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These are notes for a quarter-long introduction to commutative algebra. The original skele-
ton for these notes are largely based on Atiyah–Macdonald, starting at Chapter 3 (mostly
ignoring Chapter 4 on primary decomposition) with some additions and modifications. No-
tably I have tried to use notation and terminology which is consistent with modern usage
(Atiyah–Macdonald was written over 50 years ago). I’ve also redone some proofs and order-
ing of results when I thought it might make the dependency trail a bit easier to manage.
I will assume that you are familiar with Chapters 1 and 2 but will highlight some results
and definitions in §1 that we’ll use. I also incorporated some material from Eisenbud’s
Commutative Algebra book.

All rings in this course are by default commutative with a multiplicative unit 1.
Here is the correspondence (my notes on the left and the corresponding sections of Atiyah–

Macdonald on the right):
These notes Atiyah–Macdonald
§1 Chapters 1, 2
§2 Chapter 3
§3 Chapter 5
§4 Chapters 6, 7, 8
§5 Chapter 10 (ignoring first part), Chapter 11 (first part)
§6 Chapter 11
§7 Chapter 10 (first part)
§8 Chapter 9
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1. Review

This section is a brief overview without proofs of some results that may have been encoun-
tered in earlier courses. In any case, I will either use these results for proofs or examples, so
it may be worthwhile to look up anything that is not familiar.

1.1. Ring theory. Here are some facts we’ll take for granted:

• An ideal I is prime if xy ∈ I implies that either x ∈ I or y ∈ I. This is equivalent to
saying that A/I is an integral domain.
• The radical of an ideal I ⊂ A is defined to be

√
I = {x ∈ A | xk ∈ I for some k ≥ 1}.

It is equal to the intersection of all prime ideals containing I and hence is an ideal.
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• An ideal I is maximal if it is not the unit ideal and is not contained in any other
ideals except itself and the unit ideal. These always exist if we assume that the axiom
of choice is valid (we will) and all maximal ideals are prime.

A few facts about prime ideals:

• If p is a prime ideal and I1, . . . , Ik are any ideals such that their product belongs
to p, i.e., I1I2 · · · Ik ⊆ p, then there is some j such that Ij ⊆ p. In particular, if
I1 ∩ · · · ∩ Ik ⊆ p, then there is some j such that Ij ⊆ p.
• (Prime avoidance) If p1, . . . , pn are primes and I is any ideal such that I 6⊆ pj for all
j, then I 6⊆ p1 ∪ · · · ∪ pn. More general statements hold, but this is enough for us.

If A is a ring, the polynomial ring A[t] is the ring of polynomials in t with coefficients
in A. Also, we use the same notation A[t1, t2, . . . ] adjoining any number (finite or not) of
variables, and A[[t]] is the ring of formal power series in t with coefficients in A. These are
represented by series of the form∑

n≥0

ant
n = a0 + a1t+ a2t

2 + · · ·

with ai ∈ A and with addition and multiplication defined by∑
n≥0

ant
n +

∑
n≥0

bnt
n =

∑
n≥0

(an + bn)tn, (
∑
n≥0

ant
n)(
∑
n≥0

bnt
n) =

∑
n≥0

∑
i+j=n

(aibj)t
n.

1.2. Functoriality. While we won’t do anything specific with category theory, it is ex-
tremely useful to use the language to encapsulate recurring properties that we come across,
so we give some definitions and important examples now.

A category C consists of a collection of objects and, for any two objects X and Y , a set
of morphisms, denoted HomC(X, Y ) (for f a morphism from X to Y , we use the notation
f : X → Y and think of it as a function though it need not be in any traditional sense) with
some additional structure:

• Morphisms can be composed when it makes sense: if f : X → Y and g : Y → Z,
there is a composition gf : X → Z, and this is associative in the obvious sense:
h(gf) = (hg)f .
• For every object X, there is an identity morphism 1X : X → X such that 1Xf = f

and g1X = g for all f : Y → X and g : X → Y .

Typical examples for us:

• The category of rings (objects are commutative rings, morphisms are ring homomor-
phisms).
• If A is a ring, then the category of A-modules (objects are A-modules, morphisms

are A-linear homomorphisms).
• If A is a ring, then the category of A-algebras (objects are A-algebras, morphisms

are A-linear ring homomorphisms).
• We could add adjectives to the examples, such as the category of finitely generated

modules, or finitely generated A-algebras, etc.

A functor is the notion of a homomorphism between categories. Given categories C and D,
a functor F : C→ D does two things: for each object X of C, we get an object F (X) of D, and
for every morphism f : X → Y , we get a morphism F (f) : F (X)→ F (Y ). Most importantly,
F respects composition and identity morphisms: F (gf) = F (g)F (f) and F (1X) = 1F (X).
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Many operations that we discuss are going to be functors (typically from modules over one
ring to modules over another ring). The verification generally isn’t hard, but it’s convenient
to say that an operation is “functorial” as shorthand to mean that it respects composition
of homomorphisms.

A contravariant functor F : C → D is like a functor except one difference: given a mor-
phism f : X → Y in C, we get a morphism F (f) : F (Y )→ F (X) and it respects composition
in the sense that F (gf) = F (f)F (g) (i.e., it reverses the direction of morphisms).

1.3. Exact sequences. Let A be a ring. Suppose we have A-modules M1,M2,M3 and
homomorphisms f : M1 →M2 and g : M2 →M3. We draw this as a diagram

M1
f−→M2

g−→M3.

This is a (chain) complex if gf = 0. This implies that f(M1) ⊆ ker g. We say that it is exact
(at M2) if we have equality: f(M1) = ker g. Given a longer sequence of homomorphisms

M1
f1−→M2

f2−→M3 → · · ·
we make the same definitions if each consecutive 3 terms has the corresponding property.
An important special case is the 5-term sequence

0→M1 →M2 →M3 → 0.

In that case, exactness means that M1 → M2 is injective (so we can identify M1 with a
submodule of M2) and M2 → M3 is surjective, and that the natural map M2/M1 → M3 is
an isomorphism. These are called short exact sequences.

A functor F (from A-modules to B-modules) is exact if it preserves short exact sequences,
i.e., applying F to any short exact sequence results in a short exact sequence (this implies
it preserves arbitrary exact sequences). If it only preserves exact sequences of the form
0 → M1 → M2 → M3, then it is left exact, and if it only preserves exact sequences of the
form M1 →M2 →M3 → 0, then it is right exact.

If N is an A-module, then the operation of tensoring with N is a right exact functor.
Finally, we’ll make use of the snake lemma:

Lemma 1.3.1 (Snake lemma). Suppose we have a commutative diagram of A-modules

X
f //

α

��

Y
g //

β
��

Z //

γ

��

0

0 // X ′
f ′ // Y ′

g′ // Z ′

such that the top and bottom rows are exact. Then there is an exact sequence

kerα→ ker β → ker γ → cokerα→ coker β → coker γ.

If f is injective, then so is kerα→ ker β; if g′ is surjective, then so coker β → coker γ.

1.4. Prime spectrum. Given a ring A, its prime spectrum is the set of prime ideals of A,
and is denoted Spec(A). Given an ideal I ⊂ A, we define the subset

V (I) = {p ∈ Spec(A) | I ⊆ p}.
The Zariski topology on Spec(A) is defined by declaring the V (I) to be the closed subsets.
This is valid since

• V (1) = ∅,
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• V (0) = Spec(A),
• V (I) ∪ V (J) = V (I ∩ J),
•
⋂
n V (In) = V (

∑
n In).

Given a ring homomorphism f : A→ B, and a prime ideal p ⊂ B, the preimage f−1(p) is
a prime ideal in A, and this defines a continuous function that we denote by f ∗ : Spec(B)→
Spec(A). So Spec is a (contravariant) functor from commutative rings to topological spaces
(the morphisms for the latter being continuous functions).

A topological space X is irreducible if it is not possible to write it as a union of two closed
proper subsets, i.e., if X = X1 ∪X2 with X1, X2 closed, then it must be that either X = X1

or X = X2.

1.5. Cayley–Hamilton theorem and Nakayama’s lemma.

Theorem 1.5.1 (Cayley–Hamilton theorem). Let A be a ring, M a finitely generated A-
module, and I ⊂ A an ideal. Let ϕ : M → M be an A-linear map such that ϕ(M) ⊆ IM .
Then there exist a1, . . . , an ∈ I such that

(ϕn + a1ϕ
n−1 + · · ·+ an)(x) = 0

for all x ∈M .

Proof. We can actually reduce this to the more familiar case when A is a field as follows (let
me just give an outline of the steps without the details):

(1) Pick generators m1, . . . ,mn for M ; there exist ϕij ∈ I such that ϕ(mi) =
∑

j ϕjimj.

Let ϕ̃ = (ϕij) be the corresponding n×nmatrix which is an A-linear map ϕ̃ : An → An

such that ϕ̃(An) ⊆ IAn. Then the result is true for ϕ if it holds for ϕ̃.
(2) Next, consider the “universal” case where the ring is Z[xij | i, j = 1, . . . , n] and

Φ = (xij) is the matrix where the entries are independent variables (and the ideal I
is the ideal generated by the xij). There is a ring homomorphism Z[xij] → A such
that xij 7→ ϕij and so if the result holds for the universal case then it holds for ϕ̃.

(3) Finally, we define ak ∈ Z[xij] to be the coefficients of the characteristic polynomial
tn + a1t

n−1 + · · ·+ an of Φ. We have to check that Φn + a1Φn−1 + · · ·+ anid is the 0
matrix. But to do this, it doesn’t matter if we’re using Z[xij] or its field of fractions,
and so we’re down to the case of a field. �

An important corollary is Nakayama’s lemma:

Theorem 1.5.2 (Nakayama’s lemma). If M is a finitely generated A-module and I is an
ideal in the Jacobson radical of A (the intersection of all maximal ideals), then IM = M
implies that M = 0.

Proof. If ϕ is the identity function, then Cayley–Hamilton implies that there exists a ∈ I
(take the sum of a1, . . . , an there) such that (1 + a)x = 0 for all x ∈M . But 1 + a is a unit
and hence M = 0: if not, then there exists a maximal ideal containing it. Since a belongs
to all maximal ideals, 1 would also belong to that maximal ideal, which is a problem. �

2. Localization

2.1. Definition. Let A be a ring. A subset S ⊂ A is a multiplicative subset if 1 ∈ S and
S is closed under multiplication. We’d like to build a new ring where elements of S become
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invertible in as efficient of a way as possible. This goes as follows. Define a relation on A×S
by

(a, s) ∼ (b, t) if there exists x ∈ S such that (at− bs)x = 0.

This is clearly symmetric and reflexive, so we verify that it is transitive. Suppose that
(b, t) ∼ (c, u), i.e., there exists y ∈ S such that (bu− ct)y = 0. Then

0 = (at− bs)xuy + (bu− ct)ysx = (au− cs)txy

and txy ∈ S, so (a, s) ∼ (c, u). Set

S−1A = (A× S)/ ∼ .

Intuitively, we think of (a, s) as a fraction a/s (and we’ll usually write a/s instead), which
is where the equivalence relation comes from (clearing denominators). We have to allow for
the additional flexibility of multiplying by x because S may have zerodivisors (if we don’t,
∼ won’t be transitive in general).

With that intuition, we can define a ring structure on S−1A (the ring of fractions of A
with respect to S) via

• (a, s) + (b, t) = (at+ bs, st).
• (a, s)(b, t) = (ab, st).

We omit the verification this is well-defined on equivalence classes. The additive unit is (0, 1)
and the multiplicative unit is (1, 1).

Example 2.1.1. If p ⊂ A is any prime ideal, then S = A \ p is multiplicative. In that case,
we write Ap for S−1A and call it the localization of A at p.

A particular special case is when A is a domain and p = (0). Then A(0) is the field of
fractions of A. For example, if A = Z, then A(0) = Q. �

Example 2.1.2. For any f ∈ A, S = {1, f, f 2, . . . } is multiplicative. In that case we write
either Af or A[1/f ] for S−1A. �

There is a canonical homomorphism

f : A→ S−1A, f(a) = (a, 1).

Via this canonical map, we can view S−1A as an A-module. In general, this is not injective.
As an extreme example, if 0 ∈ S, then S−1A = 0 is the zero ring. Now we address the
efficiency of this construction.

Proposition 2.1.3. If g : A → B is any homomorphism such that g(s) is invertible for all
s ∈ S, then there exists a unique homomorphism h : S−1A→ B such that g = h ◦ f .

Proof. Define h(a, s) = g(a)g(s)−1. This is well-defined: if (a, s) ∼ (b, t), then there ex-
ists x ∈ S such that (at − bs)x = 0, so (g(a)g(t) − g(b)g(s))g(x) = 0. Multiplying by
(g(t)g(s)g(x))−1 gives g(a)g(s)−1 = g(b)g(t)−1.

As for uniqueness, for any homomorphism h′ such that g = h′ ◦ f , we have

h′(a, s) = h′(a, 1)h′(1, s) = h′(a, 1)h′(s, 1)−1 = g(a)g(s)−1. �

In this sense, S−1A is the “smallest” ring in which the elements of S become invertible.
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2.2. Modules. Now let M be an A-module. We define S−1M to be (M × S)/ ∼ where

(m, s) ∼ (n, t) if there exists x ∈ S such that x(tm− sn) = 0.

We omit the (similar) check that ∼ is an equivalence relation. Again, we think of (m, s) as
a fraction m/s; we define addition as usual:

(m, s) + (m′, s′) = (s′m+ sm, ss′).

Also S−1M is a module over S−1A via the product (with (a, t) ∈ S−1A) defined by

(a, t)(m, s) = (am, ts).

If f : M → N is a homomorphism of A-modules, then we define

S−1(f) : S−1M → S−1N, (m, s) 7→ (f(m), s).

This is functorial in the sense that given another homomorphism g : N → P , we have

S−1(g ◦ f) = S−1(g) ◦ S−1(f)

and S−1 applied to the identity map is again the identity. Hence we think of S−1 as an
operation that takes A-modules to S−1A-modules, and homomorphisms to homomorphisms.

We will generally use the more intuitive shorthand m/s or m
s

in place of (m, s).
When S = A \ p for a prime p, then Mp = S−1M is the localization of M at p.

Proposition 2.2.1. S−1 is exact, i.e., if

M1
f−→M2

g−→M3

is exact, then so is

S−1M1
S−1(f)−−−−→ S−1M2

S−1(g)−−−−→ S−1M3.

Proof. First we have S−1(g) ◦ S−1(f) = S−1(g ◦ f) = S−1(0) = 0, where the last equality is
by definition.

Now suppose that (m, s) ∈ kerS−1(g). We need to show that it is in the image of S−1(f).
By definition, we have S−1(g)(m, s) = (g(m), s) = 0, i.e., there exists x ∈ S such that
xg(m) = 0. But then g(xm) = 0, so that xm ∈ ker g. By exactness, xm = f(m′) for some
m′ ∈M . So then

S−1(f)(m′, xs) = (xm, xs) = (m, s). �

Of course, this tells us that S−1 preserves exactness for longer sequences (just apply it to
each consecutive 3 terms).

This also tells us, for example, that if N → M is injective, then so is S−1N → S−1M , so
that we can identify the localizations of submodules of M with submodules of the localization
S−1M . This operation behaves well:

Corollary 2.2.2. Let M be an A-module with submodules N,P .

(1) S−1(N + P ) = S−1N + S−1P .
(2) S−1(N ∩ P ) = S−1N ∩ S−1P .
(3) We have an isomorphism of S−1A-modules S−1(M/N) ∼= S−1M/S−1N .
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Proof. (1) Given x ∈ N and y ∈ P and s ∈ S, we have (x+ y)/s = x/s+ y/s, so the image
of S−1(N + P ) in S−1M is contained in S−1N + S−1P . Conversely, given x/s ∈ S−1N and
y/t ∈ S−1P , we have x/s+ y/t = (xt+ ys)/st, so it comes from an element of S−1(N + P ).

(2) If x ∈ N ∩ P and s ∈ S, then x/s ∈ S−1N ∩ S−1P so the image of S−1(N ∩ P ) in
S−1M is contained in S−1N ∩S−1P . On the other hand, suppose we have an element in the
intersection, so we can write it as either x/s or y/t, where x ∈ N , y ∈ P and s, t ∈ S. Then
there exists u ∈ S such that u(tx − sy) = 0, i.e., if we set z = utx, then z ∈ N , but also
z = usy so that z ∈ P . Finally, z/uts maps to x/s, so every element of S−1N ∩S−1P comes
from an element of S−1(N ∩ P ).

(3) This follows from the previous result using the short exact sequence 0 → N → M →
M/N → 0. �

There’s another way to get S−1A-modules from A-modules: base change along the canon-
ical map. Actually, this is the same as S−1:

Proposition 2.2.3. The map

S−1A⊗AM → S−1M∑
i

(ai, si)⊗mi 7→
∑
i

(aimi, si)

is an isomorphism of S−1A-modules.

Proof. Quick check this is well-defined: it comes from the bilinear function S−1A ×M →
S−1M by ((a, s),m) 7→ (am, s).

It is clear from the definition that this function is surjective, so we just need to show that
it is injective. So suppose that

∑n
i=1(aimi, si) = 0. Let s = s1 · · · sn and s′j = s1 · · · ŝj · · · sn.

Then we can simplify this sum as
n∑
i=1

(aimi, si) = (
n∑
i=1

aimis
′
i, s),

which means that there exists x ∈ S so that x
∑

i aimis
′
i = 0.

On the other hand, we have∑
i

(ai, si)⊗mi =
∑
i

(ais
′
ix, sx)⊗mi =

∑
i

(1, sx)⊗ xais′imi = (1, sx) · 0 = 0. �

Corollary 2.2.4. S−1A is a flat A-module.

Proposition 2.2.5. Given A-modules M and N , the map

S−1M ⊗S−1A S
−1N → S−1(M ⊗A N)∑

i

(mi, si)⊗ (ni, ti) 7→
∑
i

(mi ⊗ ni, siti)

is an isomorphism.

Proof. First, this is well-defined since it comes from the bilinear map S−1M × S−1N →
S−1(M ⊗A N) given by ((m, s), (n, t)) 7→ (m⊗ n, st). The inverse to this map is given by

(
∑
i

mi ⊗ ni, s) 7→
∑
i

(mi, 1)⊗ (ni, s). �
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2.3. Local properties. Localization is useful because a lot of properties of A-modules can
be checked “locally”, i.e., by checking after localizing at prime ideals (or just maximal ideals
in some cases). Here’s an important example:

Proposition 2.3.1. The following are equivalent:

(1) M = 0.
(2) Mp = 0 for all primes p.
(3) Mm = 0 for all maximal ideals m.

Proof. Clearly (1) implies (2) which in turn implies (3).
So it suffices to show that if M 6= 0, then there exists a maximal ideal m so that Mm 6= 0.

Pick m ∈M nonzero; the annihilator of m is a proper ideal and hence is contained in some
maximal ideal m. Then (m, 1) ∈Mm is nonzero: for any x /∈ m, x does not annihilate m and
hence xm 6= 0. �

One reason this is useful is because Ap is always a local ring with maximal ideal given
by the extension of p along the canonical homomorphism A → Ap: any element outside of
pAp can be represented as (a, s) with a /∈ p and hence has inverse (s, a). More results are
available for local rings, as we will see throughout the course.

Here are some more fundamental local properties.

Corollary 2.3.2. Given a homomorphism f : M → N of A-modules, the following are
equivalent:

(1) f is an injection.
(2) fp is an injection for all primes p.
(3) fm is an injection for all maximal ideals m.

The same statement holds if “injection” is replaced with “surjection” or “isomorphism”.

Proof. Consider the exact sequence 0 → ker f → M → N . Since f is injective if and only
if ker f = 0, and localization is exact (Proposition 2.2.1), the result follows from Proposi-
tion 2.3.1 applied to ker f .

For “surjection”, we use coker f instead, and “isomorphism” follows by combining both
parts. �

Proposition 2.3.3. The following are equivalent:

(1) M is a flat A-module.
(2) Mp is a flat Ap-module for all primes p.
(3) Mm is a flat Am-module for all maximal ideals m.

Proof. We first prove (1) implies (2). Suppose that M is flat. Let N1 → N2 be an injection
of Ap-modules. Then this is also an injection of A-modules via pullback along the canonical
map A → Ap and so M ⊗A N1 → M ⊗A N2 is also injective. But we can also localize at p
to get another injection, and this is the same as first localizing at p and then tensoring with
Mp by Proposition 2.2.5, and hence Mp is a flat Ap-module.

