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1. Review and introduction

1.1. Bijections. Given two functions f : X → Y and g : Y → X, we say that they are
inverses if f ◦ g is the identity function on Y , i.e., f(g(y)) = y for all y ∈ Y , and if g ◦ f is
the identity function on X, i.e., g(f(x)) = x for all x ∈ X. In that case, the functions f and
g are called bijections.

The following is a very important principle in counting arguments:

Proposition 1.1. If there exists a bijection between X and Y , then |X| = |Y |.

We can think of a bijection f between X and Y as a way of matching the elements of X
with the elements of Y . In particular, x ∈ X gets matched with y = f(x) ∈ Y . Note that
if x′ ∈ X was also matched with y, i.e., f(x′) = f(x), then the existence of the inverse g
shows us that g(f(x′)) = g(f(x)), or more simply x = x′. In other words, f is forced to be
one-to-one (or injective). On the other hand, every element is matched with something,
i.e., every y ∈ Y is of the form f(x) for some x because we can take x = g(y). In other
words, f is forced to be onto (or surjective).

Remark 1.2. Bijections tell us that two sets have the same size without having to know
how many elements are actually in the set.

Here’s a small example: imagine there is a theater filled with hundreds of people and
hundreds of seats. If we wanted to know if there are the same number of people as seats, we
could count both. However, it would probably be much easier to just have each person take
a seat and see if there are any empty seats or any standing people. �

We’ll see some other examples later on.

1.2. Sum and product principle. Given two sets X and Y without any overlap, we have
|X ∪ Y | = |X| + |Y |. We’ll just take this for granted, though you can call it the sum
principle if you’d like a name for it.

The set of pairs of elements (x, y) where x ∈ X and y ∈ Y is the Cartesian product X×Y .
The related product principle says that |X × Y | = |X| · |Y |. Again, we will take this for
granted and not usually refer to it by name.

1.3. 12-fold way, introduction. We have k balls and n boxes. Roughly speaking, the first
part of the course is about counting the number of ways to put the balls into the boxes. We
can think of each assignment as a function from the set of balls to the set of boxes. Phrased
this way, we will be examining how many ways to do this if we require f to be injective,
or surjective, or completely arbitrary. Are the boxes supposed to be considered different or
interchangeable (we also use the terminology distinguishable and indistinguishable)? And
same with the balls, are they considered different or interchangeable? All in all, this will
give us 12 different problems to consider, which means we want to understand the following
table:
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balls/boxes f arbitrary f injective f surjective
dist/dist
indist/dist

dist/indist

{
1 if n ≥ k

0 if n < k

indist/indist

{
1 if n ≥ k

0 if n < k

Two situations have already been filled in and won’t be considered interesting.

1.4. Weak induction. Induction is used when we have a sequence of statements P (0), P (1), P (2), . . .
labeled by non-negative integers that we’d like to prove. For example, P (n) could be the
statement:

∑n
i=0 i = n(n + 1)/2. In order to prove that all of the statements P (n) are true

using induction, we need to do 2 things:

• Prove that P (0) is true.
• Assuming that P (n) is true, use it to prove that P (n+ 1) is true.

Let’s see how that works for our example:

• P (0) is the statement
∑0

i=0 i = 0 · 1/2. Both sides are 0, so the equality is valid.
• Now we assume that P (n) is true, i.e., that

∑n
i=0 i = n(n + 1)/2. Now we want to

prove that
∑n+1

i=0 i = (n+1)(n+2)/2. Add n+1 to both sides of the original identity.

Then the left side becomes
∑n+1

i=0 and the right side becomes n(n + 1)/2 + n + 1 =
(n+ 1)(n/2 + 1) = (n+ 1)(n+ 2)/2, so the new identity we want is valid.

Since we’ve completed the two required steps, we have proven that the summation identity
holds for all n.

Remark 1.3. We have labeled the statements starting from 0, but sometimes it’s more
natural to start counting from 1 instead, or even some larger integer. The same reasoning
as above will apply for these variations. The first step “Prove that P (0) is true” is then
replaced by “Prove that P (1) is true” or wherever the start of your indexing occurs. �

A subset T of a set S is another set all of whose elements belong to S. We write this as
T ⊆ S. We allow the possibility that T is empty and also the possibility that T = S.

Theorem 1.4. There are 2n subsets of a set of size n.

