Math 184, Winter 2022
Homework 3
Due: Friday, Feb. 4 by 11:59PM via Gradescope (late homework will not be accepted)
Explanations should be given for your solutions. Use complete sentences. Some hints on next page.
(1) Fix non-negative integers k, m, n. Consider the identity

$$
\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i}=\binom{m+n}{k}
$$

(a) Give an algebraic proof of this identity using that $(x+y)^{m}(x+y)^{n}=(x+y)^{m+n}$.
(b) Give a combinatorial proof of this identity by finding a set whose size can be interpreted as either side of the equation.
(2) Let n be a positive integer. Evaluate the sum

$$
\sum_{\substack{0 \leq i \leq n \\ i \text { even }}} i\binom{n}{i} 2^{n-i}
$$

(3) Prove the following identities about the number of integer partitions:
(a) For $n \geq k, p_{k}(n)=p_{\leq k}(n-k)$.
(b) For $n>0$, the number of partitions of n not using 1 as a part is $p(n)-p(n-1)$.
(4) A "forward path" in the plane is a sequence of steps of the form $(1,0)$ and $(0,1)$.
(a) Let a, b be non-negative integers. How many forward paths are there from $(0,0)$ to (a, b) ?
(b) Let $S_{a, b}$ be the set of integer partitions λ such that $\ell(\lambda) \leq b$ and $\lambda_{1} \leq a$. Find a bijection between $S_{a, b}$ and the set of forward paths from $(0,0)$ to (a, b).
(5) Let d be a positive integer. Prove the following identity of formal power series

$$
\left(\sum_{a \geq 0} x^{a}\right)^{d}=\sum_{n \geq 0}\binom{d+n-1}{n} x^{n} .
$$

Note: this follows from the general binomial theorem, which is not proven in this class; don't use it here. Just use the definition of multiplication of formal power series.

1. Extra practice problems (don't turn in)

(6) Evaluate the following sums:
(a) $\sum_{i=0}^{n}\binom{n}{i} \frac{1}{2^{i}}$
(b) $\sum_{i=0}^{n} i^{2}\binom{n}{i} 3^{i}$
(c) $\sum_{\substack{0 \leq i \leq n \\ i \text { odd }}} i\binom{n}{i}=\sum_{\substack{0 \leq i \leq n \\ i \text { even }}} i\binom{n}{i}$
(7) Let a_{1}, \ldots, a_{d} be non-negative integers. Generalize the definition of forward path to d dimensions by using steps which increase one of the coordinates by 1, i.e., using the steps

$$
(1,0,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0,0, \ldots, 1)
$$

How many forward paths are there from $(0,0, \ldots, 0)$ to $\left(a_{1}, a_{2}, \ldots, a_{d}\right)$?
(8) Let n and k be positive integers. Evaluate the sum

$$
\sum_{\left(a_{1}, \ldots, a_{k}\right)} a_{1} \cdots a_{k}\binom{n}{a_{1}, \ldots, a_{k}}
$$

where the sum is over all compositions of n into k parts.

2. Hints

2: First evaluate the sums

$$
\sum_{i=0}^{n} i\binom{n}{i}(-1)^{i} 2^{n-i}, \quad \sum_{i=0}^{n} i\binom{n}{i} 2^{n-i}
$$

4b: Think of a forward path as splitting the $b \times a$ rectangle into two pieces.
5: Interpret all the ways of multiplying terms in $\left(\sum_{a \geq 0} x^{a}\right)^{d}$ as weak compositions.