As usual, (2) clearly implies (3).
Finally, we prove that (3) implies (1). Suppose that M is not flat. Then there is an

injection N → N ′ of A-modules such that M ⊗A N → M ⊗A N ′ has a non-zero kernel K.
But then there exists a maximal ideal m so that the Km 6= 0 (Proposition 2.3.1), but this is
also the kernel of Mm ⊗Am Nm →Mm ⊗Am N

′
m, so Mm is not flat. �



10 STEVEN V SAM

2.4. Extended and contracted ideals. Given an ideal I ⊂ A, write S−1I for the extended
ideal (S−1A)I.

Proposition 2.4.1. Every ideal J ⊂ S−1A is of the form S−1I for some ideal I ⊂ A; in
particular, we can take I to be the preimage of J along the canonical map A→ S−1A.

Proof. S−1I ⊆ J by general properties of contracted ideals; and we claim that J = S−1I: if
(a, s) ∈ J , then (a, 1) ∈ J and hence a ∈ I, and so (a, s) ∈ S−1I. �

Proposition 2.4.2. The function p 7→ S−1p gives a bijection

{p ∈ Spec(A) | p ∩ S = ∅} → Spec(S−1A).

In particular, for any f ∈ A, Spec(Af ) is identified with the open subset Spec(A) \ V (f),
and for any prime p, Spec(Ap) is in bijection with the prime ideals of A that are contained
in p.

Proof. Suppose p ∈ Spec(A) and p ∩ S = ∅. Let S be the image of S under A→ A/p; this

does not contain 0. Since A/p is a domain, S
−1

(A/p) is contained in the field of fractions
of A/p and hence is a domain, but it is also isomorphic to S−1(A)/S−1(p), which means

that S−1(p) is prime. Since the canonical map A/p→ S
−1

(A/p) is injective, this also means
that the preimage of S−1(p) along A → S−1A is p. On the other hand, given a prime q of
S−1A, its pullback along the canonical map A → S−1A is a prime p such that p ∩ S = ∅
and S−1p = q by Proposition 2.4.1. �

Proposition 2.4.3. As an operation on ideals, S−1 commutes with finite sums, products,
and intersections.

Proof. We’ve already seen that S−1 commutes with finite sums and intersections in Corol-
lary 2.2.2. For products, let I and J be two ideals. Then clearly the image of S−1(IJ) in
S−1A is contained in (S−1I)(S−1J), so we just have to show equality. Since the image is
closed under addition, we just need to check elements of the form (x/s)(y/t) for x ∈ I, y ∈ J
and s, t ∈ S. But then this comes from (xy)/(st). �

Proposition 2.4.4. S−1 commutes with taking radicals. In particular, if A is reduced, then
so is S−1A.

Proof. If xn ∈ I for some n > 0 and s ∈ S, then (x/s)n ∈ S−1I, and so x/s ∈
√
S−1I.

Conversely, suppose that x/s ∈
√
S−1I, so that there exists n > 0 such that (x/s)n ∈ S−1I.

Then we can write xn/sn = y/t where y ∈ I and t ∈ S, so there exists u ∈ S such that

uxnt = usny ∈ I. But then (uxt)n ∈ I so uxt ∈
√
I, and x/s = (uxt)/(ust). �

3. Integral dependence

3.1. Integral elements. Let A be a subring of B. An element x ∈ B is integral over A
if there exists a monic polynomial with coefficients in A for which x is a solution. In other
words, there exists a positive integer n and a1, . . . , an ∈ A such that

xn + a1x
n−1 + · · ·+ an = 0.

We’ll call such an expression an integrality equation for x. This definition, while simple to
state, is quite difficult to work with (for example, as we will see soon, the sum of two integral
elements is again integral, but this seems to be very hard to prove using only this definition).
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Here are some equivalent formulations. We let A[x] denote the subring of B generated by A
and x (not to be confused with the polynomial ring).

Proposition 3.1.1. The following are equivalent:

(1) x is integral over A.
(2) A[x] is a finitely generated A-module.
(3) There exists a subring C of B that contains A[x] such that C is a finitely generated

A-module.
(4) There exists a faithful (i.e., trivial annihilator) A[x]-module M which is finitely gen-

erated as an A-module.

Proof. As an A-module, A[x] is generated by 1, x, x2, . . . . If x is integral over A, then there
exists n such that 1, x, x2, . . . , xn−1 suffice (since xN for N ≥ n is a linear combination of
smaller powers), and hence (1) implies (2).

(2) trivially implies (3) by taking C = A[x].
(3) implies (4) by taking M = C.
Finally, suppose that (4) holds. We have an A-linear map ϕ : M → M given by ϕ(m) =

xm. By the Cayley–Hamilton theorem (Theorem 1.5.1), there exist a1, . . . , an ∈ A such that

(ϕn + a1ϕ
n−1 + · · ·+ an)(m) = 0

for all m ∈M . In particular, xn + · · ·+ a0 annihilates M . By the assumption M is faithful,
we see that xn + · · ·+ a0 = 0, so that x is integral over A. �

Corollary 3.1.2. The set of elements of B that are integral over A is a subring, i.e., if
x, y ∈ B are integral, then so is x± y and xy.

Proof. Let x, y ∈ B be integral over A. Then y is also integral over A[x] so that A[x, y] is
a finitely generated A[x]-module. In turn, A[x] is a finitely generated A-module, so A[x, y]
is a finitely generated A-module. Since A[x + y] ⊂ A[x, y], we see from above that x + y is
integral over A. Similarly, x− y and xy are integral over A. �

3.2. Integral extensions. Given A ⊂ B, the set of integral elements is denoted A and is
called the integral closure of A in B. If A = A, then A is integrally closed in B and
if A = B, then B is integral over A. We also say that A ⊆ B is an integral extension.
We can extend the setup to include arbitrary homomorphisms f : A → B, in which case,
we consider the inclusion f(A) ⊂ B, and say that B is integral over A, or f is an integral
homomorphism, if B is integral over f(A).

Integrality is transitive:

Corollary 3.2.1. Suppose A ⊆ B ⊆ C. If C is integral over B and B is integral over A,
then C is integral over A.

In particular, A = A.

Proof. Pick x ∈ C. Since x is integral over B, there exist b1, . . . , bn ∈ B such that

xn + b1x
n−1 + · · ·+ bn = 0.

Let B′ = A[b1, . . . , bn]. Then x is integral over B′, and hence B′[x] is a finitely generated
B′-module. Next, each of b1, . . . , bn is integral over A, and so B′ is a finitely generated
A-module. This implies that B′[x] is a finitely generated A-module. Finally, A[x] ⊂ B[x],
so by the equivalence of (1) and (3) in Proposition 3.1.1, x is integral over A.

For the last statement, take B = A and C = A, which shows that A ⊆ A. �
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Proposition 3.2.2. Let A ⊆ B be an integral extension. If I ⊆ B is an ideal, then A/(A ∩
I) ⊆ B/I is integral.

Proof. Given x ∈ B/I, lift it to an element y in B. Take a monic expression for y with
coefficients in A which is 0 and reduce it modulo I to see that x is integral over the image
of A in B/I, i.e., A/(A ∩ I). �

Proposition 3.2.3. Let S ⊆ A be a multiplicative subset. If A ⊆ B is integral, then so is
S−1A ⊆ S−1B.

Proof. Pick x/s ∈ S−1B, where x ∈ B and s ∈ S. Then x is integral over A, so we have an
equation

xn + a1x
n−1 + · · ·+ an = 0

where ai ∈ A. Then we have

(x/s)n + (a1/s)(x/s)
n−1 + · · ·+ an/s

n = 0

which shows that x/s is integral over S−1A. �

An important case is when A is a domain and B is its field of fractions. In that case, A

is called the normalization of A, and we’ll denote it by Ã. A domain A is called normal if

A = Ã, i.e., is integrally closed in its field of fractions. This turns out to be a very important
property in commutative algebra and algebraic geometry (see §8 for some examples), though
we’re limited here in what we can explain.

Proposition 3.2.4. Any unique factorization domain is normal.

Proof. Let A be a UFD and let B be its field of fractions. Pick x/y ∈ B with x, y ∈ A. Since
A is a UFD, we may assume that x, y have no factors in common in their prime factorizations.
Now suppose that x/y is integral, so that we have an equation of the form

(x/y)n + a1(x/y)n−1 + · · ·+ an = 0

for some a1, . . . , an ∈ A. Multiply by yn and rearrange to get

xn = −(a1x
n−1y + · · ·+ any

n)

The right hand side is divisible by y and hence so is xn; by our original assumptions, y must
then be a unit in A, so x/y ∈ A. �

Normality is a local property:

Proposition 3.2.5. Let A be a domain. The following are equivalent:

(1) A is normal.
(2) Ap is normal for all primes p.
(3) Am is normal for all maximal ideals m.

Proof. Let B be the field of fractions of A. Then Bp = B is the field of fractions of Ap for

any prime p. In particular, A is normal if and only if the inclusion map A→ Ã is surjective.
But this can be checked locally by Corollary 2.3.2. �
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3.3. Going up and down.

Proposition 3.3.1. Let A ⊆ B be an integral extension of domains. Then A is a field if
and only if B is a field.

Proof. First suppose that A is a field and pick x ∈ B. Then we have an equation of the form

xn + a1x
n−1 + · · ·+ an = 0

for a1, . . . , an. Pick n the smallest degree of such an equation. Then an 6= 0; if not, then
xn−1 + a1x

n−2 + · · · + an−1 = 0 since x is a nonzerodivisor contradicting minimality of n.
But this tells us that x−1 = −a−1

n (xn−1 + a1x
n−2 + · · ·+ an−1) ∈ B, so that B is a field.

Conversely, suppose that B is a field. Pick x ∈ A. Then 1/x is integral over A, so we have
an equation of the form

(1/x)n + a1(1/x)n−1 + · · ·+ an = 0

for a1, . . . , an ∈ A. Multiplying by xn−1 and rearranging shows that

1/x = −(a1 + · · ·+ anx
n−1).

so that 1/x ∈ A and hence A is a field. �

Corollary 3.3.2. Let A ⊆ B be an integral extension and let q ⊂ B be a prime. Then q is
maximal if and only if p = A ∩ q is maximal.

Proof. By Proposition 3.2.2, A/(A ∩ q) → B/q is integral, so we can apply the previous
result. �

Theorem 3.3.3 (Incomparability). Let A ⊂ B be an integral extension and suppose that
p ⊆ q are prime ideals in B. If p ∩ A = q ∩ A, then p = q.

Proof. Let S = A \ (q ∩ A). This is a multiplicative set and so S−1A ⊆ S−1B is integral
by Proposition 3.2.3. Then S−1p ∩ S−1A = S−1q ∩ S−1A, and this is the maximal ideal
S−1(q ∩ A). But then S−1p = S−1q since they are maximal ideals (one contained in the
other) by Corollary 3.3.2. Finally, by the correspondence (Proposition 2.4.2) for prime
ideals in the localization (both p and q do not intersect S), we have p = q. �

Theorem 3.3.4 (Lying over theorem). Let A ⊂ B be an integral extension. For every
prime ideal p ⊂ A, there exists a prime q ⊂ B such that q∩A = p. In other words, the map
Spec(B)→ Spec(A) is surjective.

Proof. Consider the localized map f : Ap → Bp = B ⊗A Ap which is integral by Proposi-
tion 3.2.3. Pick a maximal ideal m of Bp. By Corollary 3.3.2, f−1(m) is a maximal ideal and
hence equal to pAp so that its pullback to A is just p. In particular, we can take q to be the
pullback of m to B. �

Theorem 3.3.5 (Going-up theorem). Let A ⊂ B be an integral extension. Let p1 ⊆ · · · ⊆ pn
be prime ideals of A and let q1 be a prime ideal of B such that q1 ∩A = p1. Then there is a
chain of prime ideals q1 ⊆ q2 ⊆ · · · ⊆ qn so that qi ∩ A = pi for all i = 1, . . . , n.

Proof. It’s enough to consider the case n = 2. Furthermore, the extension A/p1 ⊆ B/q1 is
integral by Proposition 3.2.2, so we may replace A and B by A/p1 and B/q1, and assume
that p1 = 0 and q1 = 0, and we just need to find a prime in B whose intersection with A is
q2. But now the result follows from the lying over theorem. �
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Lemma 3.3.6. Let f : A→ B be a ring homomorphism and let p ⊂ A be a prime such that
f−1(pB) = p. Then there exists a prime q ⊂ B such that f−1(q) = p.

Proof. Let S = f(A \ p), which is a multiplicative subset of B. The assumption that
f−1(pB) = p implies that pB ∩ S = ∅, and so pS−1B is a proper ideal in S−1B; pick
some maximal ideal m of S−1B that contains pS−1B and let q be the pullback of m to B.
Then p ⊆ f−1(q). If x /∈ p, then f(x) is a unit in S−1B, and so f(x) /∈ q, so we see that
f−1(q) = p. �

Lemma 3.3.7. Let A be a domain with field of fractions K and algebraic closure K.

(1) Pick monic polynomials F ∈ A[t] and G,H ∈ K[t]. If F = GH, then G,H ∈ Ã[t].
(2) Now assume that A is normal and x ∈ K is integral over A. Then the monic minimal

polynomial of x has coefficients in A.
Furthermore, if p ⊂ A is a prime and there is some monic polynomial in A with

non-leading coefficients in p for which x ∈ K is a root, then its monic minimal
polynomial also has non-leading coefficients in p.

Proof. (1) Let α be a root of either G or H in the algebraic closure of K. Since both are
monic, α is integral over A. In particular, the coefficients of G and H are integral over A
since they are in the subring generated by the roots.

(2) The first part follows by taking F in (1) to be any integrality equation for x and taking
G to be its monic minimal polynomial over K. For the second part, since A[t]/pA[t] is a
domain and F modulo p is a power of t, it follows that both G,H modulo p are also powers
of t, and hence their non-leading coefficients also belong to p. �

Theorem 3.3.8 (Going-down theorem). Let A ⊆ B be an integral extension of domains
such that A is normal. Let p1 ⊆ · · · ⊆ pn be prime ideals of A and let qn be a prime ideal of
B such that qn ∩ A = pn. Then there is a chain of prime ideals q1 ⊆ q2 ⊆ · · · ⊆ qn so that
qi ∩ A = pi for all i = 1, . . . , n.

Proof. It suffices to handle the case when n = 2.
Let S = B \ q2 and consider the ring homomorphism A→ S−1B. We are done if we can

show that p1S
−1B ∩ A = p1: Lemma 3.3.6 gives a prime q′ of S−1B whose pullback to A is

p1, and we can then take q1 to be pullback of q′ to B.
So pick x ∈ p1S

−1B ∩ A and write x = y/s with y ∈ p1B and s ∈ B \ q2. We need to
show that x ∈ p1. First, since y ∈ p1B, multiplication by y on A[y] takes values in p1A[y].
Hence by the Cayley–Hamilton theorem (Theorem 1.5.1), y satisfies a monic polynomial
F (t) whose non-leading coefficients belong to p1. By Lemma 3.3.7, we may assume that F
is the monic minimal polynomial of y over K. Write out F (y) = 0:

yn + a1y
n−1 + · · ·+ an = 0.

Divide by xn to get

sn +
a1

x
sn−1 + · · ·+ an

xn
= 0.

Since x ∈ A, the coefficients ai/x
i belong to K. This is a minimal polynomial for s over K

(if not, we can multiply by xn to get a smaller degree polynomial for y). By Lemma 3.3.7,

the coefficients belong to Ã = A. Since (ai/x
i)xi = ai ∈ p1, we see that either x ∈ p1 (in

which case we’re done) or ai/x
i ∈ p1 for all i. In the latter case, the integral equation above

shows that sn ∈ p1B ⊆ q2, and hence s ∈ q2, which is a contradiction. �
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4. Chain conditions

4.1. Noetherian modules. Let A be a ring. An A-module M is noetherian if every
submodule of M is finitely generated (including itself). The ring A is noetherian if it is
noetherian as a module over itself, i.e., every ideal is finitely generated.

We say that M satisfies the ascending chain condition (ACC) if, given any increasing
sequence of submodules M1 ⊆M2 ⊆ · · · , we must have Mi = Mi+1 for i� 0. For short, we
say that the chain stabilizes.

Proposition 4.1.1. The following are equivalent:

(1) M is noetherian.
(2) M satisfies ACC.
(3) Every nonempty subset of submodules of M has a maximal element.

Proof. Suppose M is noetherian and let M1 ⊆ M2 ⊆ · · · be an increasing sequence of
submodules. Let M ′ =

⋃
iMi be the union of these submodules. Then M ′ is a submodule of

M and hence is finitely generated, say by m1, . . . ,mn. Each generator mi belongs to some
Mp(i) and in particular they all belong to a particular Mp where p = max(p(1), . . . , p(n)).
But then Mi = Mi+1 if i ≥ p, so M satisfies ACC.

Now let S be a nonempty subset of submodules. If S does not have a maximal element,
then by induction on n we can construct a strictly increasing chain of submodules M1 $
M2 $ · · · $ Mn contained in S. Namely, given such a chain, since Mn isn’t maximal, there
is some submodule in S that strictly contains it, so we can increase the length by 1 more.
Hence (2) implies (3).

Now suppose that M is not noetherian, so that it has a non finitely generated submodule,
i.e., there is a sequence of elements x1, x2, · · · ∈ M such that xi is not in the submodule
generated by x1, . . . , xi−1 for all i. Let Mi be the submodule generated by x1, . . . , xi. Then
{Mi} is a nonempty subset of submodules that has no maximal element and so (3) implies
(1). �

Proposition 4.1.2. If 0 → M1 → M2
f−→ M3 → 0 is a short exact sequence, then M2 is

noetherian if and only if M1 and M3 are noetherian.

Proof. Suppose that M2 is noetherian. Every ascending chain in M1 is also an ascending
chain in M2 and hence stabilizes. Given an ascending chain in M3, its preimage under f is
an ascending chain which must stabilize, and applying f again gives the original chain, so it
also stabilizes.

Now suppose that both M1 and M3 are noetherian. Given an inclusion of submodules
N ⊆ N ′ of M2, we note that they are equal if and only if N∩M1 = N ′∩M1 and f(N) = f(N ′)
(if x ∈ N ′\N exists, then either x ∈M1 or x represents a nontrivial coset of M1 that belongs
to f(N ′)\f(N)). Hence given any increasing chain of M2, it stabilizes because its intersection
with M1 stabilizes and its image under f also stabilizes. �

Corollary 4.1.3. Any finite direct sum of noetherian modules is noetherian.

Proof. By induction, it suffices to consider the direct sum of 2 noetherian modules M,N .
But then the result follows by considering the previous result with the short exact sequence
0→M →M ⊕N → N → 0. �

Corollary 4.1.4. If A is a noetherian ring, then every finitely generated A-module is noe-
therian.
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Proof. Let M be a finitely generated module, say generated by x1, . . . , xn. Then we have a
surjective map f : An → M given by f(a1, . . . , an) = a1x1 + · · ·+ anxn. By Corollary 4.1.3,
An is a noetherian module, and hence the same holds for M by Proposition 4.1.2 applied to
0→ ker f → An →M → 0. �

4.2. Noetherian rings.

Proposition 4.2.1. If A is a noetherian ring, then so is A/I for any ideal I ⊂ A. In
particular, if f : A→ B is a surjective ring homomorphism, then B is noetherian.

Proof. Every ideal of A/I is the homomorphic image of an ideal in A. For the second
statement, B ∼= A/ ker f . �

Proposition 4.2.2. If A is a noetherian ring and S ⊆ A is a multiplicative subset, then
S−1A is a noetherian ring.

Proof. By Proposition 2.4.1, every ideal of S−1A is of the form S−1I for some ideal I ⊂ A.
We know that I is finitely generated, and the image of this generating set also generates
S−1I. �

Given an ideal I in A, a minimal prime of I is a prime ideal p which contains I and
is minimal with respect to inclusion amongst all of the prime ideals that contain I, i.e., if
p ⊃ q ⊃ I and q is prime, then p = q.

Proposition 4.2.3. If A is a noetherian ring, then every ideal has finitely many minimal
primes.