For example, if S = {1, ?, U}, then there are 23 = 8 subsets, and we can list them:
∅, {1}, {?}, {U}, {1, ?}, {1, U}, {U, ?}, {1, ?, U}.
Proof. Let P (n) be the statement that any set of size n has exactly 2n subsets.

We check P (0) directly: if S has 0 elements, then S = ∅, and the only subset is S itself,
which is consistent with 20 = 1.

Now we assume P (n) holds and use it to show that P (n+ 1) is also true. Let S be a set
of size n+ 1. Pick an element x ∈ S and let S ′ be the subset of S consisting of all elements
that are not equal to x, i.e., S ′ = S \ {x}. Then S ′ has size n, so by induction the number
of subsets of S ′ is 2n. Now, every subset of S either contains x or it does not. Those which
do not contain x can be thought of as subsets of S ′, so there are 2n of them. To count those
that do contain x, we can take any subset of S ′ and add x to it. This accounts for all of them
exactly once, so there are also 2n subsets that contain x. All together we have 2n+2n = 2n+1

subsets of S, so P (n+ 1) holds. �



4 STEVEN V SAM

Continuing with our example, if x = 1, then the subsets not containing x are ∅, {?}, {U}, {?, U},
while those that do contain x are {1}, {1, ?}, {1, U}, {1, ?, U}. There are 22 = 4 of each kind.

A natural followup is to determine how many subsets have a given size. In our previous
example, there is 1 subset of size 0, 3 of size 1, 3 of size 2, and 1 of size 3. We’ll discuss this
problem in the next section.

Some more to think about:

• Show that
∑n

i=0 i
2 = n(n+ 1)(2n+ 1)/6 for all n ≥ 0.

• Show that
∑n

i=0 2i = 2n+1 − 1 for all n ≥ 0.
• Show that 4n < 2n whenever n ≥ 5.

What happens with
∑n

i=0 i
3 or

∑n
i=0 i

4, or...? In the first two cases, we got polynomials
in n on the right side. This actually always happens, but we won’t prove it.

1.5. Strong induction. The version of induction we just described is sometimes called
“weak induction”. Here’s a variant sometimes called “strong induction”. We have the same
setup: we want to prove that a sequence of statements P (0), P (1), P (2), . . . are true. Then
strong induction works by completing the following 2 steps:

• Prove that P (0) is true.
• Assuming that P (0), P (1), . . . , P (n) are all true, use them to prove that P (n+ 1) is

true.

You should convince yourself that this isn’t really anything logically distinct from weak
induction. However, it can sometimes be convenient to use this variation.

Example 1.5. We know that every polynomial in x is a linear combination of 1, x, x2, x3, . . . .
We use strong induction to prove the statement that every polynomial is a linear combination
is a linear combination of 1, (x− 1), (x− 1)2, (x− 1)3, . . . .

Let P (n) be the statement that every polynomial of degree n is a linear combination of
powers of x− 1.

Then P (0) is true: the only polynomials of degree 0 are constants, and we can write
c = c · 1.

Now assume that P (0), P (1), . . . , P (n) are all true. We will use them to show that P (n+1)
is true. Let f(x) be an arbitrary polynomial of degree n+ 1. Let α be its leading coefficient
and define g(x) = f(x) − α · (x − 1)n+1. Then g(x) is a polynomial of degree ≤ n since we
have canceled off the xn+1 terms. So by strong induction, g(x) is a linear combination of
powers of x− 1. If we add α · (x− 1)n+1 to this linear combination, we see that f(x) is also
a linear combination of powers of x − 1. Since our argument applies to any polynomial of
degree n+ 1, we have proved P (n+ 1) is true. �

Some examples to think about:

• Every positive integer can be written in the form 2nm where n ≥ 0 and m is an odd
integer.
• Every integer n ≥ 2 can be written as a product of prime numbers.
• Define a function f on the natural numbers by f(0) = 1, f(1) = 2, and f(n + 1) =
f(n− 1) + 2f(n) for all n ≥ 1. Show that f(n) ≤ 3n for all n ≥ 0.
• A chocolate bar is made up of unit squares in an n ×m rectangular grid. You can

break up the bar into 2 pieces by breaking on either a horizontal or vertical line.
Show that you need to make nm− 1 breaks to completely separate the bar into 1× 1
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squares (if you have 2 pieces already, stacking them and breaking them counts as 2
breaks).

