
each i ∈ I, there is an open subset Vi of X such that Ui = Vi ∩ Y . But then {Vi}i∈I covers
Y , so by assumption there is a finite subset J ⊆ I such that {Vj}j∈J also covers Y . Then
{Uj}j∈J is also an open covering of Y . �

Proposition 4.1.6. Let X be a Hausdorff and let A ⊆ X be a compact subspace.

(1) Given x ∈ X \ A, there exist open subsets U, V of X such that x ∈ U , A ⊆ V , and
U ∩ V = ∅.

(2) A is a closed subset.

Proof. We may assume A 6= ∅ since the case A = ∅ is trivial to deal with.
(1) For each y ∈ A, since X is Hausdorff, we can separate x and y by open neighborhoods

Uy and Vy, i.e., x ∈ Uy, y ∈ Vy, and Uy ∩ Vy = ∅. Then {Vy}y∈A covers A, and by
Lemma 4.1.5, there is a finite subset J ⊆ A such that {Vy}y∈J also covers A. Now define

V =
⋃
y∈J

Vy, U =
⋂
y∈J

Uy.
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Both are open because J is finite, A ⊆ V by definition of J , x ∈ U because x ∈ Uy for all
y, and finally U ∩ V = ∅ because if z ∈ V , then z ∈ Vj for some j ∈ J , which means that
z /∈ Uj and hence z /∈ U .

(2) For each x ∈ X \ A, let bx be the subset U guaranteed by (1). Then bx ∩ A = ∅, i.e.,
bx ⊆ X \A, and x ∈ bx, so we conclude that X \A =

⋃
x∈X\A bx is a union of open sets, and

hence is open. �

Definition 4.1.7. Let (X, d) be a metric space. A subset A ⊆ X is bounded (with respect
to d) if there exists a constant N such that d(x, y) ≤ N for all x, y ∈ A. �

Warning 4.1.8. Being bounded is not a topological property and heavily depends on the
choice of metric! A consequence of HW3, Problem 7 is that for any metric space (X, d),
there exists another metric d′ such that X is bounded with respect to d′, while (X, d′) and
(X, d) have the same metric topology. On the other hand, there are plenty of metric spaces
which are unbounded (for instance, X = R with the Euclidean metric).

As a concrete example, consider X = Z as a subset of R. Then it inherits the Euclidean
metric d and this gives the discrete topology on X, and X is unbounded with respect to d.
But the trivial metric d′(x, y) = 1 for all x 6= y also gives the discrete topology on X and X
is bounded with respect to d′. �

Proposition 4.1.9. Let X be a metrizable space. If A ⊆ X is a compact subspace, then A
is closed and bounded with respect to every metric that realizes the topology on X.

Proof. We’ve already seen that metrizable spaces are Hausdorff, so the previous result implies
that A is closed. Now let d be any metric whose metric topology is the one on X. Pick any
point x ∈ X and consider the collection of open balls Bd(x, n) as n varies over all positive
integers. This is an open covering of X, so in particular it covers A. Since A is compact,
some finite subcollection also covers A; let N be the largest n so that Bd(x,N) is in that
finite collection. In particular, d(x, y) < N for all y ∈ A. So if y, z ∈ A, then we have

d(y, z) ≤ d(x, y) + d(x, z) < 2N

so A is bounded by 2N . �

Now we work towards giving sufficient conditions for compactness, which will take more
effort.

Proposition 4.1.10. If X is compact and A ⊆ X is a closed subspace, then A is also
compact.

Proof. Let {Ui}i∈I be a covering of A by open subsets of X. Then {X \ A} ∪ {Ui}i∈I is
an open covering of X. Since X is compact, there is a finite subcollection that is also an
open covering of X. If this collection uses X \ A, then delete it, otherwise do nothing. The
result is a finite subcollection of our original covering that also covers A, so A is compact by
Lemma 4.1.5. �

Lemma 4.1.11. Let B be a basis for the topology on X. Suppose that for every open covering
{bi}i∈I of X such that bi ∈ B for all i ∈ I, there is a finite subset J ⊆ I such that {bj}j∈J is
an open covering for X. Then X is compact.

In other words, in the definition of compactness, we can always assume that the open sets
in the covering come from a particular basis.
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Proof. Let {Ui}i∈I be an open covering of X. If Ui = X for some i, then {X} is a finite
subcovering, so we may assume Ui 6= X for all i ∈ I. For each x ∈ X, there exists i(x) ∈ I
such that x ∈ Ui(x), and by Proposition 1.3.6, there exists bx ∈ B such that x ∈ bx and
bx ⊆ Ui(x). Then {bx}x∈X is an open covering of X by basis elements, so by assumption,
there is a finite subset J ⊆ X so that {bj}j∈J is also an open covering. But then {Ui(j)}j∈J
is a finite subcovering of our original open covering, so X is compact. �

Proposition 4.1.12. If X1, . . . , Xn are compact spaces, then X1×· · ·×Xn is also compact.

Proof. By induction, it suffices to prove this in the special case where n = 2.
Consider an open covering of X1×X2 of the form {Ui×Vi}i∈I where Ui ⊆ X1 and Vi ⊆ X2

are open for all i ∈ I. By Lemma 4.1.11, it suffices to check that these special kinds of open
coverings have finite subcoverings.

Pick y ∈ X2. Then X1 × {y} ∼= X1 is compact, so there is a finite subset J(y) ⊆ I such
that {Uj × Vj}j∈J(y) covers X1 × {y}. If y /∈ Vj for some j ∈ J(y), we can safely omit it and
still have a covering of X1 × {y}, so without loss of generality, we can assume that y ∈ Vj
for all j ∈ J(y). Now define

V (y) =
⋂

j∈J(y)

Vj.

Since J(y) is finite, this is an open set in X2 which contains y.
Claim: X1 × V (y) ⊆

⋃
j∈J(y)(Uj × Vj).

To prove this, pick (x, z) ∈ X1 × V (y). Since X1 × {y} ⊆
⋃
j∈J(y)(Uj × Vj), there exists

j ∈ J(y) such that x ∈ Uj. But also z ∈ Vj since z is in all of the Vj, so (x, z) ∈ Uj × Vj,
which proves the claim.

Next, {V (y)}y∈X2 is an open covering of X2. Since X2 is compact, there is a finite subset
{z1, . . . , zn} ⊆ X2 so that {V (z1), . . . , V (zn)} covers X2. In particular,

X1 ×X2 = (X1 × V (z1)) ∪ · · · ∪ (X1 × V (zn)) ⊆
⋃

j∈J(z1)∪···∪J(zn)

(Uj × Vj),

so we have found a finite subcovering of {Ui × Vi}i∈I . �

Remark 4.1.13. We can go one step further: there is a generalization of Lemma 4.1.11
where B is only assumed to be a subbasis. This generalization is the “Alexander subbasis
theorem” which relies on Zorn’s lemma. Using that, one can prove Tychonoff’s theorem: all
products (not just finite ones) of compact spaces are compact.

Zorn’s lemma is an important general set theory tool that has plenty of uses in math, so is
worth learning. I’ll outline the steps of this discussion as an optional homework problem. �

Theorem 4.1.14. Given real numbers a ≤ b, the closed interval [a, b] is compact.

Proof. If a = b, this is obvious, so we can assume a < b.
Let {Ui}i∈I be an open covering of [a, b]. If a ≤ x < b, define Cx to be the set of y such

that x < y ≤ b and [x, y] can be covered by finitely many of the Ui (i.e., there exists a finite
subset J ⊆ I such that [x, y] ⊆

⋃
j∈J Uj).

Claim 1: For all x ∈ [a, b), Cx is not empty.
Proof of Claim 1: There exists i ∈ I such that x ∈ Ui. In particular, since x 6= b, and Ui

is open, there exists ε > 0 such that [x, x+ ε) ⊆ Ui. Then x+ ε/2 ∈ Cx because {Ui} covers
[x, x+ ε/2]. QED



NOTES FOR MATH 190A 41

In particular, Ca 6= ∅, so we can define c = supCa.