Proof. Suppose not. Then the set of ideals which do not have finitely minimal primes is
nonempty. Since A is noetherian, this set has a maximal element, call it J . Then J is not
prime (otherwise it only has one minimal prime, namely itself) and so there exist x, y ∈ A
such that x, y /∈ J but xy ∈ J . Let p be any minimal prime of J . Then xy ∈ p and
hence either x ∈ p or y ∈ p. In particular, we see that p either contains (J, x) or (J, y).
Furthermore, p is a minimal prime of whichever it contains (since p is minimal over J). But
both (J, x) and (J, y) strictly contain J , so by definition, each one has finitely many minimal
primes, which contradicts that J does not have finitely many minimal primes. �

An ideal I is irreducible if it is not the proper intersection of two other ideals, i.e., if
I = J1 ∩ J2, then either J1 = I or J2 = I.

Proposition 4.2.4. Every ideal in a noetherian ring A is a finite intersection of irreducible
ideals.

Proof. Suppose this is false and consider the subset of ideals which are not the finite inter-
section of irreducible ideals. Since A is noetherian, this has a maximal element I, which is
not irreducible. Hence we can write I = J1 ∩ J2 where both J1 and J2 strictly contain I. So
J1 and J2 are finite intersections of irreducible ideals, but then the same is true for I, which
is a contradiction. �

Remark 4.2.5. If I is irreducible, then V (I) ⊂ SpecA is an irreducible topological space.
Hence the result says that if A is noetherian, then every closed subset of SpecA can be
written as a finite union of irreducible closed subsets. �
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This can lead to the notion of primary decomposition, but we’re going to skip that topic.
But here are some things we’ll use.

Let q ⊂ A be a proper ideal. Then q is primary if, for all x, y ∈ A, xy ∈ q implies that
x ∈ q or yn ∈ q for some n > 0. In terms of quotient rings, it means that every zerodivisor
of A/q is nilpotent.

Proposition 4.2.6. If q is primary, then p =
√
q is prime.

Proof. Suppose that xy ∈ p. Then xnyn ∈ q for some n > 0, so either xn ∈ q (and hence
x ∈ p) or (yn)m ∈ q for some m > 0 (and hence y ∈ p). �

Proposition 4.2.7. If A is noetherian, then an irreducible ideal I is primary. In particular,√
I is prime.

Proof. Pick x, y ∈ A/I such that xy = 0. Consider the chain of ideals

Ann(y) ⊆ Ann(y2) ⊆ · · · .
SinceA/I is noetherian, this chain stabilizes, so there exists n such that Ann(yn) = Ann(yn+1).
We claim that (yn)∩ (x) = 0. To see this, pick z ∈ (yn)∩ (x), so that there exists a, b ∈ A/I
such that z = ayn = bx. But then yz = bxy = 0 and so ayn+1 = 0 which means that
a ∈ Ann(yn+1) = Ann(yn), and hence ayn = z = 0. In particular, let x̃, ỹ ∈ A be preimages
of x, y; we see that ((ỹn) + I)∩ ((x̃) + I) = I. Since I is irreducible, we have either x̃ ∈ I or
ỹn ∈ I, i.e., every zerodivisor of A/I is nilpotent. �

Example 4.2.8. The converse can fail: let A = Q[x, y] and m = (x, y). Then m2 =
(x2, xy, y2) is a primary ideal, but we can write (x2, xy, y2) = (x, y2) ∩ (x2, y) so it is not
irreducible. �

4.3. Hilbert basis theorem.

Theorem 4.3.1 (Hilbert basis theorem). If A is a noetherian ring, then the polynomial ring
A[x] is a noetherian ring. In particular, so is A[x1, . . . , xn].

Proof. Given a nonzero polynomial F (x) = anx
n + · · · + a0 with ai ∈ A, let init(F ) = anx

n

denote its leading (initial) term, and define init(0) = 0. Next, given an ideal I ⊂ A[x], define
init(I) to be the additive subgroup generated by {init(F ) | F ∈ I}. This is again an ideal of
A[x] since init(xnF ) = xninit(F ), and for a ∈ A, if ainit(F ) 6= 0, then ainit(F ) = init(aF ).

We claim that if I ⊆ J are ideals in A[x] and init(I) = init(J), then I = J . If not, then
pick F ∈ J \ I of lowest possible degree. Then init(F ) ∈ init(I), so there exists G ∈ I such
that init(F ) = init(G), and so G− F ∈ J \ I has lower degree.

Finally, suppose that A[x] is not noetherian, so there exists a strictly increasing chain of
ideals 0 = I0 $ I1 $ I2 $ · · · . By the claim, we get another strictly increasing chain of ideals
init(I1) $ init(I2) $ · · · in A[x]. For each i, pick aix

di ∈ init(Ii) \ init(Ii−1). We can pass to
a subsequence i1 ≤ i2 ≤ such that di1 ≤ di2 ≤ · · · . The chain of ideals (ai1) ⊆ (ai1 , ai2) ⊆ · · ·
in A stabilizes, so there is some r such that ain is generated by ai1 , . . . , air if n > r. But then
ainx

din is generated by ai1x
di1 , . . . , airx

dir whenever n > r, which is a contradiction. Hence
A[x] is noetherian.

For the last statement, use induction on n noting that A[x1, . . . , xn] ∼= A[x1, . . . , xn−1][x].
�

Corollary 4.3.2. If A is a noetherian ring and B is a finitely generated A-algebra, then B
is noetherian.
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Proof. If B has n generators as an A-algebra, then B is a quotient of A[x1, . . . , xn]. �

4.4. Hilbert nullstellensatz.

Lemma 4.4.1. Let A ⊆ B ⊆ C be rings. Assume that A is noetherian, that C is finitely
generated as an A-algebra and finitely generated as a B-module. Then B is finitely generated
as an A-algebra.

Proof. The idea is to find a ring B′ in between A and B which is a finitely generated A-
algebra and so that C is a finitely generated B′-module. Once we do that, we know that B′

is noetherian and then B is a finitely generated B′-module, and hence a finitely generated
A-algebra.

Let x1, . . . , xr ∈ C be A-algebra generators and let y1, . . . , ys ∈ C be B-module generators.
Hence every element x ∈ C can be written as a polynomial in x1, . . . , xr with coefficients in
A. Furthermore, each xi is a B-linear combination of the yj, say xi =

∑
j bijyj. Substituting

this in shows that x is a polynomial in the yi with coefficients in the subring generated by A
and the bij. Next, we can rewrite every product yiyj in terms of the yk, say yiyj =

∑
k cijkyk

with cijk ∈ B. Now arbitrarily substitute products yiyj for these linear combinations to see
that x can be written as a linear combination of the yi where the coefficients belong to the
subring generated by A, the bij, and the cijk. We take B′ to be this subring. �

Theorem 4.4.2 (Hilbert nullstellensatz). Let k ⊂ E be a field extension such that E is a
finitely generated k-algebra. Then E is finite-dimensional over k.

Proof. Let x1, . . . , xn ∈ E be k-algebra generators. There is a maximal transcendental
subset, so we can reindex so that x1, . . . , xr is a transcendental subset and E is a finite
extension of E ′ = k(x1, . . . , xr). Then using the previous setup, we see that E ′ is a finitely
generated k-algebra. If r = 0 we are done, so suppose that r > 0 and that f1/g1, . . . , fm/gm
are a generating set for E ′ over k, where the fi and gi are polynomials in the xi with
coefficients in k. Then g1g2 · · · gm 6= −1 (if so, then each fi/gi = −fig1 · · · ĝi · · · gm is a
polynomial and they can’t generate all rational functions as a k-algebra). Hence h :=
g1g2 · · · gm + 1 is nonzero. Then 1/h cannot be a polynomial in f1/g1, . . . , fm/gm: if it were
then we could clear denominators in such an expression to conclude that gp11 · · · gpmm /h is
a polynomial in the xi for some pi ≥ 0. But any irreducible polynomial that divides the
numerator cannot divide the denominator, so this is a contradiction. �

Corollary 4.4.3. If k is a field, and m is a maximal ideal of k[x1, . . . , xn], then k[x1, . . . , xn]/m
is a finite field extension of k. In particular, if k is algebraically closed, then there exist
α1, . . . , αn ∈ k such that m = (x1 − α1, . . . , xn − αn).

Proof. Let E = k[x1, . . . , xn]/m. Then E is a field that is finitely generated over k and hence
must be a finite extension.

If k is algebraically closed, then by definition the inclusion k→ E must be an isomorphism.
In particular, let αi be the image of xi under the quotient map k[x1, . . . , xn] → k given by
modding out by m. Then xi − αi ∈ m, and so (x1 − α1, . . . , xn − αn) is a maximal ideal
contained in m. Hence they are equal. �

4.5. Artinian modules. Let A be a ring and M an A-module. Then M is artinian if its
submodules satisfy the descending chain condition (DCC): for every sequence of submodules
M1 ⊇M2 ⊇ · · · , we have Mn = Mn+1 for n� 0. We will also say that the chain stabilizes.
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This is equivalent to the condition that every set of submodules has a minimal element. A
ring is artinian if it is artinian as a module over itself, i.e., if its ideals satisfy DCC.

Proposition 4.5.1. If 0 → M1 → M2 → M3 → 0 is a short exact sequence of A-modules,
then M2 is artinian if and only if M1 and M3 are artinian.

Proof. The proof is exactly the same as the proof for Proposition 4.1.2. �

Corollary 4.5.2. Finite direct sums of artinian modules are artinian. If A is an artinian
ring, then every finitely generated A-module is artinian.

An A-module M is simple if every A-submodule is either {0} or M . A nonzero module
M has a composition series if there exist a chain of submodules

M = M0 %M1 % · · · %Mn = 0

such that Mi/Mi+1 is a (nonzero) simple A-module for i = 0, . . . , n − 1. The length of this
chain is n (the number of strict inclusions). Define `(M) to be the minimum length of a
composition series, if it exists, and define `(M) = ∞ if no composition series exists. This
is the length of M . In the first case, we say that M is a finite length module. We define
`(0) = −1 and say that the zero module is also a finite length module.

Example 4.5.3. If A is a field, then a vector space is simple if and only if it is 0 or 1-
dimensional. Furthermore, it has a composition series if and only if it is finite-dimensional
and length coincides with dimension. We see here that the length of a composition series is
always the same (we’ll see that more generally next) but in general it is far from unique. �

Proposition 4.5.4. Let M be a nonzero finite length module.

(1) If N is a proper submodule, then `(N) < `(M) and `(M/N) < `(M).
(2) Every strict chain has length ≤ `(M) and every composition series of M has length

`(M).
(3) Every strictly decreasing chain of submodules of M can be completed to a composition

series by inserting extra submodules. In particular, every strict chain of length `(M)
is a composition series.

Proof. (1) Choose a minimal length composition series for 0 = Mn $Mn−1 $ · · · $M0 = M
for M and set Ni = Mi ∩ N . Then we have injective maps Ni/Ni+1 → Mi/Mi+1 for all i;
since Mi/Mi+1 is simple, either Ni/Ni+1 = 0, i.e., Ni = Ni+1, or the map is an isomorphism,
so Ni/Ni+1 is a nonzero simple module. Hence removing the equalities amongst the Ni gives
a strict chain of length ≤ n, and so `(M) = n ≥ `(N). If we have equality, this means
that Ni/Ni+1 →Mi/Mi+1 is an isomorphism for all i; reverse induction on i we see that this
implies that Ni = Mi for all i (the base case uses that Mn = Nn = 0) and hence N = M .

Similarly, we can show that `(M/N) < `(M) by instead considering the image of a com-
position series for M in M/N , we won’t repeat the details.

(2) Now let 0 = Mk $ · · · $M0 = M be any strict chain of submodules. By (1), we have
n = `(M) > `(M1) > · · · > `(Mk−1) ≥ 0, so that k ≤ n. In particular, every composition
series has length at most `(M), but by definition they must all have this particular length.

(3) If N $ N ′ and N ′/N is not simple, pick a proper nonzero submodule P ⊂ N ′/N . Then
the preimage P ′ of P in N ′ gives a larger strict chain N $ P ′ $ N ′. Hence, any chain which
is not a composition series can be made longer by inserting an extra submodule wherever
the corresponding quotient module is not simple. This process must terminate: the original
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chain has length at most `(M) by (2), each insertion increases the length by 1, and finally,
any chain of length `(M) must be a composition series since otherwise we would be able to
produce a strict chain of length `(M) + 1, contradicting (2). �

Remark 4.5.5. Even more is true: if M has a composition series of length n, then the multi-
set of isomorphism classes {Mi/Mi+1} depends only on M and not the choice of composition
series. �

Corollary 4.5.6. M is a finite length module if and only if it is both noetherian and artinian.

Proof. If M has finite length, then every strict chain has length ≤ `(M) and hence every
ascending or descending chain stabilizes.

Conversely, suppose that M is noetherian and artinian and nonzero. The set of proper
submodules is nonempty and hence has a maximal element M1 by Proposition 4.1.1, and so
M/M1 is simple. If M1 6= 0, then again the set of proper submodules of M1 is nonempty and
has a maximal element M2 and so M1/M2 is simple. Hence we can produce a sequence M1 %
M2 % · · · . Since M is artinian, this must stabilize (necessarily to 0 by our construction) and
so we have produced a composition series. �

Noetherian modules must be finitely generated (because every submodule is finitely gen-
erated) but this need not be true for artinian modules.

Example 4.5.7. Consider A = Q[x] the polynomial ring in 1 variable and consider the
Laurent polynomial ring Q[x, x−1] as an A-module. Let M be the quotient of Q[x, x−1] by
the A-submodule generated by (x), so that M has a Q-basis {1, x−1, x−2, . . . } with the rule
x · x−i = x−i+1 if i > 0 and x · 1 = 0. Then M is artinian and not finitely generated (left as
exercise). �

Proposition 4.5.8. If 0 → M1 → M2 → M3 → 0 is a short exact sequence of A-modules,
then `(M2) = `(M1) + `(M3).

Proof. First suppose that M1 and M3 both have composition series, call the first 0 = Nr $
· · · $ N0 = M1 and the second 0 = Ps $ · · · $ P0 = M3 and let P ′i be the preimage of Pi in
M2. Then

0 = Nr $ · · · $ N0 $ P ′s−1 $ · · · $ P ′0 = M2

is a composition series for M2 which shows that `(M2) = `(M1) + `(M3).
On the other hand, if `(M1) = ∞ or `(M3) = ∞, then we have `(M2) = ∞ (otherwise

this violates (1) of Proposition 4.5.4). �

4.6. Artinian rings.

Proposition 4.6.1. If A is artinian, then every prime ideal is maximal.

Proof. Let p ⊂ A be a prime ideal. Then A/p is also artinian and an integral domain. Pick
x ∈ A/p nonzero. We have a descending chain of ideals (x) ⊇ (x2) ⊇ (x3) ⊇ · · · , which
stabilizes, so there exists n such that (xn) = (xn+1). In particular, there exists y such that
xn = xn+1y. Since A/p is a domain and x 6= 0, this implies that xy = 1, i.e., that x is a
unit. So every nonzero element of A/p is a unit, i.e., A/p is a field so p is a maximal ideal
of A. �

Proposition 4.6.2. An artinian ring has only finitely many maximal ideals.
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Proof. If not, suppose that A is an artinian ring with an infinite list of distinct maximal
ideals m1,m2, . . . . Consider the descending chain

m1 ⊇ m1 ∩m2 ⊇ m1 ∩m2 ∩m3 ⊇ · · · .
This stabilizes, so there exists n such that

m1 ∩ · · · ∩mn = m1 ∩ · · · ∩mn ∩mn+1,

so mn+1 ⊇ m1 ∩ · · · ∩ mn. But then there exists i such that mn+1 ⊇ mi which contradicts
that these are all distinct maximal ideals. �

Proposition 4.6.3. If A is an artinian ring, then A is noetherian.

Proof. If not, then the set of ideals of A which are not finitely generated is nonempty, and
since A is artinian, this set contains a minimal element, call it I. First, we claim that for
all x ∈ A, either xI = I or xI = 0. If xI 6= I, then xI is properly contained in I and hence
is finitely generated. Furthermore, xI is a quotient of I via the multiplication by x map
I → xI. The kernel K of this map cannot be finitely generated by Proposition 4.1.2, and
hence we have K = I by minimality, so xI = 0. This proves the claim.

Now let J = AnnA(I) = {x ∈ A | xI = 0}. If xy ∈ J and y /∈ J , then by the claim we
have 0 = xyI = x(yI) = xI and hence x ∈ J . This tells us that J is a prime ideal and so
A/J is an artinian domain and I is naturally an A/J-module. By Proposition 4.6.1, A/J is
a field, and so I is a vector space (necessarily infinite-dimensional) over this field. However,
ideals contained in I correspond to subspaces as an A/J-vector space, so by construction, I
is an infinite-dimensional vector space such that every proper subspace is finite-dimensional.
But such an example does not exist (take any basis for I and take the span of all but one of
the basis vectors), so we have reached a contradiction. �

Corollary 4.6.4. If A is an artinian ring, then every finitely generated A-module is finite
length.

Proof. From the previous result, A is also noetherian, so every finitely generated A-module
is both artinian and noetherian. Now use Corollary 4.5.6. �

Theorem 4.6.5. A ring is artinian if and only if it is noetherian and every prime ideal is
maximal.

Proof. We’ve already seen that artinian rings are noetherian and that every prime ideal is
maximal.

Now let A be a noetherian ring for which every prime ideal is maximal. By Proposi-
tion 4.2.4 we can write the 0 ideal as a finite intersection of irreducible ideals

(0) = I1 ∩ · · · ∩ Ir
and by Proposition 4.2.7, the radical pi =

√
Ii is prime for each i. Since radicals commute

with finite intersections, the nilradical N of A is a finite intersection of primes

N = p1 ∩ · · · ∩ pr.

Since N is also the intersection of all prime ideals, for any other prime p, we have p ⊇
p1 ∩ · · · ∩ pr which means p ∈ {p1, . . . , pr} since they are all maximal. Hence there are only
finitely many prime ideals. Next, since each pi is maximal, they are coprime to one another,
and so

A/N ∼= A/p1 × · · · × A/pr,
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and the right side is a product of fields, so A/N is artinian. Finally, since A is noetherian, N
is finitely generated and hence Nn = 0 for some n > 0. Each quotient Ni/Ni+1 is a finitely
generated A/N-module, and hence has finite length. So

`(A) =
n−1∑
i=0

`(Ni/Ni+1) <∞,

and so A is artinian (Corollary 4.5.6). �

Theorem 4.6.6. Every artinian ring A is isomorphic to a finite direct product of local
artinian rings, namely the localizations at its maximal ideals. Furthermore, any other such
direct product decomposition must be this one (up to permutation and isomorphism).

Proof. By Proposition 4.6.2, A has only finitely many maximal ideals, call them m1, . . . ,mn.
By Proposition 4.6.1, these are also all of the prime ideals, so using coprimeness of distinct
maximal ideals, we have

m1 · · ·mn = m1 ∩ · · · ∩mn = N

is the nilradical. Since A is noetherian, Nk = 0 for some k > 0. In particular, using again
coprimeness, we get mk

1 ∩ · · · ∩mk
n = mk

1 · · ·mk
n = 0, and so we have an isomorphism

A ∼= A/mk
1 × · · · × A/mk

n.

Each of A/mk
i is an artinian local ring. Now localize this decomposition at mi. If j 6= i, then

(A/mk
j )mi

= 0 since there exists y ∈ mj \ mi which is both nilpotent and invertible in this

localization (which forces it to be 0). On the other hand, the image of mi in A/mk
i is its

unique maximal ideal, so (A/mk
i )mi

is the same as A/mk
i . We conclude that

A ∼= Am1 × · · · × Amn .

On the other hand, suppose have a direct product decomposition

A ∼= A1 × · · · × Ar
where the Ai are local artinian rings. Since this is a finite product, every prime ideal is of
the form I1×· · ·×Ir where Ii is a prime ideal for some i and Ij = Aj for j 6= i. In particular,
since every prime of A and each Ai is maximal, we see that A has r maximal ideals, so r = n.
Furthermore, if we localize at the ith maximal ideal, call it pi, then we get (Aj)pi = 0 for
j 6= i and (Ai)pi

∼= Ai, so that Api
∼= Ai. This proves the claimed uniqueness statement. �

Let’s summarize the above discussion:

Theorem 4.6.7. The following class of rings are the same:

(1) Artinian rings.
(2) Noetherian rings such that every prime ideal is maximal.
(3) Rings which are finite length as modules over themselves.
(4) Finite direct products of artinian local rings.