2. Elementary counting problems

2.1. Permutations and combinations. Given a set S of objects, a permutation of S is
a way to put all of the elements of S in order.

Example 2.1. There are 6 permutations of {1, 2, 3} which we list:

123, 132, 213, 231, 312, 321. �

To count permutations in general, we define the factorial as follows: 0! = 1 and if n is a
positive integer, then n! = n · (n− 1)!. Here are the first few values:

0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720.

In the previous example, we had 6 permutations of 3 elements, and 6 = 3!. This holds more
generally:

Theorem 2.2. If S has n elements and n > 0, then there are n! different permutations of
S.

Proof. We do this by induction on n. Let P (n) be the statement that a set of size n has
exactly n! permutations. The statement P (1) follows from the definition: there is exactly 1
way to order a single element, and 1! = 1. Now assume for our induction hypothesis that
P (n) has been proven. Let S be a set of size n+ 1. To order the elements, we can first pick
any element to be first, and then we have to order the remaining n elements. There are n+1
different elements that can be first, and for each such choice, there are n! ways to order the
remaining elements by our induction hypothesis. So all together, we have (n+1)·n! = (n+1)!
different ways to order all of them, which proves P (n+ 1). �

We can use factorials to answer related questions. For example, suppose that some of the
objects in our set can’t be distinguished from one another, so that some of the orderings end
up being the same.

Example 2.3. (1) Suppose we are given 2 red flowers and 1 yellow flower. Aside from
their color, the flowers look identical. We want to count how many ways we can
display them in a single row. There are 3 objects total, so we might say there are
3! = 6 such ways. But consider what the 6 different ways look like:

RRY, RRY, RY R, RY R, Y RR, Y RR.

Since the two red flowers look identical, we don’t actually care which one comes first.
So there are really only 3 different ways to do this – the answer 3! has included each
different way twice, but we only wanted to count them a single time.

(2) Consider a larger problem: 10 red flowers and 5 yellow flowers. There are too many
to list, so we consider a different approach. As above, if we naively count, then we
would get 15! permutations of the flowers. But note that for any given arrangement,
the 10 red flowers can be reordered in any way to get an identical arrangement, and
same with the yellow flowers. So in the list of 15! permutations, each arrangement
is being counted 10! · 5! times. The number of distinct arrangements is then 15!

10!5!
.

(3) The same reasoning allows us to generalize. If we have r red flowers and y yellow

flowers, then the number of different ways to arrange them is (r+y)!
r!y!

.
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(4) How about more than 2 colors of flowers? If we threw in b blue flowers, then again

the same reasoning gives us (r+y+b)!
r!y!b!

different arrangements. �

Now we state a general formula, which again can be derived by the same reasoning as in
(2) above. Suppose we are given n objects, which have one of k different types (for example,
our objects could be flowers and the types are colors). Also, objects of the same type are
considered identical. For convenience, we will label the “types” with numbers 1, 2, . . . , k and
let ai be the number of objects of type i (so a1 + a2 + · · ·+ ak = n).

Theorem 2.4. The number of ways to arrange the n objects in the above situation is

n!

a1!a2! · · · ak!
.

As an exercise, you should adapt the reasoning in (2) to give a proof of this theorem.
The quantity above will be used a lot, so we give it a symbol, called the multinomial

coefficient: (
n

a1, a2, . . . , ak

)
:=

n!

a1!a2! · · · ak!
.

In the case when k = 2 (a very important case), it is called the binomial coefficient. Note
that in this case, a2 = n− a1, so for shorthand, one often just writes

(
n
a1

)
instead of

(
n

a1,a2

)
.

For similar reasons,
(
n
a2

)
is also used as a shorthand.

2.2. Words. A word is a finite ordered sequence whose entries are drawn from some set
A (which we call the alphabet). The length of the word is the number of entries it has.
Entries may repeat, there is no restriction on that. Also, the empty sequence ∅ is considered
a word of length 0.

Example 2.5. Say our alphabet is A = {a, b}. The words of length ≤ 2 are:

∅, a, b, aa, ab, ba, bb. �

Theorem 2.6. If |A| = n, then the number of words in A of length k is nk.

Proof. A sequence of length k with entries in A is an element in the product set Ak =
A× A× · · · × A and |Ak| = |A|k.

