Math 184, Winter 2022
Homework 6
Due: Friday, Mar. 4 by 11:59PM via Gradescope (late homework will not be accepted)
Explanations should be given for your solutions. Use complete sentences.
(1) For $n>0$, let h_{n} be the number of bijections $f:[n] \rightarrow[n]$ with the property that $f \circ f \circ f$ is the identity function. We set $h_{0}=1$.
(a) Give a simple expression for the exponential generating function $H(x)=\sum_{n \geq 0} \frac{h_{n}}{n!} x^{n}$.
(b) Use your answer in (a) to get a recurrence for h_{n}.
(2) In Example 7.14, we counted the number of labeled trees on 3 and 4 vertices by considering all types of unlabeled trees and counting how many different labelings each one has. Do the same for 5 and 6 vertices.

To make it easier not to go down the wrong path: there are 3 types of unlabeled trees on 5 vertices and 6 types of unlabeled trees on 6 vertices. Also your answers should add up to $5^{3}=125$ and $6^{4}=1296$, respectively.
(3) How many ways are there to list the letters of ORANGECHICKEN so that no two consecutive letters are the same?
(4) We have $n>1$ married couples ($2 n$ people in total).
(a) How many ways can we have the $2 n$ people stand in a line so that no person is standing next to their spouse?
(b) How many ways can we have the $2 n$ people stand in a circle so that no person is standing next to their spouse (any rotation of the circle is considered an equivalent arrangement)?
(5) How many necklaces are there of length n using k different colors for the beads where n is:
(a) 8
(b) 12
(c) 30

1. Extra problems (DOn't turn in)

(6) How many positive integers ≤ 1000 are neither perfect squares nor perfect cubes? [Recall that a perfect square is an integer of the form n^{2} where n is an integer, and a perfect cube is an integer of the form n^{3} where n is an integer.]