5. Gradings and filtrations

5.1. Graded rings and Hilbert series.
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Definition 5.1.1. Let (Γ,+) be an abelian semigroup (i.e., + is associative, commutative,
and has a unit) and let A be a ring. A Γ-grading on A is a direct sum decomposition (of A
as an abelian group under addition)

A =
⊕
γ∈Γ

Aγ

such that if f ∈ Aγ and f ′ ∈ Aγ′ , then ff ′ ∈ Aγ+γ′ .
Given such a grading on A, a Γ-grading on an A-module M is a direct sum decomposition

M =
⊕
γ∈Γ

Mγ

such that if f ∈ Aγ and m ∈Mγ′ , then fm ∈Mγ+γ′ . �

Typically, we deal with the case that Γ = Z or Z≥0. In that case, we will write M≥d for the
direct sum

⊕
n≥dMn. For any integer d, we let M(d) denote M with the adjusted grading

M(d)n = Md+n. If d ≤ 0 and M is Z≥0-graded, then M(d) is also Z≥0-graded.
A homomorphism between graded modules f : M → N is homogeneous of degree d if

f(Mi) ⊆ Ni+d for all i. We can always interpret it as a degree 0 map by shifting the domain
f : M(−d)→ N (this is very useful notation).

Finally, if M and N are graded, then their direct sum and tensor product are defined by

(M ⊕N)n = Mn ⊕Nn, (M ⊗N)n =
n⊕
i=0

Mi ⊗Nn−i.

Example 5.1.2. For any ring A, the polynomial ring A[x1, . . . , xn] is Z≥0-graded by setting
A[x1, . . . , xn]d to be the subspace of homogeneous polynomials of degree d, i.e., A-linear
combinations of xd11 · · ·xdnn such that d1 + · · ·+ dn = d. �

For this rest of this section, we fix a noetherian ring A with a Z≥0-grading A =
⊕

d≥0Ad.
Then A0 is a quotient ring of A (by the ideal A+ :=

⊕
d>0Ad), and so is also noetherian.

We will also fix an additive function λ on the class of finitely generated A0-modules.
Precisely, this means that given a finitely generated A0-module M , λ(M) is an integer, and
for every short exact sequence

0→M1 →M2 →M3 → 0,

we have λ(M2) = λ(M1) + λ(M3).

Example 5.1.3. If A0 is a field, then λ = dim is an additive function. In this case, λ is also
multiplicative in the sense that λ(V ⊗W ) = λ(V )λ(W ).

More generally, if A0 is artinian, then the length function is additive. �

Now let M be a Z≥0-graded and finitely generated A-module. Then each Mn is a finitely
generated A0-module: any finite list of homogeneous generators of M≥n as an A-module
gives a finite list of generators for Mn as an A0-module by only taking those of degree n. In
particular, λ(Mn) is defined.

The Hilbert series of M (with respect to λ)1 is the formal power series (we’ll use the
variable t)

HM(λ, t) =
∑
n≥0

λ(Mn)tn ∈ Z[[t]].

1Atiyah–Macdonald call this a Poincaré series, but this is now usually used in a different context.
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In the special case that A0 is a field and λ = dim, we will just write HM(t). If d ≥ 0, then

HM(−d)(λ, t) = tdHM(λ, t).

Remark 5.1.4. We could also allow general Z-graded finitely generated modules M . In
that case, Mn = 0 for n sufficiently negative: A is in non-negative degrees and so the degrees
of a finite list of generators gives a lower bound for n such that Mn 6= 0. In that case,
its Hilbert series is a Laurent series in general. This allows some more flexibility, but also
creates additional cumbersome notation, so we try to avoid it. �

For the next result, we recall that a formal power series is a multiplicative unit if and only
if its constant term is invertible (in this case, meaning it is ±1). Hence an expression like
1/(1− td) means the multiplicative inverse of 1− td thought of as a formal power series.

Theorem 5.1.5. Suppose that A is generated as an A0-algebra by homogeneous elements of
positive degrees d1, . . . , dr. Then for every Z≥0-graded finitely generated A-module M , there
exists hM(t) ∈ Z[t] such that

HM(λ, t) =
hM(t)

(1− td1) · · · (1− tdr)
.

Proof. We do induction on the number of generators r of A. If r = 0, then A = A0 and
Mn = 0 for n � 0. In particular, HM(λ, t) is just a polynomial in t, so there is nothing to
show.

Otherwise, suppose the result is known for any finitely generated module over a finitely
generated A0-algebra with r − 1 generators. Let x1, . . . , xr be homogeneous generators of
degrees d1, . . . , dr, respectively. Multiplication by xr gives a degree dr map from M to itself;
let

K = {m | xrm = 0}
be its kernel. Then we have an exact sequence

0→ K(−dr)→M(−dr)
·xr−→M →M/xrM → 0.

Since A is noetherian, K is also finitely generated, and since λ is additive, we have a relation

tdrHK(λ, t)− tdrHM(λ, t) + HM(λ, t)− HM/xrM(λ, t) = 0,

which can be rewritten as

HM(λ, t) = (1− tdr)−1(HM/xrM(λ, t)− tdrHK(λ, t)).

Finally, xr is in the annihilator of both M/xrM and K, so that are finitely generated modules
over A/xr, which is inherits a grading from A and is generated by the cosets of x1, . . . , xr−1.
Hence, by induction, there exist integer-coefficient polynomials hM/xrM(t) and hK(t) such
that

HM/xrM(λ, t) =
hM/xrM(t)

(1− td1) · · · (1− tdr−1)
, HK(λ, t) =

hK(t)

(1− td1) · · · (1− tdr−1)
,

and hence we can take

hM(t) = hM/xrM(t)− tdrhK(t)

to fulfill the statement of the theorem. �



NOTES FOR MATH 200C 25

Example 5.1.6. Suppose A0 is a field and λ = dim and that A = A0[x1, . . . , xr] is a
polynomial ring. Then A ∼= A0[x1]⊗ · · · ⊗ A0[xr] and since λ is multiplicative, we have

HA(t) = HA0[x1](t) · · ·HA0[xr](t).

But HA0[xi](t) =
∑

n≥0 t
ndi = (1− tdi)−1, and so

HA(t) =
1

(1− td1) · · · (1− tdr)
.

More generally, if A0 is an artinian ring and λ = ` is the length function, then

HA(t) =
`(A0)

(1− td1) · · · (1− tdr)
since each monomial of degree d contributes length `(A0) rather than just 1 dimension. �

Having a Hilbert series in this particular form imposes strong restrictions on the Hilbert
function n 7→ λ(Mn). First, consider the case when all di are 1. We have the following
general and elementary statement that is relevant here.

Proposition 5.1.7. Let an be a sequence. Then there exists a polynomial f(t) such that∑
n≥0

ant
n =

f(t)

(1− t)r

if and only if there exists a polynomial α(x) of degree ≤ r−1 such that α(n) = an for n� 0.

In particular, if this holds, then 1 + degα(x) is the order of the pole at t = 1 of f(t)
(1−t)r , i.e.,

r minus the multiplicity of 1 as a root of f(t).

Proof. First suppose that
∑

n≥0 ant
n has the above form. We note that (1− t)−1 =

∑
n≥0 t

n

and we claim that

(1− t)−r =
∑
n≥0

(
r + n− 1

r − 1

)
tn.

The coefficient of tn in (
∑

a≥0 t
a)r is the number of r-tuples (a1, . . . , ar) of non-negative

integers such that a1 + · · · + ar = n. We can encode each solution with a sequence of n
symbols a and r − 1 symbols + by placing a + after the first a1 copies of a, after the next
a2 copies of a, etc. Every such sequence appears exactly once, so we see that the number of
solutions is just

(
r−1+n
r−1

)
.

Finally, suppose that N = deg f and write f(t) =
∑

i fit
i. Then for all n ≥ N , we have

an =
N∑
i=0

fi

(
r + n− i− 1

r − 1

)
.

If we define g(x) = 1
(r−1)!

(r + x− 1)(r + x− 2) · · · (x+ 1), then

g(n) =

(
r + n− 1

r − 1

)
for all n ≥ 0 (technically all n ≥ −r + 1, but this is sufficient) and g(x) is a degree r − 1
polynomial, and so we take α(x) =

∑
fig(x− i).

Now we prove the converse, so we assume that there is a polynomial α(x) of degree ≤ r−1
such that α(n) = an for n � 0. We prove the result by induction on r; if r = 1, then an
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is eventually constant and hence
∑

n≥0 ant
n can be written as a polynomial in t plus this

constant times the geometric series
∑

n≥0 t
n = (1 − t)−1, so the result holds. Otherwise,

define bn = an − an−1 (with the convention a−1 = 0). We note that α(x) − α(x − 1) is a
polynomial of degree ≤ r − 2 and so by induction, there exists a polynomial f(t) such that

(1− t)
∑
n≥0

ant
n =

∑
n≥0

bnt
n =

f(t)

(1− x)r−1
.

Now divide by 1− t.
For the last statement, let d be the order of the pole of

∑
n≥0 ant

n at t = 1. This means

we can write it in the form f(t)
(1−t)d where f(1) 6= 0 and so by the above discussion there is a

polynomial α(x) of degree ≤ d− 1 such that α(n) = an for n� 0. Suppose that the degree
is ≤ d− 2. Then we have an equality of the form

f(t)

(1− t)d
=

g(t)

(1− t)d−1
.

Clearing denominators shows that f(1) = 0, which is a contradiction. Hence degα =
d− 1. �

Corollary 5.1.8. If A is generated by r degree 1 elements, then for every finitely generated
Z≥0-graded A-module M , there exists a polynomial pM(t) of degree ≤ r−1 such that λ(Mn) =
pM(n) for n� 0.

The polynomial pM(n) is called the Hilbert polynomial of M .
The general case can also be described by polynomials, though there is some periodicity

involved. A function g(x) defined on the non-negative integers is a quasi-polynomial func-
tion of period m if there exist polynomials p0, . . . , pm−1 such that g(n) = pi(n) whenever
n ≡ i (mod m). We define the degree of g to be the maximum of the degrees of the pi.

Corollary 5.1.9. If A is generated by elements x1, . . . , xr of positive degrees d1, . . . , dr, then
for every finitely generated Z≥0-graded A-module M , there exists a quasi-polynomial pM(x)
of period lcm(d1, . . . , dr) and degree ≤ r − 1 such that λ(Mn) = pM(n) for n� 0.

5.2. Filtrations. Let M be an A-module and let I ⊂ A be an ideal. A decreasing chain F

of submodules (finite or not) M = M0 ⊇ M1 ⊇ · · · is called a filtration of M . It is an I-
filtration if IMn ⊆Mn+1 for all n and it is a stable I-filtration if, in addition, IMn = Mn+1

for n � 0. This is equivalent to saying that there exists n such that I iMn = Mn+i for all
i ≥ 0.

Example 5.2.1. If we set Mn = InM , then this is a stable I-filtration. �

Lemma 5.2.2. Let M = M0 ⊃M1 ⊃ · · · and M = M ′
0 ⊃M ′

1 ⊃ · · · be I-stable filtrations of
a module M . Then there exists n0 such that Mn+n0 ⊆M ′

n and M ′
n+n0

⊆Mn for all n ≥ 0.

Proof. Since both filtrations are I-stable, there exists n0 such that I iMn0 = Mn0+i and
I iM ′

n0
= M ′

n0+i for all i ≥ 0. Then, for all i ≥ 0, we have

Mn0+i = I iMn0 ⊆ I iM ⊆M ′
i

and similarly,

M ′
n0+i = I iM ′

n0
⊆ I iM ⊆Mi. �
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The Rees algebra of I is the direct sum2

BIA =
⊕
n≥0

In.

As usual, I0 = A. This has a natural ring structure, which we can make clearer by introducing
a new variable t. Then we embed BIA into the polynomial ring A[t] by identifying In with
Intn = {ftn | f ∈ In}. In this case, BIA is a subring of A[t]. This naturally has the structure
of a Z≥0-graded A-algebra if we set (BIA)d = Idtd.

Given an I-filtration F on M , we define

BFM =
⊕
n≥0

Mn,

which is naturally Z≥0-graded over the ring BIR by setting (BFM)d = Md. For clarity, we
will sometimes write Mnt

n when discussing this as a summand of BFM to distinguish it from
Mn as a submodule of M .

We also define the associated graded ring by

grI A =
⊕
n≥0

In/In+1 ∼= BIA/ItBIA

and, if F is an I-filtration on M , we also define the associated graded module

grFM =
⊕
n≥0

Mn/Mn+1

which is a module over grI A in the natural way.

Lemma 5.2.3. If A is a noetherian ring, then BIA and grI A are noetherian.

Proof. Since A is noetherian, I is finitely generated, say by f1, . . . , fr ∈ I. Then the elements
f1t, . . . , frt in BIA generate it as a ring, and so BIA is noetherian by the Hilbert basis
theorem. This also implies that grI A is noetherian since it is a quotient of BIA. �

Proposition 5.2.4. Suppose that A is a noetherian ring and that M is a finitely generated
A-module. Given an ideal I ⊂ A, let F be an I-filtration of M . Then F is an I-stable
filtration if and only if BFM is a finitely generated BIA-module.

Proof. Suppose that F is I-stable, so that there exists n such that Mn+i = I iMn for all i ≥ 0.
In that case, BFM is generated as a BIA-module by the elements of M0t

0, . . . ,Mnt
n. Each

of M0, . . . ,Mn is a finitely generated A-module since M is a noetherian module. If we pick
a finite list of generators for each, then we get a finite list of generators for BFM .

Conversely, suppose that BFM is a finitely generated BIA-module. Given a finite list
of generators, each one is a finite sum of its homogeneous components, so we can always
replace each by its homogeneous components to get a finite list of homogeneous generators.
Suppose the maximum degree of one of these generators is n. Then every element in Mn+it

n+i

is a linear combination of these generators of the form
∑

j fjmj where mj ∈ Md(j) and

fj ∈ In+i−d(j). Note that if d(j) < n, then we can always rewrite fjmj as a sum of products
of elements in I i and Mn, so that we see that I iMn = Mn+i and hence F is I-stable. �

Corollary 5.2.5. If F is I-stable, then grF(M) is a finitely generated grI(A)-module.
2Sometimes called the blowup algebra because of its relation to the blowup procedure in algebraic geom-

etry, and hence the notation B.
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Corollary 5.2.6 (Artin–Rees lemma). Suppose that A is a noetherian ring and that M is a
finitely generated A-module. Given an ideal I ⊂ A, let F be an I-stable filtration of M . For
any submodule M ′ ⊂M , the filtration F′ given by M ′

n = M ′ ∩Mn is also I-stable.

Proof. By Proposition 5.2.4, BFM is a finitely generated BIA-module, and hence is noether-
ian by Lemma 5.2.3. Furthermore, BF′M

′ is naturally a BIA-submodule of BFM , and hence
is finitely generated. Again by Proposition 5.2.4, F′ is I-stable. �

Corollary 5.2.7. Let A be a noetherian ring, M a finitely generated A-module, M ′ ⊆M a
submodule, and let I ⊂ A be an ideal. There exists an integer k such that if n ≥ k, then

(InM) ∩M ′ = In−k((IkM) ∩M ′).

Proof. Consider the I-stable filtration Mn = InM of M . By the Artin–Rees lemma, M ′
n =

(InM) ∩M ′ is also I-stable. �

5.3. The Hilbert–Samuel polynomial. For this section, A is a noetherian local ring with
maximal ideal m, and q is an ideal such that

√
q = m which can be generated by s elements

x1, . . . , xs. Note that this in fact implies that q is a primary ideal, and hence it is called
m-primary. We won’t actually need to use this, though we will use the terminology.

Proposition 5.3.1. Let M be a finitely generated A-module and let F be a stable q-filtration
of M . The following properties hold.

(1) M/Mn is finite length for all n ≥ 0.
(2) There exists a polynomial g(x) of degree ≤ s such that g(n) = `(M/Mn) for n � 0.

Furthermore, the degree of g(x) is the order of the pole at t = 1 of HgrF(M)(t) when
written as a rational function.

(3) The degree and leading coefficient of g(x) do not depend on the choice of F, only on
M and q.

Proof. Define

B = grq(A) =
⊕
n≥0

qn/qn+1, N = grF(M) =
⊕
n≥0

Mn/Mn+1.

By Lemma 5.2.3, B is a noetherian ring and by Corollary 5.2.5, N is a finitely generated
B-module. In particular, Nn = Mn/Mn+1 is a finitely generated B0-module for all n. Since
q is m-primary, B0 = A/q is artinian (the only prime ideal is the image of m, now use
Theorem 4.6.5), and hence Mn/Mn+1 has finite length (Corollary 4.6.4). Using the short
exact sequence

0→Mn−1/Mn →M/Mn →M/Mn−1 → 0,

we see that

`(M/Mn) =
n−1∑
i=0

`(Mi/Mi+1)

which proves (1). This implies that

(1− t)
∑
n≥0

`(M/Mn)tn = t
∑
n≥0

`(Mn/Mn+1)tn.

Next, B is generated by the degree 1 elements, namely the images of x1, . . . , xs under the
map q → q/q2. Hence, by Theorem 5.1.5,

∑
n≥0 `(Mn/Mn+1)tn is a rational function with

denominator (1− t)s. Now divide the above expression by 1− t and use Proposition 5.1.7 to
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see that there exists a polynomial g(x) of degree ≤ s such that g(n) = `(M/Mn) for n� 0,
which proves (2).

Finally, to prove (3), let M = M ′
0 ⊇ M ′

1 ⊇ · · · be another q-stable filtration of M . Then
there exists a polynomial g′(x) of degree ≤ s such that g′(n) = `(M/M ′

n) for n � 0. By
Lemma 5.2.2, there exists n0 such that Mn+n0 ⊆ M ′

n and M ′
n+n0

⊆ Mn for all n ≥ 0. In
particular, for all n ≥ 0, we have

`(M/Mn+n0) ≥ `(M/M ′
n), `(M/M ′

n+n0
) ≥ `(M/Mn).

This implies that for all n� 0, we have g(n+ n0) ≥ g′(n) ≥ g(n− n0). Assuming that g is
not identically 0 for large n (in which case g′ would also be), divide both sides by g(n+ n0)
to get

1 ≥ g′(n)

g(n+ n0)
≥ g(n− n0)

g(n+ n0)
.

Since g is a polynomial, the limit of the last term for n→∞ is 1. This implies that

lim
n→∞

g′(n)

g(n+ n0)
= 1

and hence that g′(x) and g(x + n0) have the same leading coefficient and degree. Finally,
g(x+ n0) and g(x) also have the same leading coefficient and degree. �

Using the previous result, the Hilbert–Samuel polynomial (of M with respect to q) is
denoted χMq (x), and defined to be the (unique) polynomial such that

χMq (n) = `(M/qnM) for n� 0.

Importantly, its degree and leading coefficient can be computed using any q-stable filtration
(and this data will be the most important for us later, rather than the actual polynomial).
If M = A, then we just write χq in place of χAq .

Proposition 5.3.2. Notation as above, we have degχq(x) = degχm(x).

Proof. Since
√
q = m and m is finitely generated, there exists d such that md ⊆ q. In

particular, for all n ≥ 0, we have mdn ⊆ qn ⊆ mn. This implies that for all n ≥ 0, we have

`(A/mdn) ≥ `(A/qn) ≥ `(A/mn),

and, in particular, for n � 0, we have χm(dn) ≥ χq(n) ≥ χm(n). This is only possible if
degχm(x) = degχq(x). �

Summarizing the points in the proofs above, we have (with k = A/m)

(1− t)
∑
n≥0

dimk(A/mn)tn = t
∑
n≥0

dimk(m/mn)tn = t · Hgrm(A)(t).

In particular, degχm(x) is the order of the pole at t = 1 of Hgrm(A)(t) when written as a
rational function.

Proposition 5.3.3. Let x ∈ A be a nonzerodivisor on M and set M ′ = M/xM . Then

degχM
′

q ≤ degχMq − 1.
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Proof. Set N = xM and Nn = N ∩ qnM . By Artin–Rees, this is a stable q-filtration on N .
For each n ≥ 0, we have a short exact sequence

0→ N/Nn →M/qnM →M ′/qnM ′ → 0.