Alternatively, we can think of this as follows. To specify a word, we pick each of its entries,
but these can be done independently of the other choices. So for each of the k positions,
we are choosing one of n different possibilities, which leads us to n · n · · ·n = nk different
choices for words. �

For a positive integer n, let [n] denote the set {1, . . . , n}.
Example 2.7. We use words to show that the number of subsets of [n] is 2n (we’ve already
seen this result, so now we’re using a different proof method).

Given a subset S ⊆ [n], we define a word wS of length n in the alphabet {0, 1} as follows.
If i ∈ S, then the ith entry of wS is 1, and otherwise the entry is 0. This defines a function

f : {subsets of [n]} → {words of length n on {0, 1}}.
We can also define an inverse function: given such a word w, we send it to the subset of
positions where there is a 1 in w. We omit the check that these two functions are inverse to
one another. So f is a bijection, and the previous result tells us that there are 2n words of
length n on {0, 1}. �
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Example 2.8. How many pairs of subsets S, T ⊆ [n] satisfy S ⊆ T? We can also encode
this problem as a problem about words. Let A be the alphabet of size 3 whose elements are:
“in S and T”, “in T but not S” and “not in T or S”. Then each pair S ⊆ T gives a word
of length n in A: the ith entry of the word is the element which describes the position of i.
So there are 3n such pairs. �

How about words without repeating entries? Given n ≥ k, define the falling factorial
by

(n)k := n(n− 1)(n− 2) · · · (n− k + 1).

There are k numbers being multiplied in the above definition. When n = k, we have
(n)n = n!, so this generalizes the factorial function.

Theorem 2.9. If |A| = n and n ≥ k, then there are (n)k different words of length k in A
which do not have any repeating entries.

Proof. Start with a permutation of A. The first k elements in that permutation give us a
word of length k with no repeating entries. But we’ve overcounted because we don’t care how
the remaining n − k things we threw away are ordered. In particular, this process returns
each word exactly (n− k)! many times, so our desired quantity is

n!

(n− k)!
= (n)k. �

Some further things to think about:

• A small city has 10 intersections. Each one could have a traffic light or gas station
(or both or neither). How many different configurations could this city have?
• Using that (n)k = n · (n − 1)k−1, can you find a proof for Theorem 2.9 that uses

induction?
• Which additional entries of the 12-fold way table can we fill in now?

2.3. Choice problems. We finish up with some related counting problems. Recall we
showed that an n-element set has exactly 2n subsets. We can refine this problem by asking
about subsets of a given size.

Theorem 2.10. The number of k-element subsets of [n] is(
n

k

)
=

n!

k!(n− k)!
.

There are many ways to prove this, but we’ll just do one for now:

Proof. In the last section on words, we identified subsets of [n] with words of length n on
{0, 1}, with a 1 in position i if and only if i belongs to the subset. So the number of subsets
of size k are exactly the number of words with exactly k instances of 1. This is the same as
arranging n − k 0’s and k 1’s from the section on permutations. In that case, we saw the
answer is n!

(n−k)!k! . �

Corollary 2.11.
n∑
k=0

(
n

k

)
= 2n.

Proof. The left hand side counts the number of subsets of [n] of some size k where k ranges
from 0 to n. But all subsets of [n] are accounted for and we’ve seen that 2n is the number
of all subsets of [n]. �
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Here’s an important identity for binomial coefficients (we interpret
(
n
−1

)
= 0):

Proposition 2.12 (Pascal’s identity). For any k ≥ 0, we have(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
.

Proof. The right hand side is the number of subsets of [n + 1] of size k. There are 2 types
of such subsets: those that contain n+ 1 and those that do not. Note that the subsets that
do contain n + 1 are naturally in bijection with the subsets of [n] of size k − 1: to get such
a subset, delete n + 1. Those that do not contain n + 1 are naturally already in bijection
with the subsets of [n] of size k. The two sets don’t overlap and their sizes are

(
n
k−1

)
and(

n
k

)
, respectively. �

An important variation of subset is the notion of a multiset. Given a set S, a multiset
of S is like a subset, but we allow elements to be repeated. Said another way, a subset of S
can be thought of as a way of assigning either a 0 or 1 to an element, based on whether it
gets included. A multiset is then a way to assign some non-negative integer to each element,
where numbers bigger than 1 mean we have picked them multiple times.