Claim 2: c ∈ Ca.
Proof of Claim 2: There exists i ∈ I such that c ∈ Ui. Since c > a by definition, there

exists ε > 0 such that (c−ε, c] ⊆ Ui. Now, Ca∩(c−ε, c] 6= ∅: if it were empty, then c−ε would
also be an upper bound for Ca, contradicting that c = supCa. So pick d ∈ Ca∩ (c− ε, c]. By
definition, [a, d] can be covered by finitely many open sets Uj1 , . . . , Ujn for some j1, . . . , jn ∈ I.
But now [a, c] = [a, d] ∪ [d, c] is covered by Uj1 , . . . , Ujn , Ui, so c ∈ Ca. QED

Claim 3: c = b.
Proof of Claim 3: Suppose that c 6= b. Then from Claim 1, we have Cc 6= ∅, so we can

pick y ∈ Cc. By Claim 2, [a, c] can be covered by finitely many of the Ui, and by definition,
[c, y] can be covered by finitely many of the Ui. So [a, y] = [a, c] ∪ [c, y] can also be covered
by finitely many of the Ui, which means that y ∈ Ca. But y > c, which contradicts that c is
an upper bound of Ca. QED

Finally, putting everything together, we conclude that b ∈ Ca, which by definition means
that [a, b] can be covered by finitely many of the Ui. Since we can prove this for any open
covering, we conclude that [a, b] is compact. �

Theorem 4.1.15 (Heine–Borel). Let A ⊆ Rn be a subset. Then A is compact if and only if
A is closed and bounded (with respect to the Euclidean metric d or the square metric ρ).

To explain the parenthetical remark: for subsets of Rn, being bounded in the Euclidean
metric d is equivalent to being bounded in the square metric ρ because of the following
identity:

ρ(x, y) ≤ d(x, y) ≤
√
nρ(x, y).

Proof. If A is compact, then A is closed and bounded with respect to every metric by
Proposition 4.1.9.

Conversely, suppose that A is closed and that there exists a constant N so that ρ(x, y) ≤ N
for all x, y ∈ A. Pick a point a ∈ A and let P = N + ρ(0, a) where 0 is the origin. Then for
any x ∈ A, we have

ρ(0, x) ≤ ρ(0, a) + ρ(a, x) ≤ P,

so in particular, if x = (x1, . . . , xn), then |xi| ≤ P for all i = 1, . . . , n, so that A ⊆ [−P, P ]n.
Next, by Theorem 4.1.14, [−P, P ] is a compact subspace of R, so by Proposition 4.1.12,
[−P, P ]n is also compact. Furthermore, the product topology on [−P, P ]n is the same as the
subspace topology coming from being a subset of Rn (exercise). By definition of subspace
topology, A is also closed in [−P, P ]n. Finally, we use Proposition 4.1.10 to conclude that A
is compact. �

Remark 4.1.16. We didn’t use the Euclidean metric in the previous proof, but we mention
it in the statement since it’s usually the metric that is used in practice. �

Example 4.1.17. Some examples which are compact using the Heine–Borel theorem:

(1) The n-sphere Sn ⊂ Rn+1 is compact. To see it is closed, observe that it is the preimage
of {1} under the continuous function f : Rn+1 → R given by f(x1, . . . , xn+1) =
x21 + · · ·+ x2n+1. Bounded is straightforward: the distance between any two points is
at most 2 (by the triangle inequality).
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(2) The set of all n×n real matrices can be identified with Rn2
by choosing an order of the

entries. The resulting topology and Euclidean metric doesn’t depend on the actual
order. Recall that a matrix A is orthogonal if AAT = In where T means transpose
and In is the n×n identity matrix. The orthogonal group is denoted On(R), and is
the subset of orthogonal matrices. Then On(R) is closed and bounded (why?), and
hence compact.

(3) As a variation of that, we can identify the complex numbers C with R2 by considering
the real and imaginary part as coordinates. So the set of all n× n complex matrices
can be identified with R2n2

. Recall that a complex matrix A is unitary if AA∗ = In
where ∗ means to take the transpose of A but also apply complex conjugation to each
entry. The unitary group is denoted U(n), and is the subset of unitary matrices.
Then U(n) is also closed and bounded (why?) and hence compact. �

Here’s another useful general fact about compactness and its corollaries.

Proposition 4.1.18. Let f : X → Y be a continuous function. If X is compact, then f(X)
is also compact. More generally, if A is a compact subspace of X, then f(A) is compact.

Proof. Let {Ui}i∈I be a covering of f(X) by open subsets of Y . Then {f−1(Ui)}i∈I is an open
covering of X, and since X is compact, there is a finite subset J ⊆ I so that {f−1(Uj)}j∈J
covers X. But then {Uj}j∈J covers f(X): given f(x) ∈ f(X), we know that there exists
j ∈ J so that x ∈ f−1(Uj); then f(x) ∈ Uj.

For the second statement, apply the first statement to the function f |A : A→ Y . �

Corollary 4.1.19. If X is compact and ∼ is an equivalence relation, then X/∼ is also
compact.

Proof. The quotient map π : X → X/∼ is continuous and surjective. �

Example 4.1.20. (1) As before, identify the space of n × n matrices with Rn2
. Let

GLn(R) be the subset of invertible matrices. Then GLn(R) is not compact: the

determinant is a continuous function Rn2 → R because it is a polynomial, and the
image of GLn(R) is R \ {0}, which is not compact.

(2) In Example 2.4.10, we discussed several spaces (Möbius band, torus, Klein bottle)
which are quotients of [0, 1]× [0, 1]. Since the latter is compact, so are these quotient
spaces.

(3) Recall that real projective space RPn is the quotient of Rn+1\{0} by the equivalence
relation x ∼ y if x is a scalar multiple of y. While Rn+1 \ {0} is not compact, the
subspace Sn is. Furthermore, every equivalence class has a representative in Sn (in
fact, two of them) because x ∼ x/|x|, so RPn is the image of Sn under the quotient
map. We conclude that RPn is compact.

The next result tells us that if we restrict ∼ to Sn, then we also have a homeomor-
phism Sn/∼ → RPn.

(4) We can also define a complex variant of projective space as follows. As before,
we identify C with R2 to give it a topology. Then put an equivalence relation on
Cn+1 \ {0} by x ∼ y if x is a complex scalar multiple of y. The quotient is called
complex projective space and is denoted CPn. We can modify the argument above
to show that CPn is also compact.

I’ll remark that CP1 ∼= S2 but that for n ≥ 2, the spaces CPn are new (for us).
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(5) Pick nonnegative integers k ≤ n and consider k × n matrices with real entries. As
before we can identify this with Rkn to give it a topology. Let X be the subset of
matrices of rank k and define an equivalence relation x ∼ y if x and y have the
same row space. The quotient space X/∼ is the Grassmannian Grk(R

n) and it is in
natural bijection with the set of k-dimensional subspaces of Rn. I will leave it as an
exercise to prove that Grk(R

n) is compact. Note that X is not compact (why?).
Similarly, if we use matrices with complex entries, we can define a complex variant

Grk(C
n) and it is also compact. When k = 1, we have Gr1(R

n+1) = RPn and
Gr1(C

n+1) = CPn by definition. �

Corollary 4.1.21. Let f : X → Y be a continuous bijection. If X is compact and Y is
Hausdorff, then f is a homeomorphism.

Proof. It suffices to show that if A ⊆ X is closed, then f(A) is closed in Y (we usually use
open sets, but this is equivalent since f(X \ A) = Y \ f(A) because f is a bijection). Since
X is compact, A is also compact. But then f(A) is compact by Proposition 4.1.18, and so
is closed in Y by Proposition 4.1.6. �

Example 4.1.22. Let’s revisit Example 2.4.7. The setup is that X = [0, 1], we define ∼ by
0 ∼ 1, and we have a continuous bijection g : X/∼ → S1 given by g(x) = (cos(2πx), sin(2πx)).
We’ve already seen that [0, 1] is compact, and so [0, 1]/∼ is also compact. Finally, S1 is
Hausdorff since it’s metrizable (being a subspace of R2), so the previous result automatically
implies that g is a homeomorphism. �

Finally, we generalize a result from calculus.

Theorem 4.1.23 (Extreme value theorem). Let X be a compact space and let f : X → R
be a continuous function. If c = inf f(X), then there exists x ∈ X such that f(x) = c.
Similarly, if d = sup f(X), then there exists x ∈ X such that f(x) = d.