In particular, for all n, we have

χM
′

q (n) = χMq (n)− `(N/Nn).

The map M → N given by m 7→ xm is an isomorphism since x is a nonzerodivisor, and so
for large n, χNq (n) agrees with a polynomial that has the same leading coefficient and degree

as χMq (n) by Proposition 5.3.1, and hence the result holds. �

6. Dimension theory

6.1. Definition of dimension. Let A be a noetherian local ring with maximal ideal m. We
consider the following 3 quantities.

(1) Let δ(A) be the least number of generators amongst any m-primary ideal of A.
(2) Recall that grm(A) is a noetherian Z≥0-graded ring with (grmA)0 = A/m a field

(denote it k) and that it is generated as a k-algebra by degree 1 elements. Letting
λ = dim, its Hilbert series is a rational function of the form

Hgrm(A)(t) =
h(t)

(1− t)r

if m can be generated by r elements. We let d(A) be the order of the pole at t = 1 of
this rational function; concretely, this is just r minus the multiplicity of 1 as a root
of h(t). Equivalently,

d(A) = degχm(x).

(3) Let dimA be the supremum of the length of any strictly increasing chain of prime
ideals in A:

dimA = sup{d | p0 $ · · · $ pd ⊂ A}
Our main goal is to show that all 3 quantities coincide. They will simply be called the

(Krull) dimension of A.

Proposition 6.1.1. δ(A) ≥ d(A).

Proof. Let s = δ(A). Then there exists an m-primary ideal q which can be generated by s
elements. By Proposition 5.3.1, degχq(x) ≤ s and by Proposition 5.3.2, we also know that
degχm(x) ≤ s. Finally, d(A) = degχm(x). �

Proposition 6.1.2. d(A) ≥ dimA.

Proof. We prove this by induction on d(A). If d(A) = 0, then χm(x) is a constant and
hence `(A/mn) is constant for n � 0. Choosing n large enough to hit this constant value,
this implies that mn = mn+1, and hence that mn = 0 by Nakayama’s lemma. If p is any
prime ideal of A, then mn ⊆ p implies that m ⊆ p by taking radicals, and hence m = p. In
particular, there are no nontrivial inclusions of prime ideals so dimA = 0.

Now suppose that d(A) > 0. Let p0 $ · · · $ pr be any strictly increasing chain of prime
ideals in A. We need to show that d(A) ≥ r. Set A′ = A/p0, which is a local domain, and
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let m′ be its maximal ideal. Let p′i be the image of pi in A′. Pick any nonzero element x of
p′1. In particular, x is a nonzerodivisor, so by Proposition 5.3.3 with M = A′, we have

d(A′/x) ≤ d(A′)− 1.

Furthermore, for all n, we have a surjection A/mn → A′/(m′)n, so `(A/mn) ≥ `(A′/(m′)n),
which implies that d(A) ≥ d(A′). So by induction, any strictly increasing chain of prime
ideals in A′/x has length at most d(A′/x), and in particular, has length at most d(A)− 1.

Next, we claim that p′i/x is a proper subset of p′i+1/x. If not, then any element of p′i+1 is
a linear combination of x and an element of p′i, and hence p′i+1 = p′i, which is false. Finally,
this means we have a strictly increasing chain of prime ideals of length r − 1

p′1/x $ · · · $ p′r−1/x

in A′/x, and so r − 1 ≤ d(A)− 1, so we are done. �

Since d(A) is by definition a finite quantity, the last result tells us that in any noetherian
local ring, there is an upper bound on the length of any strictly increasing chain of prime
ideals. Given a prime ideal p in any ring A, define its height, denote height(p), to be the
maximum length of a strictly increasing chain of prime ideals contained in p (p is allowed to
be in the chain). By Proposition 2.4.2, we have

height(p) = dimAp,

so if A is noetherian, then this quantity is always finite.

Proposition 6.1.3. dimA ≥ δ(A).

Proof. Let d = dimA. It suffices to construct an ideal of the form (x1, . . . , xd) in A which is
m-primary.

We will prove the following statement by induction on i: if i ≤ d, then there exists a
sequence x1, . . . , xi of elements of A such that every prime ideal containing (x1, . . . , xi) has
height ≥ i. The base case is i = 0 which is vacuous: we are just saying that every prime
ideal has non-negative height.

Otherwise, suppose that 0 < i ≤ d and that x1, . . . , xi−1 has already been constructed so
that every prime ideal containing (x1, . . . , xi−1) has height ≥ i − 1. Since A is noetherian,
(x1, . . . , xi−1) has finitely many minimal primes (Proposition 4.2.3), let {p1, . . . , ps} be the
set of those minimal primes that have height exactly i − 1 (we are not saying that s is
positive, though we will see later this is the case). Since i − 1 < d and height(m) = d, we
see that m 6= pj for all j. By prime avoidance, we know that m \ (p1 ∪ · · · ∪ ps) is non-empty,
so let xi be an element in this set.

Let q be a prime containing (x1, . . . , xi). We need to show that height(q) ≥ i. In partic-
ular, q contains (x1, . . . , xi−1) and hence contains some prime p which is a minimal prime
containing (x1, . . . , xi−1). If p ∈ {p1, . . . , ps}, then height(p) = i − 1 and q 6= p since
xi /∈ p, and so height(q) ≥ i. Otherwise, height(p) ≥ i by definition of the pj, so we have
height(q) ≥ height(p) ≥ i. This finishes the proof of our induction.

Finally, we need to show that (x1, . . . , xd), as just constructed, is m-primary. Let p be
a prime ideal containing (x1, . . . , xd). Then height(p) ≥ d, and hence p = m since this is
the only ideal of A of height d (being the unique maximal ideal). Finally, the radical of
(x1, . . . , xd) is the intersection of the prime ideals containing it, and hence it must be m, so
(x1, . . . , xd) is m-primary. �
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Theorem 6.1.4. For any noetherian local ring A, we have

d(A) = δ(A) = dim(A).

If d = dimA, then any set of elements x1, . . . , xd ∈ A that generates an m-primary ideal
is called a system of parameters.

Theorem 6.1.5 (Krull principal ideal theorem). Let A be a noetherian ring and x1, . . . , xr ∈
A. If p a prime ideal which is minimal amongst those containing (x1, . . . , xr), then height(p) ≤
r.

Proof. Consider the local ring Ap and the ideal generated by the images of x1, . . . , xr there.
Since the image of p is a minimal prime over (x1, . . . , xr) and also the maximal ideal of
Ap, the radical of (x1, . . . , xr) is pAp and hence it is a pAp-primary ideal. In particular,
r ≥ dimAp = height(p). �

Remark 6.1.6. Here is a geometric intuition (we won’t make this precise but it might help
to keep this in mind): dim(A) is to be thought of as the dimension of the space SpecA.
We can think of x1, . . . , xr as functions on this space and minimal primes p correspond to
irreducible components of the solution set of where these functions all take value 0. In that
case, height(p) can be thought of as the codimension of this component, so Krull’s result tells
us that the dimension of a solution set cannot drop more than the number of equations used
to define it. While this may seem like something that should be true, we have to remember
that our definition of dimension is quite abstract and this holds in a high level of generality.
This is easiest to make sense of when A is the coordinate ring of an algebraic variety over
an algebraically closed field. �

Corollary 6.1.7. If A is a noetherian local ring and x ∈ m is a nonzerodivisor, then
dim(A/x) = dimA− 1.

Proof. Let d = dim(A/x). It follows from Proposition 5.3.3 with M = A that d ≤ dimA−1.
Next, pick x1, . . . , xd ∈ A so that their images in A/x are a system of parameters. If p is
any prime of A containing (x, x1, . . . , xd), then p/x = m/x and hence p = m since p is the
inverse image of p/x. This shows that (x, x1, . . . , xd) is m-primary and so d + 1 ≥ dimA,
which shows that dimA = d+ 1. �

Finally, we can give a general definition of (Krull) dimension using the third definition
above. Let A be any ring. Then its dimension is the length of the longest strictly increasing
chain of prime ideals in A:

dimA = sup{d | there exists p0 $ p1 $ · · · $ pd}.

It follows that

dimA = sup{dimAp | p ∈ SpecA},
and in fact we only need to check localizations at maximal ideals. In full generality, dimension
can behave in strange ways. Even if A is noetherian, it need not be finite (see exercises).

6.2. Noether normalization.

Lemma 6.2.1. If F (x1, . . . , xn) is a nonzero homogeneous polynomial over an infinite field
k, then there exists nonzero λ1, . . . , λn ∈ k such that F (λ1, . . . , λn) 6= 0.
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Proof. We prove this by induction on n. If n = 1, then F (x1) = xd1 for some d and any
nonzero λ1 works. Otherwise, we think of F as a polynomial in xn whose coefficients are
homogeneous polynomials in x1, . . . , xn−1:

F (x1, . . . , xn) =
d∑
i=0

Fi(x1, . . . , xn−1)xin.

At least one of the Fi is nonzero; pick one and use induction to find nonzero λ1, . . . , λn−1 ∈ k
such that the substitution into that Fi is nonzero. Then F (λ1, . . . , λn−1, xn) is a polynomial
in xn which is not identically 0. A polynomial in 1 variable only has finitely many roots, so
since k is infinite, we can pick λn to be any nonzero element of k which is not a root of the
resulting polynomial. �

Theorem 6.2.2 (Noether normalization). Let k be an infinite field and A a finitely generated
k-algebra. There exists a subring B ⊂ A such that A is integral over B and B is isomorphic
to a polynomial ring over k.

Proof. We prove this by induction on the number of generators of A. The base case is when
A is generated by 0 elements, i.e., A = k, but then there is nothing to prove.

So suppose that A is generated by n elements x1, . . . , xn and suppose the result holds for all
k-algebras which can be generated by n−1 elements. If x1, . . . , xn are algebraically indepen-
dent over k, we can take B = A. Otherwise, we may reorder the generators so that x1, . . . , xi
are algebraically independent over k and xi+1, . . . , xn are algebraic over Frac(k[x1, . . . , xi]).
In particular, since we are assuming i < n, xn is algebraic over Frac(k[x1, . . . , xi]), so there
is a polynomial f in n variables with coefficients in k so that f(x1, . . . , xn) = 0. Let F be
the sum of the highest degree terms in f , so that F is homogeneous, say of degree d. Since
k is infinite, there exist λ1, . . . , λn−1 ∈ k so that F (λ1, . . . , λn−1, 1) 6= 0 (use Lemma 6.2.1;
since F is homogeneous we can scale all of the λi by the same amount to assume that the
last one is 1). Set x′i = xi − λixn for i = 1, . . . , n− 1 and A′ = k[x′1, . . . , x

′
n−1].

If we do the substitution xi 7→ x′i + λixn for i = 1, . . . , n − 1 into f(x1, . . . , xn), and
think of this as a polynomial in xn, the coefficient of xdn (the highest degree possible) is
F (λ1, . . . , λn−1, 1), an element of k, which is nonzero by construction. Hence the monic
polynomial (in the variable t)

1

F (λ1, . . . , λn−1, 1)
f(x′1 + λ1t, . . . , x

′
n−1 + λn−1t, t)

has coefficients in A′ and xn is a solution to it, so xn is integral over A′.
By induction, there is a subring B of A′ such that A′ is integral over B and B is isomorphic

to a polynomial ring over k. By transitivity of integrality (Corollary 3.2.1), A is also integral
over B. �

Remark 6.2.3. A consequence of the proof is that if x1, . . . , xn are k-algebra generators
for A, then we can always take B to be generated by some k-linear combinations of the
xi. In fact, any “generic” choice of linear combinations will work since we really only need
that some finite set of polynomial expressions (by invoking Lemma 6.2.1) are nonzero. The
only question is how many generators B has, and we will see in the next section that it is
dimA. �

For a stronger version, see [Ei, Theorem 13.3].
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6.3. Transcendental dimension. In classical algebraic geometry, we have a correspon-
dence between (irreducible) algebraic varieties over an algebraically closed field k and finitely
generated k-algebras which are integral domains. In this case, there is yet another way to
compute the dimension of this algebra which is more closely connected with the geometry
of the variety.

First, we prove a result to motivate the relationship between dimension and algebraic
independence.

Proposition 6.3.1. Let (A,m) be a d-dimensional noetherian local ring and let q = (x1, . . . , xd)
be an m-primary ideal which is generated by a system of parameters. Let f ∈ A[t1, . . . , td] be
a homogeneous degree s polynomial such that

f(x1, . . . , xd) ∈ qs+1.

Let f be the reduction of f modulo q. Then f is a zerodivisor in (A/q)[t1, . . . , td].
3

Proof. Define a homomorphism of A/q-algebras

α : (A/q)[t1, . . . , td]→ grq(A)

by letting α(ti) be the image of xi in q/q2. Since f is homogeneous of degree s, we see that
α(f) maps to qs/qs+1 and hence is 0 by our assumption. Since q is generated by x1, . . . , xd,
α is surjective, and so for all n, we have

`(grq(A)n) ≤ `(((A/q)[t1, . . . , td]/(f))n).

As functions of n (and considering n� 0), both sides are given by polynomial functions in
n, and the degree of the polynomial for the left expression is d− 1 (by definition). If f is a
nonzerodivisor, then the degree of the right expression would be d− 2 since we would have
a short exact sequence (and n 7→ `(((A/q)[t1, . . . , td])n) has degree d− 1 by Example 5.1.6)

0→ (A/q)[t1, . . . , td]n−s
·f−→ (A/q)[t1, . . . , td]n → ((A/q)[t1, . . . , tn]/(f ′))n → 0

with the first map being multiplication by f . This would be a contradiction, and hence f is
a zerodivisor. �

Corollary 6.3.2. Let (A,m) be a d-dimensional noetherian local ring which contains a field
k. Then any system of parameters x1, . . . , xd is algebraically independent over k.

Proof. Suppose x1, . . . , xd is algebraically dependent. Then there exists a nonzero polynomial
f(t1, . . . , td) with coefficients in k such that f(x1, . . . , xd) = 0. In particular, let s be the
smallest degree of a monomial appearing in f with nonzero coefficient and let fs be the
sum of all such monomials together with their coefficients. Then f = fs + g where g has
all monomials of degree ≥ s + 1, and so g(x1, . . . , xd) ∈ (x1, . . . , xd)

s+1, which means that
fs(x1, . . . , xd) ∈ (x1, . . . , xd)

s+1. Now by Proposition 6.3.1, the reduction of fs modulo
(x1, . . . , xd) is a zerodivisor. However, the composition k→ A→ A/(x1, . . . , xd) is injective
(since k is a field), and any polynomial whose nonzero coefficients are units cannot be a
zerodivisor. �

3Atiyah–Macdonald instead conclude that the coefficients of f belong to m, though this relies on an
exercise which does not seem to have a short proof. This formulation suffices for what we want to do and
skips the need for this exercise.
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Now suppose that A is a finitely generated k-algebra which is an integral domain. The
result above shows that for any maximal ideal m of A, if d = dimAm, then we can find
f1, . . . , fd ∈ Am which are algebraically independent over k. We may think of f1, . . . , fd as
elements in Frac(A), and since dimA = sup{dimAm}, we see that dimA is a lower bound
for the size of the largest set of algebraically independent elements of Frac(A) over k.

The fraction field Frac(A) of A is finitely generated over k and hence has finite transcen-
dence degree, which is the size of any maximal set of algebraically independent elements
(implicit in this definition is the fact, which we don’t prove here, that all such sets have the
same size much like all bases of a vector space have the same size).

Theorem 6.3.3. Let k be an algebraically closed field and let A be a finitely generated k-
algebra which is an integral domain. Then dimA agrees with the transcendence degree of
Frac(A) over k. Furthermore, dimA = dimAm for every maximal ideal m of A.

Proof. First we handle the case when A ∼= k[x1, . . . , xd] is a polynomial ring in d variables.
Then Frac(A) is the function field in d variables and hence has transcendence degree d (the
set x1, . . . , xd is maximal with respect to being algebraically independent). Next, dimA =
supm dimAm over all maximal ideals m. We know from the Hilbert nullstellensatz (Theo-
rem 4.4.2) that there exist α1, . . . , αd ∈ k such that m = (x1 − α1, . . . , xd − αd), and hence
we can apply the k-algebra automorphism xi 7→ xi + αi to see that dimAm = dimA(x1,...,xd)

for all m. In that case, gr(x1,...,xd) A(x1,...,xd)
∼= A and from Example 5.1.6, dimA(x1,...,xd) = d,

so the result holds in this case.
Now we consider the general case. By Noether normalization (Theorem 6.2.2), there

exists a subring B ⊂ A such that B ∼= k[x1, . . . , xd] is isomorphic to a polynomial ring in d
variables and B ⊂ A is an integral extension. In particular, dimB = d. In addition, Frac(A)
is algebraic over Frac(B), so they have the same transcendence degree over k.

Let m be a maximal ideal of A. Then n = B∩m is a maximal ideal in B by Corollary 3.3.2.
If p0 $ · · · $ pr is any strictly increasing chain of prime ideals in Am, then p0∩Bn $ · · · $ pr∩
Bn is also strictly increasing by “incomparability” (Theorem 3.3.3). So dimAm ≤ dimBn = d.
On the other hand, any strictly increasing chain of primes in Bn is obtained by intersecting a
strictly increasing chain of primes in Am by the going-down theorem (Theorem 3.3.8), which
applies since B (and hence Bn) is normal (since B is a UFD, see Proposition 3.2.4). In
particular, dimBn ≤ dimAm, so we have equality. �

6.4. Regular local rings. If A is the ring of regular functions on a variety over an alge-
braically closed field k, then by the Hilbert nullstellensatz, the maximal ideals correspond
to the points of the variety and the localization Am with respect to a maximal ideal captures
some of the local geometry of the variety at this point. We’ll give some basic terminology
which is more general and especially useful in this context and leave the dictionary to later
courses.

So let A be a noetherian local ring with maximal ideal m. Let k = A/m be its residue
field. The (Zariski) cotangent space is the k-vector space m/m2. As we have seen,

dimk(m/m2) ≥ dimA

(for example, use that dimA is the minimal number of generators of any m-primary ideal
and dimk(m/m2) is the minimal number of generators of m). When the two quantities are
equal, we say that A is a regular local ring. A general noetherian ring is regular if Ap is a
regular local ring for all prime ideals p ∈ Spec(A).
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Remark 6.4.1. There is a potential mismatch in the definitions: is a regular local ring
considered regular by the second definition? i.e., if A is a regular local ring, then is Ap also
a regular local ring for any p ∈ Spec(A)? This turns out to be true but we will not discuss
its proof. In complete generality, this is best approached using homological algebra (see [Ei,
Corollary 19.14]). �

Intuitively, the dual space of m/m2 should be thought of as the space of tangent vectors at
the point corresponding to m. Here’s a rough sketch of this intuition. In calculus, a tangent
vector to a smooth manifold X at a point x ∈ X is obtained by taking the derivative of a
smooth function γ : [0, 1] → X such that γ(0) = x, where [0, 1] is the unit interval. While
we don’t have a unit interval in our language, we can instead think of this as the linear part
of the Taylor series expansion of γ (second-order and higher pieces don’t matter for the first
derivative and the constant term is determined by γ(0) = x). This linear part is the role
played by the (dual of) m/m2 if m corresponds to the point of Spec(A) that we’re interested
in.

Having “too many” tangent directions is related to the idea of a space being singular at
that point.

Example 6.4.2. We’ll consider the case of a complex plane curve, i.e., a ring of the form
C[x, y]/(f) where f 6= 0 and C is the field of complex numbers (the curve is the solution set
to f(x, y) = 0). Since f is a nonzerodivisor, we will have dim C[x, y]/(f) = 1.

(1) First consider the case of a parabola f = x2 − y and let m = (x, y) be the maximal
ideal corresponding to the point x = 0, y = 0. Working in (C[x, y]/(f))m, we have
m2 = (x2, xy, y2) which contains the ideal (y) since x2 = y. Hence m/m2 is spanned
by x, and we already know dimkm/m

2 ≥ 1, so {x} is actually a basis, i.e., x /∈ m2.
This matches with the geometric intuition that the parabola is smooth at the point
(0, 0).