Example 2.13. There are 10 multisets of [3] of size 3:

{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 2, 2}, {1, 2, 3},
{1, 3, 3}, {2, 2, 2}, {2, 2, 3}, {2, 3, 3}, {3, 3, 3}.

Aside from exhaustively checking, how do we know that’s all of them? Here’s a trick: given a
multiset, add 1 to the second smallest values (including ties) and add 2 to the largest value.
What happens to the above:

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}.

We get all of the 3-element subsets of [5]. The process is reversible using subtraction, so
there is a more general fact here. �

Theorem 2.14. The number of k-element multisets of a set of size n is(
n+ k − 1

k

)
.

Proof. First, it doesn’t really matter which set of size n we consider, since given any two, we
can always relabel elements to get a bijection between their k-element multisets. So we will
take [n] as our set.

We adapt the example above to find a bijection between k-element multisets of [n] and
k-element subsets of [n+k−1]. Given a multiset S, sort the elements as s1 ≤ s2 ≤ · · · ≤ sk.
From this, we get a subset {s1, s2 + 1, s3 + 2, . . . , sk + (k − 1)} of [n+ k − 1]. On the other
hand, given a subset T of [n+ k − 1], sort the elements as t1 < t2 < · · · < tk. From this, we
get a multiset {t1, t2 − 1, t3 − 2, . . . , tk − (k − 1)} of [n]. We will omit the details that these
are well-defined and inverse to one another. �

Example 2.15 (Counting poker hands). We’ll apply some of the ideas above to count the
number of ways to receive various kinds of poker hands. The setup is as follows: Each card
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has one of 4 suits: ♣, ♥, ♠, ♦, and one of 13 values: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A.
Each possible pair of suit and value appears exactly once, so there are 52 cards total.

In each situation below, we want to count how many subsets of 5 out of the 52 cards have
certain special properties.

(1) (Four of a kind) This means that 4 of the 5 cards have the same value (and the 5th
necessarily has a different value). Since there are 4 cards in a given suit, the only
relevant information is the value that appears 4 times and the extra card. There are
13 choices for the value, and 48 cards leftover, so there are 13 · 48 ways to get a “four
of a kind”.

(2) (Full house) This means that 3 of the 5 cards have the same value and the other
2 also have the same value. These two values necessarily have to be different. The
relevant information is the two values (with order! why?) and then the suits that
are chosen. There are 13 · 12 ways to choose two values. To choose 3 suits out of 4,
there are

(
4
3

)
ways, and to choose 2 suits out of 4, there are

(
4
2

)
ways, so in total we

get 13 · 12 ·
(
4
3

)(
4
2

)
.

(3) (Two pairs) This means that 2 of the 5 cards have the same value, and 2 of the
remaining 5 cards have the same value. We will also impose these values are different
(so it doesn’t overlap with (1)) and that the value of the 5th card is also different (so
it doesn’t overlap with (2)).

The two values of the pairs are chosen without order (why is this different?) so
there are

(
13
2

)
ways. For each value, we choose 2 suits out of 4, so pick up another(

4
2

)2
. We’ve removed 8 cards from the possibility of what the fifth card can be, so it

has 44 possibilities, which gives us a final answer of
(
13
2

)(
4
2

)2 · 44.
(4) (Straight) This means that the values of the 5 cards can be put in consecutive order

(funny rule: A can either count as a 1 or as the value above K). There are no
conditions on the suits. So we need to choose the 5 consecutive values. The smallest
value can be one of: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, and once that is chosen, all of the
other values are determined, so there are 10 possibilities here. For each of the 5 suits,
we need to choose 1 of 4, so we have another 45 choices, giving us a final answer of
10 · 45. �

Some additional things:

• From the formula, we see that
(
n
k

)
=
(

n
n−k

)
. This would also be implied if we could

construct a bijection between the k-element subsets and the (n− k)-element subsets
of [n]. Can you find one?
• What other entries of the 12-fold way table can be filled in now?
• Given variables x, y, z, we can form polynomials. A monomial is a product of the

form xaybzc, and its degree is a+ b+ c. How many monomials in x, y, z are there of
degree d? What if we have n variables x1, x2, . . . , xn?
• There are other special configuration of 5 cards which are significant in Poker. A

good test of your understanding is to look up the list and see if you can derive the
number of ways to get each. A further variation of this is to change the rules: either
look at 6-card hands (3 pairs, 2 triples, 4 of a kind plus a pair, etc.), 7-card hands...
or to change the number of suits or values.
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3. Partitions and compositions