A familiar case is when X = [a, b] is a closed interval.

Proof. We have seen that f(X) is compact. Hence it must be a closed and bounded subspace
of R. In particular, bounded implies that c > −∞ and closed implies that c is in the image.
Similarly, d <∞ and hence is also in the image. �

We’ll end with one last useful property about compact spaces.

Proposition 4.1.24. Let X be a compact space and let A1, A2, . . . be nonempty closed
subsets such that A1 ⊇ A2 ⊇ · · · . Then A =

⋂∞
n=1An is non-empty.

Proof. The subsets Ui = X \ Ai are open and
⋃∞
n=1 Un = X \ A. If A is empty, then {Un}

is an open covering of X, and hence there is a finite subcovering. But U1 ⊆ U2 ⊆ · · · ,
so actually a finite subcovering implies that X = Un for some n, which implies that An is
empty. �

4.2. Variants of compactness. There are some variations of the notion of compactness
which we’ll briefly address here.

Recall that given a subset A of a topological space X, x is a limit point of A if x ∈ A \ {x},
or equivalently, every neighborhood of x intersects A \ {x}.

Definition 4.2.1. A topological space X is limit point compact if every infinite subset of
X has a limit point. �
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Proposition 4.2.2. If X is compact, then X is also limit point compact.

Proof. Let A be a subset of X with no limit point. We will show that A must be finite. Recall
that the closure of a set is obtained by adding all of its limit points (see Proposition 1.6.9),
so A must already be closed. Furthermore, if x ∈ A, then there exists a neighborhood Ux
of x such that Ux ∩ A = {x} (because x is not a limit point of A). Hence we get an open
covering {Ux}x∈A ∪{X \A} for X. Since X is compact, it has a finite subcovering, but that
is only possible if A is finite (because if x, y ∈ A and x 6= y, then y /∈ Ux). �

Definition 4.2.3. A topological space X is sequentially compact if, given any sequence of
points x1, x2, . . . , there is a subsequence xn1 , xn2 , . . . (1 ≤ n1 < n2 < · · · ) that converges. �

We’re going to skip the proof of the following result (it’s a bit long, likely was covered in
your analysis course, and I don’t think we’ll make further reference to it...) but state it for
completeness.

Proposition 4.2.4. Let X be a metrizable space. Then the following are equivalent:

(1) X is compact.
(2) X is limit point compact.
(3) X is sequentially compact.

4.3. Local compactness and the one-point compactification.

Definition 4.3.1. Let X be a topological space and x ∈ X. We say X is locally compact
at x if there exists a compact subspace A such that A contains a neighborhood of x. We say
that X is locally compact if it is locally compact at x for all x ∈ X. �

Warning 4.3.2. This is the definition that Munkres gives, but other texts use variations of
this definition which are not equivalent. If X is Hausdorff (generally what we will assume in
this section) then many other versions are in fact equivalent. �

Proposition 4.3.3. Every compact space is locally compact.

Proof. In the definition, take A to be the whole space. �

Example 4.3.4. (1) Rn is locally compact: any x = (x1, . . . , xn) is contained in the
compact subspace [x1−1, x1+1]×· · ·×[xn−1, xn+1] which contains the neighborhood
(x1 − 1, x1 + 1)× · · · × (xn − 1, xn + 1).

(2) Q is not locally compact at any point x. For instance, suppose Q is locally compact
at x so that there is a neighborhood U of x in Q contained in a compact subspace
A ⊆ Q. Then there exists ε > 0 such that (x − ε, x + ε) ∩ Q ⊆ U . Furthermore,
since A is also a compact subspace of R, it must be closed in R. But the closure of
(x − ε, x + ε) ∩Q in R is [x − ε, x + ε] and hence contains irrational numbers, so A
cannot be closed in R.

(3) Let X = R × R × · · · = {(x1, x2, . . . ) | xi ∈ R} be a product of copies of R,
one for each positive integer. Then X is not locally compact at any point: every
neighborhood contains a basis element U1×U2×· · · where Ui = R for all but finitely
many i. If A is any subspace that contains this neighborhood and i is an index such
that Ui = R, then πi(A) = R which is not compact, and hence A cannot be compact.

In particular, an infinite product of locally compact spaces does not have to be
locally compact. �
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Next, we’ll discuss how to embed a space X into a compact space Y .
This is a general theme and there are many ways to do this depending on the goal. First,

why would we want to do this? One advantage of compact spaces, as we have seen, is
that infinite sets have limit points, and of course, this can fail in non-compact spaces. One
important use of topological spaces is when their points represent some kind of objects that
we are interested in studying (this is the notion of a moduli space); in that case, taking a
limit might have some meaning and we would like for them to exist.

Example 4.3.5. We’ve seen the Grassmannian Grk(R
n) in Example 4.1.20. This is a

topological space such that each point represents a k-dimensional linear subspace of Rn and
is a prototypical example of a moduli space. We’ve already said that this is a compact space
though, so limits exist and there is no need to “fix” it. �

Example 4.3.6. Consider X = {(x, y) ∈ R2 | x 6= y}. By definition, the points of X
represent ordered pairs of distinct real numbers, or maybe the positions of two particles
living in 1 dimension. A sequence of points in X can be interpreted as the positions of these
points over time. If they’re moving close to each other, for example, we might have the
sequence (−1/n, 1/n) ∈ X for n a positive integer, then there’s no limit. However, it might
be useful, maybe for some specific calculation, to try to realize X as a subspace of some
compact space Y so that there will be a limit (the meaning of this limit will depend on what
Y is). �

We might also want to require that this larger space is Hausdorff: as we’ve seen, in these
spaces, limits are unique when they exist. This brings us to the next definition.

Definition 4.3.7. Let X be a topological space which is a subspace of Y . If Y is compact,
Hausdorff, and X = Y , then we call Y a compactification of X. If, in addition, Y \X is a
single point, then Y is called a one-point compactification of X. �

Adding just one point isn’t particularly enlightening in regards to our example of moduli
spaces since the limits that didn’t exist before now do exist, but have the same value. But
it’s a good starting point and will have some uses, so let’s continue.

The next result shows that a one-point compactification is unique (up to homeomorphism)
if it exists so we can call it “the” one-point compactification. However, it need not exist.

Proposition 4.3.8. Suppose that Y and Y ′ are both one-point compactifications of X. Then
there is a homeomorphism h : Y → Y ′ which is the identity function on X.

Proof. Let p be the unique point of Y \X and let p′ be the unique point of Y ′ \X. Define
h : Y → Y ′ by

h(x) =

{
x if x ∈ X
p′ if x = p

.

We claim that if U ⊆ Y is open, then h(U) is open in Y ′. If U ⊆ X, then this holds by
definition. Otherwise, p ∈ U . Now set Z = Y \U , which is closed in Y . Since Y is compact,
so is Z (Proposition 4.1.10). Furthermore, Z is a subset of X because p /∈ Z, so h(Z) is the
same as Z and so is also compact. Since Y ′ is Hausdorff, that implies that h(Z) is closed in
Y ′ (Proposition 4.1.6). Finally, h is a bijection, so h(U) = Y ′ \ h(Z) is open, and our claim
is proven. This shows that h−1 is continuous.
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Note that the inverse h−1 : Y ′ → Y has the same description as h: identity on X and
h−1(p′) = p. In particular, the above argument with the roles of Y and Y ′ reversed shows
that if U ⊆ Y ′ is open, then h−1(U) is open in Y . So h is also continuous and we’re done. �

Now let’s address existence. We start with a general construction.

Definition 4.3.9. Let X be a topological space. The Alexandroff extension of X is X∗ =
X q {∞} (here ∞ just means a new point not belonging to X). A subset U ⊆ X∗ is open
in the following two cases:

(1) U is a subset of X which is open.
(2) U = X∗ \ A where A ⊆ X is closed and compact (A = ∅ is allowed). �

We will informally call these subsets “type 1” and “type 2”. We will show soon that this
is actually a topology on X∗.