(2) Now consider a cuspidal curve f = x3 − y2 and again take m = (x, y) corresponding
to the point (0, 0)). In this case, no linear combination of x, y belongs to m2 =
(x2, xy, y2) since no multiple of f contains linear terms (and hence there are no non-
trivial ways to rewrite them). Hence dimkm/m

2 = 2 in this case which matches the
idea that a cusp is not smooth. �

Proposition 6.4.3. Let A be a d-dimensional noetherian local ring with maximal ideal m
and residue field k = A/m. The following are equivalent:

(1) A is a regular local ring, i.e., dimk(m/m2) = d.
(2) m can be generated by d elements, i.e., a system of parameters.
(3) We have an isomorphism of graded rings grm(A) ∼= k[x1, . . . , xd], where the right side

is a polynomial ring in d variables.

Proof. Any lift of a basis for m/m2 to elements of m give generators for m, so (1) implies (2).
Now assume (2) holds and let a1, . . . , ad ∈ m be generators. Define a surjective ring

homomorphism

α : k[x1, . . . , xd]→ grm(A), α(f(x1, . . . , xd)) = f(a1, . . . , ad).

This is a map of graded rings in fact, so if f ∈ kerα, then each homogeneous component of
f is also in kerα. By Proposition 6.3.1, given a homogeneous polynomial in kerα, it must
be a zerodivisor, but k[x1, . . . , xd] is a domain, and so kerα = 0 and (3) holds.
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Finally, (3) implies (1) since m/m2 corresponds to the vector space spanned by x1, . . . , xd
under any isomorphism of graded rings between grm(A) and k[x1, . . . , xd] by considering the
degree 1 components. �

Corollary 6.4.4. A regular local ring is an integral domain.

Proof. Let A be a regular local ring with maximal ideal m. Pick nonzero x, y ∈ A. There
exist integers r, s such that x ∈ mr \mr+1 and y ∈ ms \ms+1 since

⋂
nm

n = 0 by Nakayama’s
lemma (because m

⋂
nm

n =
⋂
nm

n). Then the images of x and y in grm(A)r and grm(A)s
are nonzero. Since grm(A) ∼= k[x1, . . . , xd], the product of their images is nonzero, and hence
xy 6= 0. �

Remark 6.4.5. More can be shown, for example, every regular local ring is a unique fac-
torization domain (see [Ei, Theorem 19.19]). �

By definition, an artinian local ring (i.e., a local ring of dimension 0) is regular if and
only if m = m2, which means that m = 0 by Nakayama’s lemma. So regular local rings of
dimension 0 are the same thing as fields. By Theorem 4.6.6, a general dimension 0 ring is
regular if and only if it is isomorphic to a product of fields. We will discuss the dimension 1
case in §8.3.

7. Completions

7.1. Inverse limits. Let G0, G1, . . . be a sequence of abelian groups together with group
homomorphisms θn : Gn → Gn−1 for n ≥ 1. We call this data an inverse system and denote
it (Gi, θi) or just {Gi}. The inverse limit of an inverse system is defined by

lim←−
i

Gi = {(g0, g1, . . . ) ∈
∏
i

Gi | θi(gi) = gi−1 for all i ≥ 1}.

This is a subgroup of
∏

iGi. When the Gi are rings and the θi are ring homomorphisms,
then lim←−iGi is a subring.

Given two inverse systems (Ai, θi) and (A′i, θ
′
i) of the same kind of object (groups, rings,

etc.), a morphism f : A → A′ between them is a sequence of homomorphisms fi : Ai → A′i
(depending on what kind of objects the Ai are) such that the following square commutes for
all i:

Ai
fi //

θi
��

A′i

θ′i
��

Ai−1

fi−1 // A′i−1

(Hence inverse systems form a category.) The morphism is injective or surjective if all of the fi
are injective, or surjective, respectively, and a sequence of morphisms {Ai} → {Bi} → {Ci}
is exact if this is true for Ai → Bi → Ci for all i. Finally, an inverse system (Ai, θi) is
surjective if θi is surjective for all i (this is used for the next result and can be relaxed quite
a bit, see exercises).

Proposition 7.1.1. Let

0→ {Ai} → {Bi} → {Ci} → 0
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be a short exact sequence of inverse systems of abelian groups. Then the corresponding
sequence

0→ lim←−Ai → lim←−Bi → lim←−Ci
is exact. Furthermore, if {Ai} is a surjective system, then we have a short exact sequence

0→ lim←−Ai → lim←−Bi → lim←−Ci → 0.

Proof. On the direct product A =
∏

iAi, define dA : A→ A by

dA((ai)i) = (ai − θi+1(ai+1))i.

By definition, lim←−Ai = ker dA. Similarly, define B and C and dB and dC . The short exact
sequence of inverse systems gives a short exact sequence on direct products 0→ A→ B →
C → 0, and in particular, we have a commutative diagram

0 // A //

dA

��

B //

dB

��

C //

dC

��

0

0 // A // B // C // 0

.

By the snake lemma (Lemma 1.3.1) we get an exact sequence

0→ lim←−Ai → lim←−Bi → lim←−Ci → coker dA → coker dB → coker dC → 0

which proves the first point. We claim that if {Ai} is a surjective system, then dA is surjective:
given (ai)i ∈ A, we need to find αi ∈ Ai so that αi − θi+1(αi+1) = ai for all i. We do this
by induction on i: first set α0 = 0. Next, assuming we have chosen α0, . . . , αn so that
αi − θi+1(αi+1) = ai for i = 1, . . . , n − 1, we let αn+1 ∈ An+1 be any element that maps to
αn − an under θn+1, which is possible since θn+1 is surjective. This proves the claim and
hence coker dA = 0 in this case and we have proven the second point. �

Here is an important example of a surjective inverse system. Let Γ be an abelian group
with a decreasing sequence of subgroups

Γ = Γ0 ⊇ Γ1 ⊇ · · · .
Then we set Gi = Γ/Γi and let θi+1 : Γ/Γi+1 → Γ/Γi be the natural quotient map. We

will usually denote lim←−i Γ/Γi by Γ̂ if the choice of the subgroups is understood from context

(different choices can give different inverse limits of course). Note that there is a natural
homomorphism

Γ→ Γ̂, g 7→ (g + Γi)i

which sends g to the sequence represented by the cosets of g modulo the subgroups Γi.
Similarly, if Γ is a ring with a decreasing sequence of ideals, we can define the inverse limit

ring with Gi = Γ/Γi and the result is a ring.

Example 7.1.2. Let k be any ring, and let Γ = k[x] be the polynomial ring in 1 variable.
Set Γi = (xi). Then the inverse limit of Γ/Γi is isomorphic to the power series ring k[[x]]: a
power series f(x) =

∑
i≥0 aix

i corresponds to the sequence of coset representatives

(a0 + a1x+ · · ·+ ai−1x
i−1 (mod xi)). �

The image of Γ is the set of formal power series with ai = 0 for i � 0, which is the usual
way of identifying polynomials as formal power series.
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Example 7.1.3. Let Γ = Z and pick a prime p. If we let Γi = (pi), then the inverse limit
is the ring of p-adic integers, denoted Zp. By definition, we can represent elements of Zp

by sequences (a0, a1, a2, . . . ) where ai ∈ Z/pi and ai ≡ ai+1 (mod pi). Using the standard
convention that representatives of cosets of Z/n are chosen from {0, 1, . . . , n − 1}, we see
that there exist integers b0, b1, . . . with 0 ≤ bi ≤ p− 1 such that the representative for ai is
b0 + pb1 + · · ·+ pi−1bi−1. In this way, we can think of p-adic integers as infinite sums∑

i≥0

bip
i

where 0 ≤ bi ≤ p − 1, similar to formal power series. However, addition is not the same as
for formal power series, rather we have to perform “carrying”. In other words, given another
p-adic integer

∑
i≥0 b

′
ip
i, if b0 + b′0 ≤ p− 1, then we add those components as usual and move

on, otherwise the 0th term of the sum is b0 + b′0 − p and we have to consider whether the
next term b1 + b′1 + 1 is ≤ p − 1 or not, etc. This leads to some strange expressions. For
example, −1 is represented by the infinite series∑

i≥0

(p− 1)pi

since when adding this to 1, we carry the 1 infinitely many times and it never shows up.
Similar considerations apply to multiplying p-adic integers.
Zp is a local ring with maximal ideal generated by p. If we invert p, we get the field of

p-adic numbers Qp. We can represent p-adic numbers as infinite sums∑
i≥N

bip
i

where N is some integer. In particular, there are only finitely many negative powers of p.
This is analogous to Laurent series. �

Corollary 7.1.4. Let 0 → Γ′ → Γ
f−→ Γ′′ → 0 be a short exact sequence of abelian groups.

Suppose we have a descending chain of subgroups of Γ:

Γ ⊇ Γ1 ⊇ Γ2 ⊇ · · · .
Define descending chains on Γ′ by taking the intersections Γ′ ∩ Γi and define a descending
chain on Γ′′ by taking the images under f . Then we have a short exact sequence

0→ Γ̂′ → Γ̂→ Γ̂′′ → 0.

In particular, for each n, we can identify Γ̂n with a subgroup of Γ̂, so we get a decreasing
chain of subgroups

Γ̂ ⊇ Γ̂1 ⊇ Γ̂2 ⊇ · · ·
and can take the inverse limit once again

ˆ̂
Γ = lim←− Γ̂/Γ̂i.

Proposition 7.1.5. The natural map Γ̂→ ˆ̂
Γ is an isomorphism.

Proof. First, for each n, the chain of subgroups for Γ/Γn is

Γ/Γn ⊇ Γ1/Γn ⊇ · · · ⊇ Γn+1/Γn ⊇ 0 · · · ,
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i.e., it eventually stabilizes to 0. Since ignoring a finite initial set of groups does not change

the inverse limit, we see that Γ̂/Γn is naturally isomorphic to Γ/Γn. By the previous result

this is also the quotient Γ̂/Γ̂n. In particular, using these identifications, the map Γ̂ → ˆ̂
Γ

becomes the identity. �

7.2. Krull topology. Different choices of decreasing sequences of subgroups can result in
isomorphic inverse limits. For example, omitting any finite number of terms does not change
the result. Since we will need to compare different sequences in a few places, it will convenient
to understand this more generally.

First, let Γ be an abelian group with a decreasing chain of subgroups Γi as before. The
Krull topology on Γ is the coarsest topology on Γ such that the cosets g + Γi are open for
all g ∈ Γ and all i. Note that this implies that each coset g + Γi is also closed because its
complement is a union of cosets.

Proposition 7.2.1. Every open set is a union of cosets g + Γi.

Proof. By definition, all unions of cosets are open, so we just need to show that taking
the intersection of any two unions is again a union of cosets. Using the general identity
(
⋃
i Si) ∩ (

⋃
j Tj) =

⋃
i,j Si ∩ Tj, it suffices to consider the case of intersecting two cosets. So

pick g + Γi and h + Γj, and suppose that i ≥ j without loss of generality. We claim that
either (g + Γi) ∩ (h+ Γj) is empty, or (g + Γi) ∩ (h+ Γj) = g + Γi.

To see this, suppose the intersection is nonempty and pick x ∈ (g+ Γi)∩ (h+ Γj), so that
we can write x = g + g′ = h + h′ with g′ ∈ Γi ⊆ Γj and h′ ∈ Γj. Then g − h ∈ Γj, i.e.,
g ∈ h+ Γj. Since Γi ⊆ Γj, we thus have g + Γi ⊆ g + Γj = h+ Γj. �

A Cauchy sequence is a sequence g1, g2, . . . ∈ Γ such that for each open neighborhood U
of 0, there exists n such that i, j > n implies that gi − gj ∈ U . We define an equivalence
relation on Cauchy sequences by (gi) ∼ (g′i) if, for each open neighborhood U of 0, there
exists n such that i > n implies that gi − g′i ∈ U . From the above result, we actually only
need to check these conditions when U = Γi for some i: every open neighborhood is a union
of cosets, the only cosets that contain 0 are the trivial ones, and they are all nested; hence
if the condition holds whenever U = Γi, it holds for arbitrary open neighborhoods.

Proposition 7.2.2. The set of Cauchy sequences is a group under pointwise addition, and
the subset of Cauchy sequences equivalent to the 0 sequence is a subgroup.

Proof. Let (gi) and (hi) be Cauchy sequences and pick a subgroup Γk. Then there exists n
such that if i, j > n, then gi− gj ∈ Γk and hi− hj ∈ Γk. But then (gi + hi)− (gj + hj) ∈ Γk,
so (gi+hi) is also a Cauchy sequence. Similarly, we see that (−gi) is also a Cauchy sequence,
so the set of Cauchy sequences is a group under addition.

The proof for the second part is similar, but also is implied by the next result. �

We will temporarily denote the group of Cauchy sequences by C(Γ) and the subgroup of

sequences equivalent to 0 by C0(Γ). Define a homomorphism Φ: C(Γ) → Γ̂ as follows. Pick
a Cauchy sequence (gi). By definition, for each Γk, there exists n such that if i, j > n, then
gi − gj ∈ Γk, i.e., the coset gi + Γk is independent of i (as long as i > n); let ck denote this
coset. Then define Φ((gi)) to be the sequence of cosets (ci). This belongs to the inverse limit

Γ̂: for each k, ck and ck+1 are represented by the same element (some gi for i� 0) and Φ is
a group homomorphism.
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Proposition 7.2.3. Φ: C(Γ) → Γ̂ is surjective with kernel C0(Γ) and hence we have an
isomorphism

C(Γ)/C0(Γ) ∼= Γ̂.

Proof. If Φ((gi)) = 0, then the cosets ci are all trivial. This means that for each Γk, we have
gi ∈ Γk for i � 0, and hence (gi) ∼ 0. Conversely this shows that any Cauchy sequence

equivalent to 0 is in the kernel of Φ. To see that Φ is surjective, pick any sequence (gi+Γi) ∈ Γ̂.
Pick a subgroup Γk. If i, j ≥ k, then gi ≡ gk (mod Γk) and gj ≡ gk (mod Γk) by definition
of the inverse limit. In particular, (gi) is a Cauchy sequence. Since Φ((gi)) = (gi + Γi), we
see that Φ is surjective. �

The important upshot of the previous discussion is that if two decreasing chains of sub-
groups define identical Krull topologies on Γ, then their inverse limits are isomorphic. Now
suppose we have two groups Γ and Γ′ equipped with decreasing filtrations of subgroups and a
group homomorphism f : Γ→ Γ′ which is continuous for the corresponding Krull topologies.
Then we get a homomorphism f̂ : Γ̂ → Γ̂′ which we can define by applying f pointwise to

a Cauchy sequence. This is functorial in the sense that ĝf̂ = ĝf for any other continuous
homomorphism g : Γ′ → Γ′′. The advantage is that it does not rely on understanding how
the filtrations might interact with f , though when they are compatible in the sense that
f(Γi) ⊆ Γ′i as in the results the previous section, we can naturally identify the resulting
maps. We will take advantage of this fact in the next section.

7.3. Completion of modules. Let A be a ring, I an ideal, and M an A-module. The
I-adic filtration of M is the decreasing chain with Mi = I iM . The resulting Krull topology
on M will be called the I-adic topology. We have obtained some results on this in §5.2.
The I-adic completion of M is defined by

M̂ = lim←−M/I iM.

While the notation does not take into account I, we will generally only be dealing with one
ideal at a time. We have a natural map M → M̂ given by taking m to the sequence of cosets
m+ I iM and we say that M is complete with respect to I if this map is an isomorphism.

We can give M̂ the structure of a module over Â: for (ai) ∈ Â and (mi) ∈ M̂ , the product

is simply (aimi). If f : M → N is A-linear, then f̂ : M̂ → N̂ is Â-linear. In particular,

completion is a functor from the category of A-modules to the category of Â-modules.

Remark 7.3.1. Suppose that A is complete with respect to an ideal I. Let a0, a1, . . . ∈ A
be a sequence of nonzero elements. Then for each i, there is a largest integer n(i) such that

ai ∈ In(i) (if not, then ai maps to 0 under A → Â). If we assume that for each n, the set
{i | n(i) ≤ n} is finite, then we can make sense of the infinite sum

∑
i≥0 ai: as a sequence, the

nth component is the sum of the nonzero cosets of the ai modulo In; this is always a finite
sum by our assumption. In this sense, we can think of this condition as saying that the series
“converges”. One easy way this condition arises is when the n(i) are strictly increasing. �

We can rephrase Lemma 5.2.2 as follows (recall that a filtration (Mi) is I-stable if IMi =
Mi+1 for i� 0):

Proposition 7.3.2. The Krull topology of any I-stable filtration of M agrees with the I-
adic topology. In particular, if F = (Mi) is any I-stable filtration of M , then lim←−M/Mi is

isomorphic to the I-adic completion M̂ .
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Proof. By Lemma 5.2.2, there exists n0 such that Mi+n0 ⊆ I iM and I i+n0M ⊆ Mi for all
i ≥ 0. In particular, for all i, I iM is a union of cosets of Mi+n0 and vice versa, which implies
that the Krull topology defined by both filtrations are the same. �

In particular, the Artin–Rees lemma (Corollary 5.2.6) now gives us the following:

Proposition 7.3.3. Suppose that A is noetherian, and let

0→M ′ f−→M
g−→M ′′ → 0

be a short exact sequence of finitely generated A-modules. Then for any ideal I,

0→ M̂ ′ f̂−→ M̂
ĝ−→ M̂ ′′ → 0.

is also a short exact sequence of Â-modules.

Proof. By Artin–Rees and Proposition 7.3.2, if we identify M ′ with a submodule of M via
f , then the I-adic topology on M ′ is the same as the subspace topology inherited from
the I-adic topology on M . Furthermore, the I-adic filtration on M ′′ is simply the image
under g of the I-adic filtration on M , and so we can apply Corollary 7.1.4 to get the desired
short exact sequence as abelian groups. However, the Â-module structure is irrelevant for
exactness, so we don’t need to check anything else. �

Recall that we have a canonical homomorphism of abelian groups

M → M̂, m 7→ (m+ I iM)i

which we temporarily denote by ϕ. The map A→ Â gives Â the structure of an A-algebra,
and we use this to define a Â-module homomorphism for all M

ΦM : Â⊗AM → M̂,
∑
i

αi ⊗mi 7→
∑
i

αiϕ(mi)

where αi ∈ Â and mi ∈M . We note that Φ is natural in the sense that if f : M → N is any
A-linear map, we have a commutative square

Â⊗AM
ΦM //

1⊗f
��

M̂

f̂
��

Â⊗A N
ΦN // N̂

.

Remark 7.3.4. More formally, we have discussed two functors from the category of A-
modules to the category of Â-modules, the first one is completion and the second one is
tensoring with Â. The map Φ is a natural transformation between these two functors, i.e.,
can be thought of as a morphism between these two functors. �

Theorem 7.3.5. If M is finitely generated then ΦM is surjective. If, in addition, A is
noetherian, then ΦM is an isomorphism. In particular, Â is a flat A-module when A is
noetherian.

Proof. Since M is finitely generated, we can find a short exact sequence

0→ K → An →M → 0
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for some n. This gives a commutative diagram

Â⊗A An

ΦAn

��

// Â⊗AM
ΦM

��

Ân // M̂

.

The top map is surjective by right-exactness of tensor products and the bottom map is sur-
jective by Corollary 7.1.4. A direct calculation (omitted) shows that ΦAn is an isomorphism;
these facts imply that ΦM is surjective, which proves the first part.

Now suppose that A is noetherian. Then K is also finitely generated. Consider the
diagram

Â⊗A K
ΦK

��

// Â⊗A An

ΦAn

��

// Â⊗AM
ΦM

��

// 0

0 // K̂ // Ân // M̂ // 0

.

The top row is exact by right-exactness of tensor products, and the bottom row is exact by
Proposition 7.3.3. Hence the snake lemma (Lemma 1.3.1) gives an exact sequence

ker ΦAn → ker ΦM → coker ΦK .

But the first term is 0 since ΦAn is an isomorphism and the last term is 0 by the first part
since K is finitely generated. Hence ΦM is an isomorphism.