3.1. Compositions. Below, n and k are positive integers.

Definition 3.1. A sequence of non-negative integers (a1, . . . , ak) is a weak composition
of n if a1 + · · · + ak = n. If all of the ai are positive, then it is a composition. We call k
the number of parts of the (weak) composition. �

Theorem 3.2. The number of weak compositions of n with k parts is
(
n+k−1
n

)
=
(
n+k−1
k−1

)
.

Proof. We will construct a bijection between weak compositions of n with k parts and n-
element multisets of [k]. First, given a weak composition (a1, . . . , ak), we get a multiset
which has the element i exactly ai many times. Since a1 + · · ·+ ak = n, this is an n-element
multiset of [k]. Conversely, given a n-element multiset S of [k], let ai be the number of times
that i appears in S, so that we get a weak composition (a1, . . . , ak) of n. �

Example 3.3. We want to distribute 20 pieces of candy (all identical) to 4 children. How
many ways can we do this? If we order the children and let ai be the number of pieces of
candy that the ith child receives, then (a1, a2, a3, a4) is just a weak composition of 20 into 4
parts, so we can identify all ways with the set of all weak compositions. So we know that
the number of ways is

(
20+4−1

20

)
=
(
23
20

)
.

What if we want to ensure that each child receives at least one piece of candy? First, hand
each child 1 piece of candy. We have 16 pieces left, and we can distribute them as we like,
so we’re counting weak compositions of 16 into 4 parts, or

(
19
16

)
. �

As we saw with the previous example, given a weak composition (a1, . . . , ak) of n, we can
think of it as an assignment of n indistinguishable objects into k distinguishable boxes, so
this fills in one of the entries in the 12-fold way. A composition is an assignment which is
required to be surjective, so actually this takes care of 2 of the entries.

Corollary 3.4. The number of compositions of n into k parts is
(
n−1
k−1

)
.

Proof. If we generalize the argument in the last example, we see that compositions of n into
k parts are in bijection with weak compositions of n− k into k parts. �

Corollary 3.5. The total number of compositions of n (into any number of parts) is 2n−1.

Proof. The possible number of parts of a composition of n is anywhere between k = 1 to
k = n. So the total number of compositions possible is

n∑
k=1

(
n− 1

k − 1

)
=

n−1∑
k=0

(
n− 1

k

)
= 2n−1. �

The answer suggests that we should be able to find a bijection between compositions of n
and subsets of [n− 1]. Can you find one?

3.2. Set partitions. (Weak) compositions were about indistinguishable objects into distin-
guishable boxes. Now we reverse the roles and consider distinguishable objects into indis-
tinguishable boxes.

Definition 3.6. Let X be a set. A partition of X is an unordered collection of nonempty
subsets S1, . . . , Sk of X such that every element of X belongs to exactly one of the Si. An
ordered partition of X is the same, except the subsets are ordered. The Si are the blocks
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of the partition. Partitions of sets are also called set partitions to distinguish from integer
partitions, which will be discussed next. �

Example 3.7. Let X = {1, 2, 3}. There are 5 partitions of X:

{{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}}, {{1}, {2}, {3}}.

When we say unordered collection of subsets, we mean that {{1, 2}, {3}} and {{3}, {1, 2}}
are to be considered the same partition.

The notation above is a little cumbersome, so we can also write the above partitions as
follows:

123, 12|3, 13|2, 23|1, 1|2|3. �

The number of partitions of X with k blocks only depends on the number of elements of
X. So for concreteness, we will usually assume that X = [n].

Example 3.8. If we continue with our previous example of candy and children: imagine
the 20 pieces of candy are now labeled 1 through 20 and that the 4 children are all identical
clones. The number of ways to distribute candy to them so that each gets at least 1 piece
of candy is then the number of partitions of [20] into 4 blocks. �

Definition 3.9. We let S(n, k) be the number of partitions of a set of size n into k blocks.
These are called the Stirling numbers of the second kind. By convention, we define
S(0, 0) = 1. Note that S(n, k) = 0 if k > n. �

The number of ordered partitions of a set of size n into k blocks is k!S(n, k): the extra data
we need is a way to order the blocks and this can be chosen independently of the partition,
so this follows from the product principle.