Remark 4.3.10. If X is Hausdorff, then requiring that A be closed in case 2 above is
redundant because all compact subsets are closed. But in general we need it. �

Proposition 4.3.11. The collection of subsets in the previous definition is a topology on
X∗. Furthermore, the subspace topology on X ⊆ X∗ agrees with the original topology on X.

Proof. First we check the topology axioms:

(1) ∅ is open because it is a type 1 open set.
(2) X∗ is open because it is type 2.
(3) For finite intersections, we just need to check the intersection of two of these sets is

again open. There are 3 cases to consider:
(a) The intersection of two type 1 open sets is again a type 1 open set since we

started with a topology on X.
(b) Let U ⊆ X be type 1 and V = X∗ \ A be type 2. Then U ∩ V = U ∩ (X \ A)

which is of type 1 because A is closed in X.
(c) If U = X∗ \ A and V = X∗ \ B where A,B are closed and compact subsets of

X, then
U ∩ V = X∗ \ (A ∪B)

and the union of two closed and compact subspaces is again closed and compact,
so it is again of type 2.

(4) Now consider unions. The union of type 1 sets is again type 1, so we only need to
consider unions that involve at least one type 2 set.

Pick two index sets I and J with J 6= ∅. Let {Ui}i∈I be a collection of type 1
open sets and {X∗ \Aj}j∈J be a collection of type 2 open sets. Let U =

⋃
i∈I Ui and

A =
⋂
j∈J Aj. Since each Aj is closed, A is also closed in X. Since A is a closed

subset relative to a compact space (any of the Aj), A is also compact. Next, U is
open in X, so A \ U = A ∩ (X \ U) is also closed in X and compact. In particular,
the union we’re interested in is⋃

i∈I

Ui ∪
⋃
j∈J

(X∗ \ Aj) = U ∪ (X∗ \ A) = X∗ \ (A \ U)

which is of type 2.

Now we consider the second statement. Each open set in X is a type 1 open subset of X∗,
so the subspace topology on X refines the original topology. On the other hand, the only
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potentially new open sets come from type 2, but X ∩ (X∗ \A) = X \A which is open in the
original topology on X because A is closed in X, so we don’t get any new open sets, and
the two topologies are the same. �

Note that if X ∼= Y , then X∗ ∼= Y ∗ (check this). Here are some further properties of X∗.

Proposition 4.3.12. (1) X∗ is compact.
(2) If X is locally compact and Hausdorff, then X∗ is Hausdorff.

Proof. (1) Pick an open covering of Y . It must have at least one open set of type 2 because
the type 1 sets do not contain∞. Let X∗\A be one of these type 2 open sets in the covering.
Then the rest of the open sets cover A. Since A is compact, we can find a finite subcollection
that also covers A. By adding back X∗ \ A, we get a finite subcovering of the original open
covering of X∗.

(2) Pick two points in X∗. If both points belong to X, then we can separate them using
open sets in X since X is Hausdorff. But these are type 1 open sets in X∗, so they can still
be separated.

Otherwise our points are x (where x ∈ X) and∞. Since X is locally compact, there exists
a neighborhood U of x and a compact subspace A of X such that U ⊆ A (A is automatically
closed because X is Hausdorff). Now x and ∞ are separated in X∗ by U and X∗ \ A. �

Corollary 4.3.13. Let X be locally compact and Hausdorff space which is not compact.
Then X∗ is the one-point compactification of X.

Proof. We just need to show that ∞ is a limit point of X. Every neighborhood of ∞ is of
the form X∗ \A where A is a compact subspace of X. Since X is not compact, X∗ \A always
intersects X. So we’re done. �

Example 4.3.14. Take Y = S1 and take X = Y \ {(1, 0)}. Then Y is a one-point compact-
ification of X. This is not really an interesting statement. But we also know that X ∼= (0, 1)
because we have the homeomorphism f : (0, 1) → X given by f(x) = (cos(2πx), sin(2πx)).
So the circle is a one-point compactification of a bounded open interval, or we can write
S1 ∼= (0, 1)∗, and this statement contains much more content. �

Example 4.3.15. Since (0, 1) ∼= R, we see that S1 ∼= R∗. More generally, Sn ∼= (Rn)∗,3

which follows from an optional problem in HW2: we define a function f : Sn\{(0, 0, . . . , 1)} →
Rn as follows. Given a ∈ Sn \ {(0, . . . , 1)}, draw the line in Rn+1 through (0, . . . , 1) and a.
It intersects the hyperplane defined by xn+1 = 0 in exactly one point (b1, . . . , bn, 0) and we
set f(a) = (b1, . . . , bn). Then f is a homeomorphism and Sn is compact and Hausdorff, so it
must be the one-point compactification of Rn.

The function f is called stereographic projection. �

Example 4.3.16. If X = (0, 1)∪(2, 3), then X∗ is homeomorphic to the union of two circles
in the plane which are tangent at one point: deleting this point gives two disjoint copies of
something homeomorphic to S1 \ {(1, 0)} which is homeomorphic to each of (0, 1) and (2, 3).
More generally, if X is a disjoint union of X1 and X2, then X∗ is the quotient of X∗1 qX∗2
where the new points in both spaces are made equivalent. �

3This is an unfortunate clash of notation: ∗ also denotes the linear dual of a vector space, but we’re not
going to use that in this course.
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Example 4.3.17. It’s also good to keep in mind that compactifications in general are not
unique. For example, S1 is the one-point compactification of (0, 1), but [0, 1] is also a
compactification of (0, 1) and [0, 1] 6∼= S1. �

Remark 4.3.18. The one-point compactification is as small as possible. We can make this
precise as follows (details left as an exercise): if Y is any compactification of X and Y ′ is
a one-point compactification of X, then there exists a surjective and continuous function
f : Y → Y ′ which is the identity on X. Time permitting, we’ll also study the “Stone–Čech
compactification” which is as large as possible (when it exists, it surjects onto any other
compactification). �

We end this section with an application of the one-point compactification that allows us
to give different formulations of when a space is locally compact and Hausdorff.

Proposition 4.3.19. Let X be Hausdorff. Then X is locally compact if and only if for all
x ∈ X and all neighborhoods U of x, there exists a neighborhood V of x such that V ⊆ U
and V is compact.

Proof. Suppose that X is locally compact. Then X∗ is Hausdorff and compact by the
previous result. Next, set A = X∗\U . This is closed in X∗ and hence compact. Furthermore,
by Proposition 4.1.6(a), we can find open sets V,W such that x ∈ V , A ⊆ W , and V ∩W = ∅.
Then V ⊆ X and is a neighborhood of x. Furthermore, since X∗\W is a closed set containing
V , we see that ClX∗(V ) ⊆ X \W ⊆ U . Again, ClX∗(V ) is compact because it is a closed
subset of the compact space X∗. Finally, V = ClX∗(V ) ∩X = ClX∗(V ), so we’re done.

On the other hand, the second property implies that X is locally compact at x for any x:
taking U = X, we then have a compact subspace V that contains the neighborhood V of
x. �

Corollary 4.3.20. Let X be a locally compact space.

(1) If Y is a closed subspace of X, then Y is locally compact.
(2) If Y is an open subspace of X and we also assume that X is Hausdorff, then Y is

locally compact.

Proof. (1) Pick x ∈ Y . Since X is locally compact, there exists a compact subspace A ⊆ X
that contains a neighborhood U of x in X. Then Y ∩ A is closed in A and hence is also
compact and it contains Y ∩ U , which is a neighborhood of x in Y .

(2) We use the previous result. So pick x ∈ X and let U be a neighborhood of x in Y .
Since Y is open, U is also open in X. Then there exists a neighborhood V of x in X such
that ClX(V ) is compact and ClX(V ) ⊆ U . But V is also a neighborhood of x in Y , and
ClY (V ) = ClX(V ) ∩ Y = ClX(V ), so we’re done. �

Corollary 4.3.21. X is locally compact and Hausdorff if and only if there exists a compact
Hausdorff space Y and an open subset U ⊆ Y such that X ∼= U .

Proof. If X is locally compact and Hausdorff, we take Y = X∗. Then X is an open set inside
X∗ by definition, and we’ve already proven that X∗ is compact and Hausdorff.

