Math 184, Winter 2022
Homework 4
Due: Friday, Feb. 11 by 11:59PM via Gradescope (late homework will not be accepted)
Explanations should be given for your solutions. Use complete sentences.
(1) If $\sum_{n \geq 0} a_{n} x^{n}=\frac{2+3 x^{2}-2 x^{3}}{(1-5 x)^{5}}$, find a closed formula for $a_{n}$.
(2) Define a sequence by

$$
a_{0}=1, \quad a_{1}=3, \quad a_{n}=8 a_{n-1}-16 a_{n-2}+3^{n} \quad \text { for } n \geq 2 .
$$

(a) Express $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ as a rational function in $x$.
(b) Find a closed formula for $a_{n}$.
(3) Let $S(n, k)$ be the Stirling number of the second kind. For each $k \geq 1$, define the ordinary generating function

$$
\mathbf{S}_{k}(x)=\sum_{n \geq 0} S(n, k) x^{n}
$$

(a) For $k \geq 2$, translate the identity from lecture

$$
S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)
$$

into an identity involving $\mathbf{S}_{k}(x)$ and $\mathbf{S}_{k-1}(x)$.
(b) Use the identity you found in (a) and induction on $k$ to show that for all $k \geq 1$ :

$$
\mathbf{S}_{k}(x)=\frac{x^{k}}{(1-x)(1-2 x) \cdots(1-k x)}
$$

(4) You want to build a stack of blocks that is $n$ feet high. You have 3 different kinds (unlimited of each): green blocks are 1 foot high, while red and blue blocks are 2 feet high. Blocks of the same color are considered indistinguishable. Let $a_{n}$ be the number of ways to stack these blocks.

Find a linear recurrence relation and initial conditions satisfied by $a_{n}$.
(5) You are designing a race that takes place over $n$ blocks in a city. It will consist of 3 portions: running, followed by biking, and ending with another running portion. The end of a portion should match up with the end of a block. The first running portion needs to designate 3 blocks to have a first aid tent, and the biking portion needs to designate 4 blocks to have a first aid tent. The second running portion doesn't need anything, but must have positive length. Use generating functions to find a formula for the number of ways to design a race under these conditions.
(6) Let $n$ be a positive integer and let $a_{n}$ be the number of different ways to pay $n$ dollars using only $1,2,5,10,20$ dollar bills in which at most three 20 dollar bills are used. Express $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ as a rational function.