Finally, for Â to be flat, it suffices to check that Â⊗A − preserves short exact sequences
of finitely generated A-modules, so we’re done. �

Remark 7.3.6. Let A be noetherian. The previous result implies that the two functors
“completion” and “tensor with Â” are isomorphic if we restrict the domain to be the category
of finitely generated A-modules. In general, if M is not finitely generated ΦM might not be an
isomorphism, and in fact, completion need not be exact when considering general modules.
However, tensoring with Â is exact when considering general modules since Â is flat. �

7.4. Completion and the associated graded ring.

Theorem 7.4.1 (Krull intersection theorem). Let A be a noetherian ring, I an ideal, and

M a finitely generated A-module. Let M̂ be the I-adic completion of M . The kernel of the
completion map M → M̂ is

∞⋂
i=1

I iM = {x ∈M | ax = 0 for some a such that a− 1 ∈ I}.

Proof. Let E =
⋂∞
i=1 I

iM . From the definition of the I-adic completion, we see that the

kernel of M → M̂ is E, so we just need to explain the equality above. Using a corollary of
the Artin–Rees lemma (Corollary 5.2.7), there is an integer k such that

E ∩ Ik+1M = I(E ∩ IkM)

(we take n = k + 1 in the notation of Corollary 5.2.7). The left side is just E and the right
side is IE. Hence by Cayley–Hamilton (Theorem 1.5.1) applied to the identity map, there
exists a ∈ A such that a− 1 ∈ I and ax = 0 for all x ∈ E. Conversely, pick x ∈M such that
ax = 0 for some a such that a−1 ∈ I. Then for any i ≥ 1, we have (a−1)ix ∈ I iM but also
(a− 1)ix = (a− 1)i−1(−x). By induction on i, we see that x ∈ I iM for all i, so x ∈ E. �
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If the kernel of M → M̂ is 0, we say that M is separated with respect to I.

Corollary 7.4.2. If A is a noetherian local ring with maximal ideal m, then any finitely
generated A-module is separated with respect to m.

Proof. If a− 1 ∈ m, then a /∈ m and hence is a unit. �

Corollary 7.4.3. If A is a noetherian domain, then A is separated with respect to any proper
ideal I.

Proposition 7.4.4. Let A be a ring, I an ideal, M an A-module, and F = (Mn) an I-
filtration of M . Suppose that:

(1) A is I-adically complete,
(2)

⋂
nMn = 0, and

(3) grF(M) is a finitely generated grI(A)-module.

Then M is a finitely generated A-module.

Proof. Since A is I-adically complete, the canonical map A→ Â is an isomorphism and hence⋂
n I

n = 0. So given a nonzero element a ∈ I, there exists a largest n such that a ∈ In, and
we define its initial term init(a) to be the image of a in In/In+1 = grI(A)n. Similarly, for
a nonzero m ∈ M , there is a largest n such that m ∈ Mn and so we define its initial term
init(m) to be its image in Mn/Mn+1 = grF(M)n. In both cases, we set init(0) = 0.

We claim the following: if m1, . . . ,mr ∈ M are elements such that init(m1), . . . , init(mr)
generate grF(M) as a grI(A)-module, then m1, . . . ,mr generate M as an A-module. This
claim proves the result since grF(M) has a finite set of generators (which may be assumed
homogeneous by replacing each generator by its homogeneous components), and every ho-
mogeneous element of grF(M) is the initial term of an element in M .

Now we prove the claim. Pick nonzero x0 ∈M . Then we have an expression in grF(M)

init(x0) = c0,1init(m1) + · · ·+ c0,rinit(mr)

where c0,i is either 0 or homogeneous of degree deg(init(x0))− deg(init(mi)). We can write
c0,i = init(C0,i) for some C0,i ∈ A. We define

x1 = x0 − (C0,1m1 + · · ·+ C0,rmr).

If x1 = 0, then x0 is generated by m1, . . . ,mr and we are done. Otherwise, deg init(x1) >
deg init(x0). Now we can repeat this procedure. Either it terminates with xi = 0 for some
i, in which case we realize x0 as a linear combination of m1, . . . ,mr, or we have an infinite
sequence x0, x1, . . . where deg init(xi+1) > deg init(xi) for all i, and

xi+1 = xi − (Ci,1m1 + · · ·+ Ci,rmr)

for some Ci,j ∈ A such that Ci,j = 0 or

deg(init(Ci,j)) = deg(init(xi))− deg(init(mj)).

In particular, for fixed j, deg(init(Ci,j)) is increasing with i, and so the sum Cj :=
∑

iCi,j
is well-defined since A is complete (Remark 7.3.1). Finally, x0 − (C1m1 + · · · + Crmr) is 0
modulo Mn for all n � 0, and hence it is identically 0 since

⋂
nMn = 0, which proves the

claim. �

Theorem 7.4.5. If A is a noetherian ring and I is an ideal, then the I-adic completion Â
is noetherian.
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Proof. Let J ⊂ Â be an ideal. Then grÎ(J) is an ideal in grÎ(Â) ∼= grI(A) which is a

noetherian ring (Lemma 5.2.3). Hence grÎ(J) is finitely generated. Next,
⋂
n Î

nJ ⊂
⋂
n Î

n =
0 by Proposition 7.1.5, so by Proposition 7.4.4, we see that J is finitely generated. �

Corollary 7.4.6. For any noetherian ring A, the power series ring in n variables A[[x1, . . . , xn]]
is noetherian.

Proposition 7.4.7. If A is a noetherian local ring with maximal ideal m, and Â is its m-adic
completion, then dimA = dim Â. Furthermore, A is a regular local ring if and only if Â is
a regular local ring.

Proof. The first statement follows from the fact that grm̂(Â) ∼= grm(A), and the dimension

of either A or Â is determined by this graded ring. For the second statement, we use that
A/m ∼= Â/m̂ and m/m2 ∼= m̂/m̂2. �

7.5. Further results for complete rings. Our first goal is give a general form of Hensel’s
lemma (there are many variations which don’t seem to imply one another, but we’re just
doing one version of it) and then specialize to some of its more common applications. Before
that, we state some general results about power series with coefficients in a complete ring.
For a more general result, see the exercises.

Proposition 7.5.1. Let A be a complete ring with respect to an ideal I and let A[[x]] be the
formal power series ring over A in one variable. Let F (x) =

∑
n≥0 fnx

n be a formal power
series such that f0 ∈ I. Then there is a unique A-algebra homomorphism ϕ : A[[x]] → A[[x]]
such that ϕ(x) = F (x).

If f0 = 0 and f1 is a unit in A, then ϕ is an isomorphism and ϕ−1(x) has no constant
term.

We remark that every ring is complete with respect to the 0 ideal, so this is actually more
general than it initially appears.

Proof. Let α =
∑

n≥0 aix
i be a formal power series with coefficients in A. Since f0 ∈ I, the

coefficient of xn in F (x)n+i for i ≥ 0 is an element of In. Hence, the coefficient of xn in the
expression ∑

n≥0

aiF (x)i

is a well-defined element of A by Remark 7.3.1, and hence this infinite sum is well-defined as
an element in A[[x]]. If we define ϕ(α) to be this sum, then ϕ is a homomorphism with the
desired property. For uniqueness, any ring homomorphism has to agree with ϕ whenever α
is a polynomial, and this determines everything since every power series can be represented
as a sequence of polynomials by definition of the inverse limit.

Next, suppose that f0 = 0 and that f1 is a unit in A. We will define the coefficients gn
for a formal power series G(x) by induction on n as follows. First set g1 = 1/f1. Assuming
g1, . . . , gn−1 have been defined, set

gn = − 1

f1

n∑
i=2

fi[x
n](g1x+ g2x

2 + · · ·+ gn−1x
n−1)i



46 STEVEN V SAM

where [xn]h(x) means the coefficient of xn in h(x). Now we define G(x) =
∑

n≥1 gnx
n. Then

the coefficient of xn in F (G(x)) is

f1gn +
n∑
i=2

fi[x
n]G(x)i.

If n = 1, the sum is empty and we get f1g1 = 1. Otherwise, [xn]G(x)i = [xn](g1x + · · · +
gn−1x

n−1)i since i ≥ 2 and so the expression above is 0 by definition, and hence F (G(x)) = x.
Finally, since g0 = 0 and g1 is invertible, the same argument shows that there exists a formal
power series H(x) such that G(H(x)) = x. By associativity of composition of formal power
series, we conclude that H(x) = F (x), so that the unique homomorphism determined by
x 7→ G(x) is an inverse to ϕ. �

Theorem 7.5.2 (Hensel’s lemma). Let A be a complete ring with respect to an ideal I. Let
f(x) ∈ A[x] be a polynomial, let f ′(x) be its derivative. Pick a ∈ A, set e = f ′(a), and
suppose that

f(a) ∈ e2I.

Then there exists b ∈ A such that f(b) = 0 and b ≡ a (mod eI).

If A is complete with respect to I, then A is also complete with respect to Ik for any
positive integer k, so that we can use Ik in place of I in Hensel’s lemma to get a more refined
statement in some cases.

Furthermore, if e is a nonzerodivisor, it can be shown that there is a unique b that satisfies
the two properties above, but we omit the calculation.

Proof. There exists a polynomial h(x) so that

f(a+ x) = f(a) + ex+ h(x)x2.

By Proposition 7.5.1, there is an A-algebra homomorphism ϕ : A[[x]]→ A[[x]] determined by
ϕ(x) = x + x2h(ex), and ϕ is invertible. By hypothesis, we can write f(a) = e2c for some
c ∈ I, and again by Proposition 7.5.1, we have an A-algebra homomorphism ψ : A[[x]]→ A[[x]]
given by ψ(x) = −c. We define

b = a+ eψ(ϕ−1(x)).

Then b ≡ a (mod eI) and we have

f(b) = f(a+ eψ(ϕ−1(x)))

= ψ(f(a+ eϕ−1(x)))

= ψ(f(a) + e2ϕ−1(x) + h(eϕ−1x)(eϕ−1(x))2)

= f(a) + e2ψ(ϕ−1(x+ h(ex)x2))

= f(a) + e2ψ(x)

= f(a)− e2c = 0. �

Example 7.5.3. We’ll use this to show that if p is an odd prime, then every square in Zp

is of the form p2nc where n is a non-negative integer and c is an element not divisible by p
such that its reduction c modulo p is a square.

First, since Zp is local with maximal ideal generated by p, we see that every element can
be written as pmc for some non-negative integer m and where c is not divisible by p. If

pmc = (pnc′)2, then m = 2n and c = c′
2

in Z/p, so the condition is necessary.
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On the other hand, suppose that c ∈ Zp is not divisible by p and that there exists a ∈ Z/p
such that c = a2. We use Hensel’s lemma with I = (p) in A = Zp. Let f(x) = x2− c ∈ Zp[x]
and let a ∈ Zp be any preimage of a. Since c 6= 0, we conclude that a /∈ (p), and so f ′(a) = 2a
is a unit in Zp. Hence f ′(a)2I = I and f(a) ∈ I. Hensel’s lemma then tells us that there
exists b ∈ Zp such that f(b) = 0, i.e., b2 = c. Hence every element of the form p2nc with
c ∈ Z/p a square is in fact a p-adic square. �

Example 7.5.4. We now determine which 2-adic numbers are squares. Namely, they are
the elements of the form 4nc where c ≡ 1 (mod 8).

Again, every element is of the form 2nc where c is not divisible by 2, and if 2nc = (2mc′)2,

then n = 2m and working modulo 8, we have c = c′
2
. But we can write c′ = 2d+ 1 for some

d ∈ Z/8 and so c = (2d+ 1)2 = 4d(d+ 1) + 1, and 4d(d+ 1) ≡ 0 (mod 8) for any d.
On the other hand, suppose we’re given c ∈ Z2 such that c ≡ 1 (mod 8). We use Hensel’s

lemma with A = Z2, I = (2), f(x) = x2−c, and a = 1. Then f ′(1) = 2 and so f ′(a)2I = (8).
We have f(1) ∈ (8) by assumption, and so there exists b ∈ Z2 such that f(b) = 0, i.e.,
b2 = c. �

Example 7.5.5. Let k be a field of characteristic different from 2 and consider the ring
A = k[[x]] with I = (x). Then a power series α =

∑
n≥0 anx

n is a square if and only if we can

write α = x2kβ for some integer k and power series β such that its constant term is nonzero
and a square in k. This is similar to Example 7.5.3, so we omit the details.

If k has characteristic 2, the answer is very different: from the calculation (
∑

n≥0 cnx
n)2 =∑

n≥0 c
2
nx

2n, we see that a power series is a square if and only if the coefficient of xn is 0
when n is odd and is a square in k when n is even. �

Example 7.5.6. Consider the ring A = C[x, y]/(y2 − x2(x + 1)). Since y2 − x2(x + 1) is
an irreducible polynomial, A is a domain, which implies that SpecA is an irreducible space
(i.e., not a union of two closed proper subsets). By the nullstellensatz, it is appropriate to
identify this with the subspace {(a, b) ∈ C2 | b2 = a(a + 1)}. Here we draw the real points
of that set:

If we zoom in on the origin, the plot looks like the union of two lines, i.e., the solution set
of xy = 0, which is reducible. Localization does not detect this behavior (localization of a
domain is still a domain), but completion does: by Example 7.5.5, x2(x + 1) is a square in
C[[x]], and hence y2 − x2(x+ 1) factors. So completion allows us to “zoom in further” than
localization does.

This implies that the completion of a domain need not be a domain. �

We end this section by stating a special case of the Cohen structure theorem for complete
noetherian local rings.

Theorem 7.5.7 (Cohen structure theorem). Let A be a noetherian local ring which is com-
plete with respect to its maximal ideal m and let k = A/m.

(1) A is isomorphic to a quotient of a regular local ring.
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(2) If A contains a subring which is a field, then there exists an integer n such that A is
isomorphic to a quotient ring of k[[x1, . . . , xn]].

(3) Furthermore, if A is a regular local ring and contains a subring which is a field, then
there exists an integer n such that A ∼= k[[x1, . . . , xn]].

If A is a quotient of B, then we can identify Spec(B) with a closed subset of Spec(A):
namely, if I is the kernel of B → A, then Spec(A) = V (I). Hence the first result tells
us that we can always embed Spec(A) into the spectrum of a regular local ring when A
is complete. This is analogous to the Whitney embedding theorem which tells us that
differentiable manifolds can be embedded into Euclidean space.

If we remove the complete hypothesis, then we can’t say that noetherian local rings are
quotients of a special kind of ring like the localization of a polynomial ring over a field, and
in general their structure can be difficult to control. This is one reason why working with
complete local rings can be simpler.

If A contains a field, it is said to be equicharacteristic (because the characteristic of this
field must match the characteristic of its residue field). Otherwise, it is said to have mixed
characteristic since this implies that A has characteristic 0, but its residue field has positive
characteristic. For an example, take Zp.

In the mixed characteristic case, there is still something analogous to (2) that can be said,
though the statement is more involved and we won’t discuss it. See https://stacks.math.

columbia.edu/tag/0323 for more details.
Part (3) of the theorem tells us that complete regular local rings are all power series rings

(when they contain a field). In contrast, non-complete regular local rings have much more
complicated behavior and cannot be classified so easily. This shows that completion does
simplify some things, but can simplify other things too much.

8. Behavior in low (co)dimension

8.1. Associated primes. Let I ⊂ A be an ideal. A prime p ⊂ A is associated to I if there
exists x ∈ A such that p = (I : x), i.e., p is the annihilator of the image of x in A/I. In other
words, the A-linear map A/p→ A/I given by a+ p 7→ ax+ I is injective (and well-defined).
We write APA(I) to denote the set of associated primes of I (we’ll drop the subscript if it’s
clear from context). If I is generated by a single element which is a nonzerodivisor, then
any associated prime of I is said to be associated to a nonzerodivisor. Finally, for I = 0,
a prime associated to 0 is said to be an associated prime of A.

Proposition 8.1.1. Consider the poset of ideals of the form {Ann(x) | x ∈ A, x 6= 0}. Any
maximal element in this set is prime, and in particular is an associated prime of A.

Proof. Let I = Ann(x) be a maximal element in this poset. Since x 6= 0, we have 1 /∈ I,
and so I is a proper ideal. Suppose that ab ∈ I but a /∈ I. Then ax 6= 0 and I ⊆ Ann(ax).
Since I is maximal, we have equality. Also, abx = 0, so b ∈ Ann(ax), which means that
b ∈ Ann(x). Thus I is prime. �

For a general ring, the set of annihilators of nonzero elements may not have any maximal
elements. Hence the notion is better behaved if we assume that the ring is noetherian, in
which case they are guaranteed to exist.

Corollary 8.1.2. Let A be a noetherian ring. If x ∈ A is nonzero, then there exists an
associated prime p such that the image of x under A→ Ap is nonzero.

https://stacks.math.columbia.edu/tag/0323
https://stacks.math.columbia.edu/tag/0323
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Proof. The set {Ann(y) | y ∈ A, y 6= 0, Ann(x) ⊆ Ann(y)} is nonempty since it contains
Ann(x). Since A is noetherian, it has a maximal element p. Then the image of x in Ap is
nonzero. By Proposition 8.1.1, p is an associated prime. �

We’re going to be interested in characterizing normal rings in terms of properties of asso-
ciated primes, so we prove a few preparatory results.

For any ring A, its total fraction ring is the localization A[S−1] where S is the set of
nonzerodivisors. This is just the field of fractions if A is a domain.

Proposition 8.1.3. Let A be a noetherian ring with total fraction ring B and pick x ∈ B.
Then x ∈ A if and only if the image of x in Bp belongs to Ap for all primes p associated to
a nonzerodivisor in A.

Proof. Write x = a/u where a, u ∈ A and u is a nonzerodivisor. If x /∈ A, then a /∈ (u),
i.e., a is nonzero in A/u. In particular, by Corollary 8.1.2, there exists p′ ∈ APA/u(0) such
that the image of a is nonzero in (A/u)p′ . Let p be the inverse image of p in A. Then
(A/u)p′ = Ap/(u)p, and so a /∈ (u)p, so that a/u /∈ Ap. �

Let d be a nonnegative integer. We define some properties for a ring A:

• A satisfies (Rd) if for every prime ideal p ⊂ A of height ≤ d (recall that the height of
p agrees with dim(Ap)), Ap is a regular local ring.
• A satisfies (S1) if every prime associated to 0 has height 0.
• A satisfies (S2) if A satisfies (S1) and every prime associated to a nonzerodivisor has

height 1.

There is a more general condition (Sd) which is beyond the scope of this course, see
Remark [? Steven: ref ?].

8.2. Reduced rings. In §6.4, we explained that a regular local ring of dimension 0 is the
same thing as a field. Here is a slightly upgraded statement. Recall that a ring is reduced if
it has no nonzero nilpotent elements.

Proposition 8.2.1. Let A be a 0-dimensional noetherian local ring with maximal ideal m.
The following are equivalent:

(1) A is a regular local ring, i.e., m = 0.
(2) A is a field.
(3) A is reduced.

Proof. We’ve already seen that (1) and (2) are equivalent, and (2) clearly implies (3). Since
the nilradical is m, every element of m is nilpotent. So if A is reduced, then m = 0. �

Theorem 8.2.2. Let A be a noetherian ring. Then A is reduced if and only if A satisfies
(R0) and (S1).

Proof. First suppose that A is reduced. Let p be a prime of height 0, so that Ap is a reduced
0-dimensional local ring. By the previous result, Ap is a regular local ring, and so A satisfies
(R0). Next, suppose that p is a prime associated to 0, so that we have p = Ann(x) for some
nonzero x ∈ A. If p has positive height, then p properly contains another prime q. But then
xp = 0 ⊆ q, and since there is some element in p not in q, we conclude that x ∈ q. But then
x ∈ p = Ann(x), i.e., x2 = 0, which contradicts that A is reduced. Hence A satisfies (S1).

Conversely, suppose that A satisfies (R0) and (S1). Suppose that x ∈ A is nilpotent and
x 6= 0. By Corollary 8.1.2, there is an associated prime p of A such that the image of x
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under A→ Ap is nonzero. By (S1), we have height(p) = 0, and so by (R0), Ap is a reduced
ring, i.e., has no nonzero nilpotent elements. But the image of x is nilpotent, so we have a
contradiction. Hence A is reduced. �

Recall that a topological space is irreducible if it cannot be written as a union of two
closed proper subsets. We’ll omit the proof of the next result since it doesn’t use any of the
new concepts we just introduced and could have been stated at the very beginning.

Proposition 8.2.3. Let A be a ring. Then A is a domain if and only if A is reduced and
Spec(A) is an irreducible topological space.