The converse follows from the previous result because Y is compact and hence locally
compact. �
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5. Countability and separation axioms

The properties in this section will lead us toward metrization theorems (what conditions
guarantee a space is metrizable?) and some constructions that are important for the study
of manifolds (e.g., in differential geometry).

5.1. Countability axioms. To fix terminology, a set S is countably infinite if there exists
a bijection between S and the set of positive integers, and a set is countable if it is either
finite or countably infinite. A set which is not countable is called uncountable. The impor-
tant thing is that if S is countable, then we can enumerate its elements as {s1, . . . , sn} or
{s1, s2, s3, . . . }. Note that uncountable sets exist; R is an example.

Some notable reminders:

• Q, the set of rational numbers, is countable,
• a finite product of countable sets is countable, and
• a union of countably many countable sets is also countable.
• the set of finite subsets of a countable set is countable (but, the set of all subsets of

a countably infinite set is not!)

Definition 5.1.1. Let X be a topological space and x ∈ X. We say that X has a countable
basis at x if there exists a countable collection Bx of neighborhoods of x such that for every
neighborhood U of x, there exists b ∈ Bx such that b ⊆ U . If this holds for all x, then we
say that X is first-countable (we also say X satisfies the first countability axiom). �

Definition 5.1.2. If X has a countable basis, then X is called second-countable (we also
say X satisfies the second countability axiom). �

Example 5.1.3. Rn is second-countable: we take the set of open balls {B(x, 1/d) | x ∈
Qn, d ∈ Z>0}. Since Qn is countable, this is a union of countably many countable sets, so
is again countable.

Furthermore, the product X = R×R× · · · of copies of R, one for each positive integer,
is also second-countable. This is a special case of a result we’ll prove soon. �

Proposition 5.1.4. If X is second-countable, then X is first-countable.

Proof. If B is a countable basis, then for every x ∈ X, we take Bx = {b ∈ B | x ∈ b} ∪ {X};
a subset of a countable set is again countable. �

Proposition 5.1.5. (1) If X is first-countable, so is every subspace.
(2) If X is second-countable, so is every subspace.

Proof. In both cases, we intersect the countable set of basis elements with the subspace. �

Proposition 5.1.6. Let I be a countable index set.

(1) If {Xi}i∈I is a collection of first-countable spaces, then
∏

i∈I Xi is first-countable.
(2) If {Xi}i∈I is a collection of second-countable spaces, then

∏
i∈I Xi is second-countable.

Proof. (1) This is similar to, but slightly easier than (2), so we’ll just prove (2).
(2) Let Bi be a countable basis for Xi. For each finite subset J ⊆ I, let CJ be the collection

of subsets
∏

i∈I Ui such that Ui ∈ Bi for i ∈ J , and Ui = Xi for i /∈ J . Then CJ is in bijection
with

∏
i∈J Bi, so is countable. So

⋃
J CJ is also countable as we vary over all finite subsets

J , and it is a basis for
∏

i∈I Xi. �
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5.2. Separation axioms. Let X be a topological space. If A,B are disjoint subsets of X,
then we say that A and B can be separated by open sets if there exist open sets U, V such
that A ⊆ U , B ⊆ V , and U ∩ V = ∅. If one (or both) of these subsets is a singleton {x},
we’ll usually just write x instead.

In this language, Hausdorff just means that any pair of distinct points can be separated
by open sets. Now we discuss weaker and stronger versions of this property.

Definition 5.2.1. Let X be a topological space.

(1) X is a T1-space if every singleton {x} is a closed subset.
(2) X is regular if it is a T1-space, and any point x and closed subset B such that x /∈ B

can be separated by open sets.
(3) X is normal if it is a T1-space, and any pair of disjoint closed subsets A and B can

be separated by open sets. �

The following implications hold (the first two are by definition):

normal⇒ regular⇒ Hausdorff ⇒ T1.

Once again, we have a bunch of properties and we can ask if the implications we have not
discussed are true in general or if there are counterexamples. I’d rather focus on which impli-
cations are true rather than focus on counterexamples. But if you’re curious, I recommend
browsing this database of interesting topological spaces: https://topology.jdabbs.com/

There are no explanations there, but you can find some examples in Munkres that do have
justifications.

We can rephrase the last two definitions.

Proposition 5.2.2. Let X be a T1-space.

(1) X is regular if and only if given a point x ∈ X and a neighborhood U of x, there is
a neighborhood V of x such that V ⊆ U .

(2) X is normal if and only if given a closed subset A ⊆ X and an open set U containing
A, there is an open set V containing A such that V ⊆ U .

Proof. The proofs are going to be very similar, so we’ll just do (1).
Suppose that X is regular. Pick x ∈ X and let U be a neighborhood of x. Then B = X \U

is a closed set not containing x. So x and B can be separated by open sets V and W , name
them so that x ∈ V and B ⊆ W . Then V ⊆ X \W , which implies that V ⊆ U .

Conversely, suppose that the second condition holds. Let x ∈ X be a point and B a closed
subset such that x /∈ B. Then U = X \ B is a neighborhood of x, so by assumption, there
exists a neighborhood V of x so that V ⊆ U . Set W = X \ V . Then x ∈ V and B ⊆ W ,
both V and W are open, and they don’t intersect. Hence X is regular. �

Here are some basic properties; we’ll skip the proofs since we won’t use the results and
the proofs don’t contain any significantly new ideas at this point.

Proposition 5.2.3. (1) If X is regular, then so is every subspace of X.
(2) If {Xi}i∈I is a collection of regular spaces, then

∏
i∈I Xi is regular.

Our main focus will be on normal spaces and results about them. One thing to be careful
of is that general subspaces of normal spaces need not be normal (again, I don’t want to
dwell on this, but I mention it because one should make note not to try to use this), though
closed subspaces of normal spaces are normal (exercise). First, we prove results which show
that many examples we’ve seen are in fact normal.

https://topology.jdabbs.com/
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Proposition 5.2.4. If X is metrizable, then X is normal.

Proof. Pick a metric d that gives the topology on X.
Let A,B be disjoint closed subsets of X. Since X \A is open and contains B, for all b ∈ B,

there exists εb > 0 such that Bd(b, εb) ⊆ X \ A. Similarly, for all a ∈ A, there exists εa > 0
such that Bd(a, εa) ⊆ X \ B. Now for a ∈ A and b ∈ B, we have d(a, b) > max(εa, εb), and
this implies that Bd(a, εa/2) ∩Bd(b, εb/2) = ∅: if not, then for any z in the intersection, we
would have

d(a, b) ≤ d(a, z) + d(z, b) < εa/2 + εb/2 ≤ max(εa, εb)

which is a contradiction. Hence if we define

U =
⋃
a∈A

Bd(a, εa/2), V =
⋃
b∈B

Bd(b, εb/2),

then A ⊆ U , B ⊆ V , and U ∩ V = ∅. �

Proposition 5.2.5. If X is compact and Hausdorff, then X is normal.

Proof. Let A and B be disjoint closed subsets of X. Since X is compact, both A and B are
also compact.

Now we’ll use Proposition 4.1.6. For each x ∈ B, there exist open sets Ux and Vx such
that x ∈ Ux, A ⊆ Vx, and Ux ∩ Vx = ∅. Then {Ux}x∈B covers B and since B is compact,
there is a finite subset J ⊆ B such that {Uj}j∈J also covers B. Now define

U =
⋃
j∈J

Uj, V =
⋂
j∈J

Vj.

Then both are open sets, B ⊆ U , A ⊆ V , and U ∩ V = ∅: if z ∈ U , then z ∈ Uj for some j,
but then z /∈ Vj and so z /∈ V . �

Proposition 5.2.6. If X is regular and second-countable, then X is normal.

Proof. Let B be a countable basis for X. Let Y and Z be disjoint closed subsets of X.
We want to show that Y and Z can be separated by open sets. We may assume both
are nonempty. Since X \ Z is open and contains Y , for each y ∈ Y , there is an open
neighborhood U of y contained in X \ Z. By Proposition 5.2.2, since X is regular, there
exists a neighborhood V of y such that V ⊆ U . Then there exists by ∈ B such that y ∈ by
and by ⊆ V .

Since B is countable, the subset BY = {by | y ∈ Y } is also countable (Y need not
be countable, but there can be a lot of redundancy). In particular, we can enumerate its
elements BY = {U1, U2, U3, . . . }. We have shown above that Un ∩ Z = ∅ for all n and BY

covers Y .
By a symmetric argument, there is a countable set of basis elements BZ = {V1, V2, . . . }

such that Vn ∩ Y = ∅ for all n and BZ covers Z.
Next, define

U ′n = Un \ (V1 ∪ · · · ∪ Vn), V ′n = Vn \ (U1 ∪ · · · ∪ Un).

Alternatively, U ′n = Un ∩ (X \ (V1 ∪ · · · ∪ Vn)), which shows that U ′n is open. Similarly, V ′n is
also open.

Claim: U ′n ∩ V ′m = ∅ for all n and m.
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If not, pick z ∈ U ′n ∩ V ′m. First suppose that n ≤ m. Since z ∈ U ′n, we must have z ∈ Un.
On the other hand, since z ∈ V ′m and m ≥ n, we must have z /∈ Un. But Un ⊆ Un, which is
a contradiction. If instead n ≥ m, we can argue similarly, and the claim is proven.

Finally, the claim implies that the following two open sets are disjoint:

U =
⋃

n∈Z>0

U ′n, V =
⋃

n∈Z>0

V ′n.

Furthermore, Y ⊆ U : if y ∈ Y , then there exists n such that y ∈ Un, and y /∈ Vi for all i
because Vi ∩ Y = ∅, and hence y ∈ U ′n. Similarly, Z ⊆ V . �

5.3. Urysohn’s lemma. Here’s a key result about normal spaces which turns out to be
rather important in applications despite first appearances.

We’re going to make repeated use of Proposition 5.2.2: if X is normal and A ⊆ U where
A is closed and U is open, then we can find an open set V such that

A ⊆ V ⊆ V ⊆ U.

Furthermore, a dyadic rational number is a rational number whose denominator (in reduced
form) is a power of 2. The key in the next proof is that the dyadic rational numbers are still
dense in the real numbers.

Theorem 5.3.1 (Urysohn’s lemma). Let X be a T1-space.
X is normal if and only if given any pair of disjoint closed sets A,B, there exists a

continuous function f : X → [0, 1] such that f(a) = 0 for all a ∈ A and f(b) = 1 for all
b ∈ B.

Proof. Suppose that X is normal.
Step 1: Our first goal is to show, that for each dyadic rational number r ∈ (0, 1), we can

find an open set Ur such that:

(I) Ur ⊆ Us if r < s, and
(II) A ⊆ Ur ⊆ X \B for all r.

We construct this by induction on the power of 2 in the denominator of r when written in
reduced form. First, since A is closed and X \ B is open, Proposition 5.2.2 guarantees an
open set U1/2 such that

A ⊆ U1/2 ⊆ U1/2 ⊆ X \B.
For the next step, we first apply Proposition 5.2.2 to A ⊆ U1/2 to get an open set U1/4 such
that

A ⊆ U1/4 ⊆ U1/4 ⊆ U1/2.

Next we apply it again to U1/2 ⊆ X \B to get an open set U3/4 such that

U1/2 ⊆ U3/4 ⊆ U3/4 ⊆ X \B.
I hope the pattern becomes clear. If not, here is the general formal statement.

By induction, let’s assume Up/2d has been constructed for all 1 ≤ p ≤ 2d − 1 satisfying

the conditions above. Now consider r = q/2d+1 where q is odd and 1 ≤ q ≤ 2d+1 − 1. To
avoid cases, we will make the convention that U0 = A (even though U0 won’t be defined) and
U1 = X \ B. For 1 ≤ q ≤ 2d+1 − 1, we apply Proposition 5.2.2 to U(q−1)/2d+1 ⊆ U(q+1)/2d+1 ,

to get an open set Uq/2d+1 such that U(q−1)/2d ⊆ Uq/2d+1 ⊆ Uq/2d+1 ⊆ U(q+1)/2d .
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Step 2: Given sets Ur satisfying (I) and (II), we define f : X → [0, 1] as follows. If x ∈ Ur
for all dyadic rationals r, we set f(x) = 0. Otherwise, define

f(x) = sup{t | x /∈ Ut}.

By (II), we see that f(a) = 0 for all a ∈ A and f(b) = 1 for all b ∈ B. We just have to show
that f is actually continuous.

Pick x ∈ X. We will show that f is continuous at x. There are 3 cases to consider
depending on whether f(x) = 0, f(x) ∈ (0, 1), or f(x) = 1. Actually, we’ll just explain the
second case since the other two can be done in a similar way with slightly less words.

So assume that 0 < f(x) < 1 and pick ε > 0. We can find dyadic rational numbers r, s
such that

f(x)− ε < r < f(x) < s < f(x) + ε

Then x ∈ Us. By definition of f , there is a dyadic rational t ∈ (r, f(x)) such that x /∈ Ut (if
not, then {t | x /∈ Ut} has a smaller upper bound). By condition (I), Ur ⊆ Ut, and so x /∈ Ur.

Now define V = Us \Ur. This is an open neighborhood of x. If y ∈ Us, then by (I), y ∈ Ut
for all t > s, and so f(y) ≤ s. Also if y /∈ Ur, then again by (I), y /∈ Ut for all t < r, and so
f(y) ≥ r. Hence f(V ) ⊆ [r, s] ⊆ (f(x)− ε, f(x) + ε), and so f is continuous at x.

The other two cases are similar and slightly easier, so we’ll skip it. In conclusion, f is
continuous.

Now suppose that the second condition holds. Let A and B be disjoint closed subsets of
X. If f is a function as promised by the second condition, then define U = f−1([0, 1/2)) and
V = f−1((1/2, 1]). These are disjoint open sets that contain A and B, respectively, so X is
normal. �

5.4. Urysohn metrization theorem. We’re going to apply Urysohn’s lemma to give con-
ditions on a space to be metrizable. This is not the best possible result since the conditions
are stronger than being metrizable. There are better versions in Munkres’ book, but they
require more work, so we’ll settle on this one due to time constraints, and in the process
we’ll see some interesting general results anyway.

Theorem 5.4.1 (Urysohn metrization theorem). If X is regular and second-countable, then
X is metrizable.

The reason this is not the best possible result is that not every metrizable space is second-
countable (for example, take any uncountable set with the trivial metric d(x, y) = 1− δx,y),
so we’re assuming more than is absolutely necessary. See Theorem 40.3 of Munkres (Nagata–
Smirnov metrization theorem) for what condition replaces “second-countable” to get an if
and only if statement.

Let’s fix some notation. If J is any index set and Y is any space, then Y J =
∏

j∈J Y where
we’re just taking products of copies of Y , one for each element of J . When J is the set of
positive integers, we will follow Munkres’ notation and write Y ω.

The strategy is to show that X can be embedded into Rω and then we will directly show
that Rω is metrizable (remember that we only showed that finite products of metrizable
spaces are metrizable; the infinite case does not work in general, so this requires a separate
argument).
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Definition 5.4.2. Let X be a topological space and let {fi}i∈I be a collection of continuous
functions fi : X → R. We say that {fi} satisfies property (U) if, for all x ∈ X and all
neighborhoods U of x with U 6= X, there exists i ∈ I such that fi(x) > 0 and fi(y) = 0 for
y ∈ X \ U . �

The property is used in Munkres’ book, but with no name. I just made up a name (U for
Urysohn) so that we don’t have to keep repeating the actual definition. So don’t expect to
see “property (U)” outside of this class. Here’s the point:

Proposition 5.4.3. Let X be a T1-space and assume {fi}i∈I satisfies property (U). The
continuous function F : X → RI given by f(x) = (fi(x))i∈I is an embedding.

Proof. First, we claim that F is injective. Pick points x 6= y. Since X is T1, {y} is closed,
so we can take U = X \ {y}; property (U) tells us there exists i ∈ I such that fi(x) > 0 and
fi(y) = 0. In particular, F (x) 6= F (y).