Now suppose A is a noetherian ring and we want to know if it is a domain (equivalently,
suppose that A = B/I and we want to know if I is prime). The above discussion says we
can separate this check into two tasks: that A is reduced, which we can separate further
using Theorem 8.2.2 (this can be thought of as an “algebraic” condition) and that Spec(A)
is irreducible (this can be thought of as a “topological” condition). In some important
cases, like when B is a polynomial ring over a field, this can be handled with some concrete
calculations. We’ll discuss some nontrivial examples where this applies in [? Steven: ref ?].

8.3. Discrete valuation rings. We wish to discuss regular domains of dimension 1. We
start with a discussion of the local situation.

Let K be a field. A discrete valuation of K is a surjective function v : K \ 0 → Z such
that for all x, y ∈ K \ 0, we have

(1) v(xy) = v(x) + v(y), and
(2) v(x+ y) ≥ min(v(x), v(y)) whenever x 6= −y.

Statements can be sometimes simplified by adopting the convention that v(0) =∞.
By (1), we must have v(1) = 0. The subset

A = {0} ∪ {x ∈ K | v(x) ≥ 0}

is a subring of K called the valuation ring of v; it is a local ring with maximal ideal

m = {0} ∪ {x ∈ K | v(x) > 0}.

To see this, pick x ∈ A \ m. Then v(x) = 0, and so v(x−1) = 0 by (1) since 0 = v(1) =
v(x) + v(x−1). Hence x−1 ∈ A, which shows that every element of A \m is invertible.

Example 8.3.1. (1) Let K = Q and let p be a prime. Every rational number can be
written in the form pax where a is an integer and the numerator and denominator of
x are prime to p. The p-adic valuation is defined by vp(p

ax) = a. Its valuation ring
is Z(p), the integers localized at the prime p.

(2) Again let p be a prime and let K = Qp be the field of p-adic numbers. Using the
notation from Example 7.1.3, every p-adic number can be written as an infinite sum∑

n≥N anp
n where 0 ≤ ai ≤ p − 1. If aN 6= 0, we define its valuation to be N . The

valuation ring is the ring of p-adic integers Zp.
(3) Similar to (1), let k be any field and let K = k(x) be the field of rational functions.

Let f ∈ k[x] be an irreducible polynomial. Then every rational function can be
written as fag where a is an integer and both the numerator and denominator of g
are prime to f . We define a valuation by vf (f

ag) = a. Its valuation ring is k[x](f),
the polynomial ring localized at the prime ideal generated by f .
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(4) As a variation of (2) above, let K = k((x)) be the field of Laurent series in 1 variable.
Given a Laurent series

∑
n≥N anx

n with aN 6= 0, its valuation is defined to be N .
The valuation ring is the ring of formal power series. �

A local domain is a discrete valuation ring (DVR, for short) if there exists a discrete
valuation on its field of fractions so that A is the corresponding valuation ring.

Proposition 8.3.2. Every discrete valuation ring is noetherian and has Krull dimension 1.

Proof. Let A be a DVR and let v be a valuation on its field of fractions K. First, note that
if v(x) = v(y), then v(xy−1) = v(x)− v(y) = 0, and so xy−1 ∈ A and the ideals generated by
x and y are the same. Let I be a nonzero ideal of A and let k = min{v(x) | x ∈ I \ 0}. Then
I contains every element x such that v(x) = k by the previous comment, which means that
I = mk. This means that A satisfies ACC for ideals since we know what all of the ideals are
and there are no infinite strictly increasing chains.

Furthermore, the only prime ideals are 0 and m. Since v is surjective onto Z, we have
m 6= 0, and so dimA = 1 by the definition of dimension using chains of prime ideals. �

Proposition 8.3.3. Let A be a noetherian local domain of dimension 1 with maximal ideal
m and residue field k = A/m. The following are equivalent:

(1) A is a DVR.
(2) A is normal.
(3) m is a principal ideal.
(4) A is a regular local ring, i.e., dimk(m/m2) = 1.
(5) Every nonzero ideal is a power of m.
(6) There exists x ∈ A such that every nonzero ideal is of the form (xk) for some k ≥ 0.

Proof. Since dimA = 1, we have
√
I = m for any nonzero proper ideal:

√
I is an intersection

of prime ideals, and the only nonzero prime is m.
(1) implies (2): Assume that A is a DVR and let v : K → Z be a valuation such that A is

its valuation ring. If x ∈ K is integrally closed over A, then we have an equation

xn + an−1x
n−1 + · · ·+ a0 = 0

with ai ∈ A. If v(x) ≥ 0, there is nothing to show. Otherwise, v(x) < 0 and so v(x−1) > 0
and hence x−1 ∈ A. Multiply the above equation by x−n+1 and rearrange to get

x = −(an−1 + an−2x
−1 + · · ·+ a0(x−1)n−1),

which shows that x ∈ A, a contradiction. Hence x ∈ A, and so A is normal.
(2) implies (3): Assume that A is normal and pick nonzero a ∈ m; then

√
(a) = m as noted

above. In particular, there exists a minimal positive n such that mn ⊆ (a). Pick b ∈ mn−1

such that b /∈ (a) and set x = a/b in the field of fractions of A. Then for any y ∈ m, we have
by ∈ mn ⊆ (a), and hence x−1y = by/a ∈ A. In particular, x−1m is an ideal in A. We claim
that x−1m is not a proper ideal; if so, then x−1m ⊆ m and hence m is a faithful (since A is a
domain) A[x]-module which is finitely generated as an A-module. By Proposition 3.1.1, this
implies that x−1 is integral over A, which means x−1 ∈ A, which contradicts that b /∈ (a),
and our claim is proven. This means that x−1m = A, and so every element of m is a multiple
of x, i.e., m = (x).

(3) implies (4): if (x) = m, then the image of x generates m/m2; if x /∈ m2 then m = 0 by
Nakayama’s lemma, which contradicts that dimA = 1.
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(4) implies (5): Let I be a nonzero proper ideal. Then
√
I = m as we have noted above,

so there is a positive integer n such that mn ⊆ I. If mn = I we are done, otherwise there
exists a maximal r such that I ⊆ mr. Then I 6⊆ mr+1 and we can y ∈ I \mr+1. By (4), there
exists x ∈ A such that (x) = m. Since I ⊆ mr, we can write y = axr where a /∈ m, i.e., a is
a unit. But then xr ∈ I, i.e., I = mr.

(5) implies (6): Since m 6= 0, we have m 6= m2 by Nakayama’s lemma. Pick x ∈ m \ m2.
Then by (5), there exists k such that (x) = mk. But then k = 1 by our choice of x, so
m = (x) and hence every ideal is generated by xk for some k by (5).

(6) implies (1): We have (x) = m, and so (xk) 6= (xk+1) for all k by Nakayama’s lemma.
So given nonzero a ∈ A, there is a unique k such that (a) = (xk) and we define v(a) = k.
For a, a′ ∈ A, we have v(aa′) = v(a) + v(a′) by construction. Furthermore,

(a+ a′) ⊆ (a, a′) = (xv(a), xv(a′)) ⊆ (xmin(v(a),v(a′))),

and so v(a+ a′) ≥ min(v(a), v(a′)).
For any nonzero a, b ∈ A, we set v(a/b) = v(a)− v(b). For any c ∈ A, we have v(ac/bc) =

v(a)− v(b) so that this is well-defined. Then

v(aa′/bb′) = v(a/b) + v(a′/b′)

by what we have shown, and

v(
a

b
+
a′

b′
) = v(

ab′ + a′b

bb′
)

= v(ab′ + a′b)− v(bb′)

≥ min(v(a) + v(b′), v(a′) + v(b))− v(b)− v(b′)

= min(v(a)− v(b), v(a′)− v(b′))

= min(v(a/b), v(a′/b′)).

Furthermore, v(x) = 1, and so v is surjective onto Z, and we have verified that v is a
valuation. Finally, suppose that v(a/b) ≥ 0, i.e., that v(a) ≥ v(b). Then (a) ⊆ (b), so that
there exists c ∈ A such that a = bc. But then c = a/b and so a/b ∈ A. In particular, A is
the valuation ring of v and hence is a DVR. �

Corollary 8.3.4. Let A be a DVR with maximal ideal m. Then the m-adic completion of A
is a DVR.

Proof. This follows from Proposition 7.4.7. �

8.4. Serre’s criterion for normality.

Theorem 8.4.1. Let A be a noetherian domain. Then A is normal if and only if, for every
prime p associated to a principal ideal, pAp is a principal ideal, i.e., Ap is a DVR.

Proof. Let K be a field of fractions of A.
First suppose that A is normal. Let p = ((a) : b) be a prime associated to a principal ideal

(a). Define

p−1 = {x ∈ K | xpAp ⊆ Ap},
which is an Ap-submodule of K. We define p−1pAp to be the set of linear combinations
of elements xa where x ∈ p−1 and a ∈ pAp; this is an ideal of Ap and we claim that
p−1pAp = Ap. If not, then since pAp ⊆ p−1pAp, and pAp is a maximal ideal of Ap, we
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must have pAp = p−1pAp. Then by Proposition 3.1.1, each element of p−1 is integral over
Ap, which implies that p−1 ⊆ Ap since we have assumed that A is normal. By definition,
bp ⊆ (a), so b/a ∈ p−1 ⊆ Ap, but that contradicts our assumption that b is nonzero modulo
a, and our claim is proven.

Finally, for each x ∈ p−1, xpAp is an ideal of Ap. Since p−1pAp = Ap, and pAp is the
unique maximal ideal, there must exist x ∈ p−1 such that xpAp = Ap. But then 1/x ∈ pAp

is a generator.
Conversely, suppose that, for every prime p associated to a principal ideal, Ap is a DVR.

If x ∈ K is integral over A, then it is also integral over each Ap, which is a normal domain,
and hence x ∈

⋂
pAp. By Proposition 8.1.3, we have A =

⋂
pAp where the intersection is

over all primes associated to a principal ideal generated by a nonzerodivisor, which implies
that x ∈ A, so that A is normal. �

We now give a more general characterization.

Theorem 8.4.2 (Serre). Let A be a noetherian ring. Then A is isomorphic to a (finite)
direct product of normal domains if and only if A satisfies (R1) and (S2).

Proof. First suppose that A ∼= A1×· · ·×Ar where each Ai is a normal domain. Every prime
ideal of A is then of the form A1× · · · × pi× · · · ×Ar where pi is a prime ideal of Ai (and all
of the other factors are the unit ideal) and its height is just the height of pi. The localization
is (Ai)pi , which is a normal domain, and so if height(pi) ≤ 1, then this is a regular local ring
by Propositions 8.2.1 and 8.3.3. Hence A satisfies (R1).

Next, using Theorem 8.2.2, A satisfies (S1) since a product of domains is reduced. Next,
every nonzerodivisor of A is of the form a = (a1, . . . , ar) where ai ∈ Ai is a nonzerodivisor.
Then pi is an associated prime of (ai) if and only if A1×· · · pi · · ·×Ar is an associated prime
of a. By Theorem 8.4.1, piApi

∼= pi(Ai)pi is the maximal ideal of a DVR, and hence has
height 1.

Conversely, suppose that A satisfies (R1) and (S2). Let p be a prime associated to a
nonzerodivisor. By (S2), p has height 1, so by (R1), Ap is a regular local ring, so is a normal
domain by Proposition 8.3.3. Let B be the total fraction ring of A. Then A→ B is integral:
if x ∈ B is integral over A, then in particular, the image of x in Bp is integral over Ap for
p as above, and hence belongs to Ap by normality. Since A is the intersection of the Ap by
Proposition 8.1.3, we see that x ∈ A.

Next, B is 0-dimensional: any prime ideal consists of zerodivisors, so if there is a strict
containment, quotienting by the smaller one would give a non-domain. By Theorem 4.6.6,
B is isomorphic to a product of local artinian rings. By Theorem 8.2.2, A is reduced, which
implies that B is reduced as well (Proposition 2.4.4), and so in fact B is isomorphic to
a product of fields k1 × · · · × kr. Let ei be the vector which is 1 in ki and 0 elsewhere.
Then the ei are orthogonal idempotents, i.e., eiej = 0 for i 6= j and e2

i = ei. This can be
rewritten as e2

i − ei = 0, so ei is integral over A, and hence ei ∈ A. In particular, if we define
Ai = eiA, then A ∼= A1× · · ·×Ar and ki is the total fraction ring of Ai, i.e., Ai is a domain.
Finally, since A is integral in B, we conclude that Ai is integral in ki, so that it is a normal
domain. �

8.5. Jacobian criterion. See [Ei, §16.6] for the material in this section.
How do we actually check the conditions (Rd)? For quotients of polynomial rings over a

field there is an explicit computation. For simplicity, let k be an algebraically closed field
and consider the polynomial ring A = k[x1, . . . , xn]. Let I = (f1, . . . , fr) be an ideal of
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A. We will explain how to check the (Rd) condition for A/I. Recall that this means that
(A/I)p is a regular local ring for all primes p of A/I whenever dim(A/I)p ≤ d. We define
the singular locus of A/I to be the set of primes p such that (A/I)p is not a regular local
ring.

The Jacobian matrix of I is the r × n matrix of partial derivatives

J =

(
∂fi
∂xj

)
i=1,...,r, j=1,...,n

.

Let p be a prime ideal of A that contains I (which we think of as being naturally in bijection
with the primes just mentioned) and let c = dimAp − dim(Ap/Ip).

Below, for a matrix with entries in a domain, we can think of it as a matrix over the field
of fractions, so that its rank has the usual meaning.

Theorem 8.5.1 (Jacobian criterion). Keep the notation above.

(1) The rank of J modulo p is ≤ c.
(2) Ap/Ip is a regular local ring if and only if the rank of J modulo p is c.

Now suppose that all of the minimal primes p containing I have the same codimension
c = n− dimAp. We say that c has pure codimension c in that case.

Corollary 8.5.2. If I has pure codimension c, let J be the ideal of A/I generated by the
determinants of the c × c submatrices of J modulo I. The singular locus of A/I is V (J),
i.e., (A/I)p is a regular local ring if and only if p does not contain J .

If I has pure codimension c, then dim(A/I) = n− c, and then this result tells us that A/I
satisfies property (Rd) if and only if dim(A/I)/J < n− c− d.

This takes on a simple meaning for d = 0 (relevant for checking if A/I is reduced).
Explicitly, one can show that this means that for every irreducible component of V (I) (which
corresponds to a minimal prime p of A/I), we have a point (α1, . . . , αn) ∈ kn in V (I) (i.e.,
the maximal ideal (x1−α1, . . . , xn−αn) contains p) such that doing the substitution xi 7→ αi
in J results in a rank c matrix.

We’ll omit the details for why this translation works, and end with an example.

Example 8.5.3. Let f ∈ k[x1, . . . , xn] be any nonzero polynomial over an algebraically
closed field (not necessary, but so we can invoke nullstellensatz). The Jacobian matrix of
(f) is (

∂f

∂x1

· · · ∂f
∂xn

)
,

Hence k[x1, . . . , xn]/(f) satisfies (Rd) if the solution set to (f, ∂f
∂x1
, . . . , ∂f

∂xn
) has dimension

< n− 1− d. Note that if f is homogeneous of degree d and d 6= 0 in k, then f is redundant
by Euler’s formula

(deg f) · f =
n∑
i=1

xi
∂f

∂xi
.

For example, if f is a quadric and k does not have characteristic 2, then since k is algebraically
closed, f can be diagonalized, i.e., is a sum of squares x2

1 + · · · + x2
r (where r is the rank of

f) after some linear change of coordinates. In that case, the solution set of x1 = · · · = xr
has dimension n− r, so k[x1, . . . , xn]/(f) satisfies (Rr). �
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Unfortunately, while explicit, these computations can still be a lot of work, so we won’t
do anything more complicated in the interest of time.

8.6. Cohen–Macaulay rings. Finally, we discuss the conditions (S1) and (S2) (and (Sd)
in general). See [Ei, §18] for more details. We need some definitions first.

Let M be an A-module. A sequence x1, . . . , xr ∈ A is a regular sequence on M if
(x1, . . . , xr)M 6= M and for all i = 1, . . . , r, xi is a nonzerodivisor on M/(x1, . . . , xi−1)M
(when i = 1, this quotient is M).

Now let A be a noetherian local ring with maximal ideal m. The depth of A, denoted
depth(A), is defined to be the maximum length of a regular sequence on A. It is a fact that

depth(A) ≤ dim(A),

and A is defined to be Cohen–Macaulay if they are equal. This property is preserved
by localization, and we define a general noetherian ring A to be Cohen–Macaulay if Ap is
Cohen–Macaulay for all primes p.

Next, A satisfies Serre’s condition (Sd) if depth(Ap) ≥ min(d, dim(Ap)) for all primes
p. For d = 1, 2 this coincides with our previous definitions (we omit the details). If A is
Cohen–Macaulay, then it satisfies (Sd) for all d.

Hence an easy way to verify these conditions is to know that A is Cohen–Macaulay.
However, while the definition does not seem to be easy to check, there are stronger conditions
that are sometimes easy to check, so we just list some of the relevant facts and end with
some examples.

Theorem 8.6.1. Let A be a Cohen–Macaulay ring. The following are true:

(1) The polynomial ring A[x] is Cohen–Macaulay.
(2) If x ∈ A is a nonzerodivisor, then A/(x) is Cohen–Macaulay. In particular, if

x1, . . . , xr is a regular sequence, then A/(x1, . . . , xr) is Cohen–Macaulay.
(3) If A is local, its m-adic completion is Cohen–Macaulay.
(4) Regular local rings are Cohen–Macaulay.
(5) If I ⊂ A is an ideal generated by c elements x1, . . . , xc and c = dimA − dim(A/I),

then x1, . . . , xc is a regular sequence.

In particular, since a field k is automatically Cohen–Macaulay from the definition, so is
the polynomial ring k[x1, . . . , xn]. In this case, (5) has a nice implication (suppose k is alge-
braically closed): if f1, . . . , fc are polynomials, then their common solution set has dimension
≥ n− c by the Krull principal ideal theorem, and in case of equality, these polynomials are
automatically a regular sequence and k[x1, . . . , xn]/(f1, . . . , fc) is thus Cohen–Macaulay (and
hence automatically satisfies all of Serre’s conditions). This is an example of a complete
intersection.

Example 8.6.2. If f ∈ k[x1, . . . , xn] is any nonzero polynomial, then it is a nonzerodivisor
and hence k[x1, . . . , xn]/(f) is a Cohen–Macaulay ring. Hence we can use the discussion
from Example 8.5.3 to determine if this ring is reduced or normal since Serre’s conditions
are automatically satisfied. �

Example 8.6.3. Let k be an algebraically closed field, n be a positive integer and consider
the polynomial ring in n2 variables k[xi,j | 1 ≤ i, j ≤ n]. Let ϕ be the n × n matrix whose
(i, j) entry is xi,j and let I be the ideal generated by the coefficients of the characteristic
polynomial of ϕ (with respect to some new variable t). An n× n matrix is nilpotent if and
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only if its characteristic polynomial is tn. Hence each solution to the polynomials generating
I corresponds to a nilpotent matrix with entries in k. Is I a prime ideal?

There are various geometric arguments for why V (I) is irreducible, we will omit this
discussion since it is a bit beyond the scope of this course. We claim that I is generated
by a regular sequence. First, it is generated by n polynomials. If we work modulo the
ideal generated by xi,j for i 6= j, then they become elementary symmetric polynomials in
the variables x1,1, . . . , xn,n which we have seen in homework form a regular sequence. This
implies the claim [why?] and so A/I is Cohen–Macaulay and satisfies all of Serre’s conditions.

So then it suffices to show that there is a nilpotent matrix N such that the evaluation of
the Jacobian matrix J of I at N has rank n. We can take N to be a n × n Jordan block,
i.e., xi,j = 0 if i 6= j − 1 and xi,i+1 = 1 for i = 1, . . . , n − 1. I’ll leave that computation as
an exercise, but once we have that we see that I is prime (although we didn’t explain why
V (I) is irreducible).

Actually one can do better and show that A/I is also normal. To do that, we need to
show that the solution set of the determinants of the n × n submatrices of J inside V (I)
has dimension ≤ n2 − n − 2 (we actually get equality) which can also be done with some
geometric arguments that we omit. �

There are many other general constructions which result in Cohen–Macaulay rings, but
hopefully this gives a small flavor of the kinds of computations that are involved in using
the theorems of this section.

8.7. Fractional ideals.
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