To finish, we will show that for all open sets U ⊆ X, the image F (U) is open in F (X).
Pick x ∈ U . By property (U), there exists n ∈ I such that fn(x) > 0 and fn(y) = 0 for
y /∈ U . Define

Vx = {(zi)i∈I ∈ F (X) | zn > 0}.
Then Vx is open in F (X) because Vx = F (X) ∩ π−1n ((0,∞)) where πn : RI → R is the nth
projection map. By definition, F (x) ∈ Vx and Vx ⊆ F (U). Then F (U) =

⋃
x∈U Vx and hence

is open in F (X). �

Proposition 5.4.4. Rω is metrizable.

Note that for any countably infinite set J , we have RJ ∼= Rω (a homeomorphism comes
from picking an enumeration J = {j1, j2, . . . } and sending (xj)j∈J to (xj1 , xj2 , . . . ).) On the
other hand, if J is uncountable, the space RJ is not metrizable (see Example 2 in §21 of
Munkres for a proof).

Proof. We’ll use bold letters to denote sequences x = (x1, x2, . . . ). Define D : Rω ×Rω →
R≥0 by

D(x,y) = sup
n

{
min(|xn − yn|, 1)

n

}
.

We need to check two things: D is a metric, and the corresponding metric topology is the
product topology on Rω.

The first two axioms for a metric are immediate. Let’s check the triangle inequality. Pick
sequences x,y, z. First, for any n, we have

min(|xn − zn|, 1) ≤ min(|xn − yn|, 1) + min(|yn − zn|, 1).

There are a few cases to consider, but it’s straightforward so we’ll skip the details. In
particular, we have

D(x, z) ≤ sup
n

{
min(|xn − yn|, 1)

n
+

min(|yn − zn|, 1)

n

}
≤ D(x,y) +D(y, z).

Now we need to show that the metric topology from D is the same as the product topology,
i.e., they refine each other.

Let’s start with an open set U in the metric topology. For x ∈ U , there exists ε > 0 so
that BD(x, ε) ⊆ U . Pick a positive integer N such that 1/N < ε. Define

V = (x1 − ε, x1 + ε)× · · · × (xN − ε, xN + ε)×R×R× · · ·
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(so the first N components are (xi − ε, xi + ε) and the rest are R). This is an open set in
the product topology containing x; we claim that V ⊆ BD(x, ε) (and hence V ⊆ U).

If y ∈ V , then for i = 1, . . . , N , we have min(|xi − yi|, 1)/i < ε/i and for i > N , we have
min(|xi − yi|, 1)/i ≤ 1/i < 1/N . Hence

D(x,y) < sup{ε, ε/2, . . . , ε/N, 1/N} ≤ ε,

and so y ∈ BD(x, ε) as claimed. Hence U is open in the product topology.

Now let U be an open set in the product topology. If x ∈ U , there is a basis element
U1×U2×· · · containing x, where Ui is open in R and there is a positive integer N such that
Ui = R for i > N . For each i = 1, . . . , N , there exists εi > 0 such that (xi− εi, xi + εi) ⊆ Ui.
We may pick εi so that εi < 1. Now define ε = min(ε1, ε2/2, . . . , εN/N).

We claim that BD(x, ε) ⊆ U1 × U2 × · · · . Pick y ∈ BD(x, ε). For i ≤ N , we have
min(|xi − yi|, 1)/i < ε ≤ εi/i, and so εi > |xi − yi| (since εi < 1) and hence yi ∈ Ui. For
i > N , yi ∈ Ui because Ui = R. So y ∈ U1 × U2 × · · · as claimed and we see that U is open
in the metric topology. �

Now we put it all together.

Proof of Urysohn metrization theorem. Let {b1, b2, . . . } be a countable basis for X. Let I
be the set of pairs (m,n) of positive integers such that bm ⊆ bn. For (m,n) ∈ I, we apply
Urysohn’s lemma to the disjoint closed sets bm and X \ bn to get a continuous function
gm,n : X → [0, 1] that is 1 on bm and 0 on X \ bn.

I claim that {gm,n}(m,n)∈I satisfies property (U). Pick x ∈ X and a neighborhood U of x
with U 6= X. Then there is a basis element bn such that x ∈ bn and bn ⊆ U . Since X is
regular, using Proposition 5.2.2, we can find a neighborhood V of x such that V ⊆ bn. Now
let bm be any neighborhood of x contained in V . Then bm ⊆ bn and so gm,n(x) = 1 and gm,n
is 0 outside of bn (and hence outside of U).

Finally, Proposition 5.4.3 tells us that the function F : X → RI given by F (x) = (gm,n(x))(m,n)∈I
is an embedding. If I is finite, then RI ∼= R|I| is metrizable. Otherwise, I is countably in-
finite and then RI ∼= Rω, so again is metrizable by Proposition 5.4.4. In any case, we see
that X is homeomorphic to a subspace of a metrizable space, so is itself metrizable. �

5.5. Topological manifolds. For the last topic of this course, we’ll introduce the concept
of a (topological) manifold and prove that every compact manifold can be embedded into
RN for some N <∞ (much more is true but beyond what we have time for). These are very
fundamental objects in mathematics so we’ll only scratch the surface, but I hope it gives you
some idea of how many of the ideas and results we’ve been proving can be put together.

Definition 5.5.1. Let n ≥ 0 be a nonnegative integer.
A (nonempty) space X is locally Euclidean of dimension n if there is an open covering
{Ui}i∈I such that each Ui is homeomorphic to an open subset of Rn.

A topological n-manifold is a space X such that X is Hausdorff, second-countable, and
locally Euclidean of dimension n. �

An n-manifold is also said to have dimension n or be n-dimensional.

Remark 5.5.2. (1) There’s another definition you can make of a space: ask that there
is an open covering by subspaces that are homeomorphic to Rn. This sounds stricter
than locally Euclidean, but it’s actually equivalent because for a locally Euclidean
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space, if x ∈ Ui and Ui is homeomorphic to an open subset of Rn, then there is a
neighborhood of x homeomorphic to (x1− ε, x1 + ε)×· · ·× (xn− ε, xn + ε), and we’ve
already seen in homework that open intervals are homeomorphic to R. We stick with
our definition because it’s more flexible for definitions and generalizes better when
defining other types of manifolds.

(2) If we can find a countable open covering {U1, U2, . . . } to satisfy the locally Euclidean
condition, then second-countability is automatic: since each Ui has a countable basis
and we can simply take the union of these bases to get a basis for X. This will
automatically hold for all of our examples below, so we won’t explicitly need to
comment about second-countability. �

Remark 5.5.3. The choice of the open covering is not part of the definition, we only need
it to exist. However, there are other types of manifolds, where not only the choice matters
for the definition, but the actual embeddings ϕi : Ui → Rn matter too (these are referred
to as charts), and are considered as part of the object. A commonly studied object is a
smooth manifold which is a pair consisting of a topological manifold together with a choice
of charts so that for all i, j, the compositions ϕj ◦ϕ−1i : ϕi(Ui∩Uj)→ ϕj(Ui∩Uj) are infinitely
differentiable functions. In particular, a smooth manifold is a topological manifold together
with some additional structure, not just a topological manifold satisfying an extra property
(analogous to how a topology is an extra structure we can put on a set), and it is possible
that a given topological manifold may have more than one inequivalent smooth structure.
This extra structure allows us to do calculus on X. But this is beyond the scope of what we
have time for, so I’ll refer you to a course/book on differential geometry. �

Let’s see some examples:

Example 5.5.4. (1) Rn is of course an n-manifold. What is not obvious is that Rn is
not an m-manifold for m 6= n, i.e., an open subset of Rn cannot be homeomorphic
to an open subset of Rm if m 6= n. It is true (and called “invariance of domain” and
usually is proven using tools from algebraic topology), so the dimension of a manifold
is well-defined.

(2) The n-sphere Sn is an n-manifold. We’ve already discussed stereographic projec-
tion in Example 4.3.15 which gives a homeomorphism between Rn and U1 = Sn \
{(0, . . . , 0, 1)}. But actually the choice of the “north pole” was not relevant, and we
could have done the same with any point. In particular, if you pick the “south pole”
(0, . . . , 0,−1), then we have Rn ∼= U2 = Sn \ {(0, . . . , 0,−1)} and Sn = U1 ∪ U2.

Note that since Sn is compact, it itself cannot be homeomorphic to any open subset
of Rn because of the Heine–Borel theorem.

(3) The set of invertible n × n matrices GLn(R) is itself an open subset of Rn2
: it is

the preimage of R \ {0} under the determinant function (which is continuous). In
particular, it is a n2-manifold.

(4) Real projective space RPn is an n-manifold. The main points are handled in an
exercise in HW6: in particular, you are asked to prove that it is Hausdorff and that
the subspace Un+1 of representatives [x1 : · · · : xn+1] where xn+1 6= 0 is homeomorphic
to Rn. But actually there’s nothing special about the last coordinate: define Ui to be
the set of representatives such that xi 6= 0. The same argument shows that Ui ∼= Rn

but also RPn = U1 ∪ · · · ∪ Un+1.
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(5) With more effort, one can prove that the Grassmannian Grk(R
n) is a k(n − k)-

manifold. We won’t discuss the details, so you can take it as more challenging
exercise.

(6) If X is an m-manifold and Y is an n-manifold, then X × Y is an (m + n)-manifold
(exercise). So for example, the torus S1 × S1 is a 2-manifold. �

Here’s a few things we can conclude about topological manifolds:

(1) Since they are locally Euclidean, they are also locally compact: for each x ∈ X, there
is a neighborhood U of x that is homeomorphic to an open subset of Rn. In such
sets, we can always find a compact subspace that contains a neighborhood of any
point (for example, a closed ball of radius 1 and the corresponding open ball).

(2) By definition, X is also Hausdorff, so non-compact manifolds always have a one-
point compactification X∗ (though X∗ doesn’t have to be a manifold; this fails for
X = S5 ×R, see https://math.stackexchange.com/q/2102815/8399).

(3) Similarly, since they are locally Euclidean, we can use HW4 #5 to conclude that they
are also locally path-connected since open subsets of Rn are locally path-connected.

(4) In particular, since X is locally path-connected, the connected components of X are
the same thing as path-components, and they are all open subsets of X. Since X is
second-countable, this implies that X has countably many connected components.

Remark 5.5.5. An interesting question is to try to classify all n-manifolds for a given n.
The previous remark tells us that we should focus on connected manifolds, since everything
else can be obtained by taking disjoint unions. For n = 0, the only example is a single point.
For n = 1, there are two examples (up to homeomorphism): R and S1. Showing that these
are the only examples already requires some ideas beyond the scope of this course. You can
see https://en.wikipedia.org/wiki/Classification_of_manifolds for an overview of
what goes into studying this question for n ≥ 2. �

There’s a lot of interesting basic stuff we could discuss about manifolds, but that’s really
the content of other courses (like Math 150). Instead, let’s move onto proving that a compact
manifold can be embedded into RN for some N <∞.

This relies on the existence of a “partition of unity”. We’ll only do this in a special case.

Definition 5.5.6. Let X be a space. If f : X → R is a continuous function, then the
support of f , denoted Supp(f), is the closure of f−1(R \ {0}). �

Definition 5.5.7. Let X be a space with an open covering {U1, . . . , Un}. A collection of
continuous functions ϕi : X → [0, 1] (i = 1, . . . , n) is a partition of unity subordinate to
{Ui} if:

(1) Supp(ϕi) ⊆ Ui for i = 1, . . . , n, and
(2) For all x ∈ X, we have

∑n
i=1 ϕi(x) = 1. �

Lemma 5.5.8. If X is normal and {U1, . . . , Un} is an open covering, then there exists an
open covering {V1, . . . , Vn} such that Vi ⊆ Ui for all i.

Proof. For k = 0, . . . , n, and open subsets V1, . . . , Vk, we will call these open subsets “good”
if

{Vi | 1 ≤ i ≤ k} ∪ {Ui | k + 1 ≤ i ≤ n} = {V1, . . . , Vk, Uk+1, . . . , Un}
covers X and Vi ⊆ Ui for i ≤ k.

https://math.stackexchange.com/q/2102815/8399
https://en.wikipedia.org/wiki/Classification_of_manifolds
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We will find open subsets V1, . . . , Vn such that V1, . . . , Vk is good for all k. We will do this
by induction on k. If k = 0, the statement is vacuous, so the base case is automatic. So now
assume that n ≥ k ≥ 1 and that we have found a good collection V1, . . . , Vk−1. Define

A = X \ (V1 ∪ · · · ∪ Vk−1 ∪ Uk+1 ∪ · · · ∪ Un),

which is a closed subset of X contained in Uk because X = V1 ∪ · · · ∪ Vk−1 ∪ Uk ∪ · · · ∪ Un.
Since X is normal, by Proposition 5.2.2, there exists an open set, call it Vk, such that A ⊆ Vk
and Vk ⊆ Uk. Since A ⊆ Vk, we have that X = V1 ∪ · · · ∪ Vk ∪ Uk+1 ∪ · · · ∪ Un, so V1, . . . , Vk
is good. Finally, we have a good collection V1, . . . , Vn, which is exactly what we’re looking
for. �

Proposition 5.5.9. If X is normal and {U1, . . . , Un} is an open covering, then there exists
a partition of unity subordinate to {Ui}.

Proof. Applying the previous lemma twice gives us open coverings {V1, . . . , Vn} and {W1, . . . ,Wn}
of X such that Wi ⊆ Vi and Vi ⊆ Ui for all i. Then for each i, we apply Urysohn’s lemma to
the disjoint closed sets Wi and X \ Vi to get a continuous function ψi : X → [0, 1] such that
ψi is 1 on Wi and 0 on X \ Vi. Then Supp(ψi) ⊆ Vi ⊆ Ui.

For all x ∈ X, define Ψ(x) =
∑n

i=1 ψi(x). Since ψi(x) ≥ 0 for all i and there exists j such
that x ∈ Wj, we see that ψj(x) = 1 and hence Ψ(x) > 0 for all x. In particular, we can
define

ϕi(x) =
ψi(x)

Ψ(x)
.

Then by definition, Supp(ϕi) = Supp(ψi) ⊆ Ui and
∑n

i=1 ϕi(x) = 1 for all x. �

Theorem 5.5.10. Let X be a compact m-manifold. Then there exists a positive integer N
and an embedding F : X → RN .

We can be more specific if we do more work: you can take N = 2m + 1. See Corollary
50.8 of Munkres for details.

Proof. By definition, X has an open covering {Ui}i∈I such that for all i ∈ I, Ui is home-
omorphic to an open subset of Rm. Since X is compact, we can find a finite subcovering,
call it {U1, . . . , Un}. Using the homeomorphisms, we have embeddings gi : Ui → Rm for
i = 1, . . . , n.

Next, since X is compact and Hausdorff, we also know that X is normal by Propo-
sition 5.2.5. In particular, the previous result gives us a partition of unity {ϕ1, . . . , ϕn}
subordinate to {U1, . . . , Un}. For i = 1, . . . , n, define hi : X → Rm by

hi(x) =

{
ϕi(x) · gi(x) if x ∈ Ui
0 if x ∈ X \ Supp(ϕi)

where as usual 0 = (0, . . . , 0) is the origin. We’ve defined hi piecewise on two open sets of
X; if x ∈ Ui ∩ (X \ Supp(ϕi)), then by definition ϕi(x) = 0, so we see that hi is well-defined.
Since both components are continuous, hi is a continuous function.

Now take N = n+ nm; we define

F : X → R× · · · ×R︸ ︷︷ ︸
n

×Rm × · · · ×Rm︸ ︷︷ ︸
n

= RN

F (x) = (ϕ1(x), . . . , ϕn(x), h1(x), . . . , hn(x)).
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Then F is continuous because each of its component functions are continuous. I claim that
F is injective. Suppose that F (x) = F (y). Since

∑n
i=1 ϕi(x) = 1, there exists j such that

ϕj(x) 6= 0. In particular, ϕj(y) 6= 0 since ϕj(y) = ϕj(x), and so x, y ∈ Uj. But then
hj(x) = ϕj(x)gj(x) = ϕj(y)gj(y) = hj(y), and we can divide to conclude that gj(x) = gj(y).
Since gj is an embedding, we conclude that x = y.

Finally, X is compact and its image F (X) is Hausdorff, and we have just shown that
F : X → F (X) is a continuous bijection, so it is a homeomorphism by Corollary 4.1.21. �
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