So S(n, k) is, by definition, an answer to one of the 12-fold way entries: how many ways
to put n distinguishable objects into k indistinguishable boxes. It will be generally hard to
get nice, exact formulas for S(n, k), but we can do some special cases:

Example 3.10. For n ≥ 1, S(n, 1) = S(n, n) = 1. For n ≥ 2, S(n, 2) = 2n−1 − 1 and
S(n, n− 1) =

(
n
2

)
. Can you see why? �

We also have the following recursive formula:

Theorem 3.11. If k ≤ n, then

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

Proof. Consider two kinds of partitions of [n]. The first kind is when n is in its own block. In
that case, if we remove this block, then we obtain a partition of [n− 1] into k− 1 blocks. To
reconstruct the original partition, we just add a block containing n by itself. So the number
of such partitions is S(n− 1, k − 1).

The second kind is when n is not in its own block. This time, if we remove n, we get a
partition of n− 1 into k blocks. However, it’s not possible to reconstruct the original block
because we can’t remember which block it belonged to. So in fact, there are k different ways
to try to reconstruct the original partition. This means that the number of such partitions
is kS(n− 1, k).

If we add both answers, we account for all possible partitions of [n], so we get the identity
we want. �
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Here’s a table of small values of S(n, k):
n \ k 1 2 3 4 5

1 1 0 0 0 0
2 1 1 0 0 0
3 1 3 1 0 0
4 1 7 6 1 0
5 1 15 25 10 1

We define B(n) to be the number of partitions of [n] into any number of blocks. This is
the nth Bell number. By definition,

B(n) =
n∑
k=0

S(n, k).

We have the following recursion:

Theorem 3.12. B(n+ 1) =
n∑
i=0

(
n

i

)
B(i).

Proof. We separate all of the set partitions of [n + 1] based on the number of elements in
the block that contains n + 1. Consider those where the size is j. To count the number of
these, we need to first choose the other elements to occupy the same block as n + 1. These
numbers come from [n] and there are j − 1 to be chosen, so there are

(
n
j−1

)
ways to do this.

We have to then choose a set partition of the remaining n + 1 − j elements, and there are
B(n + 1 − j) many of these. So the number of such partitions is

(
n
j−1

)
B(n + 1 − j). The

possible values for j are between 1 and n+ 1, so we get the identity

B(n+ 1) =
n+1∑
j=1

(
n

j − 1

)
B(n+ 1− j).

Re-index the sum by setting i = n+ 1− j and use the identity
(
n
n−i

)
=
(
n
i

)
to get the desired

identity. �

3.3. Integer partitions. Now we come to the situation where both balls and boxes are
indistinguishable. In this case, the only relevant information is how many boxes are empty,
how many contain exactly 1 ball, how many contain exactly 2 balls, etc. We use the following
structure:

Definition 3.13. A partition of an integer n is a sequence of non-negative integers λ =
(λ1, λ2, . . . , λk) so that λ1 + λ2 + · · · + λk = n and so that λ1 ≥ λ2 ≥ · · · ≥ λk. The λi are
the parts of λ. We use the notation |λ| = n (size of the partition) and `(λ) (length of the
partition) is the number of λi which are positive. These are also called integer partitions
to distinguish from set partitions.

We will consider two partitions the same if they are equal after removing all of the parts
equal to 0.

The number of partitions of n is denoted p(n), the number of partitions of n with k parts is
denoted pk(n), and the number of partitions of n with at most k parts is denoted p≤k(n). �

We’ve reversed the roles of n and k, but the partition (λ1, . . . , λk) encodes an assignment
of n balls to k boxes where some box has λ1 balls, another box has λ2 balls, etc. Remember
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we don’t distinguish the boxes, so we can list the λi in any order and we’d get an equivalent
assignment. But our convention will be that the λi are listed in weakly decreasing order.

Example 3.14. p(5) = 7 since there are 7 partitions of 5:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1). �

We can visualize partitions using Young diagrams. To illustrate, the Young diagram of
(4, 2, 1) is

Y (λ) =

In general, it is a left-justified collection of boxes with λi boxes in the ith row (counting from
top to bottom).

The transpose (or conjugate) of a partition λ is the partition whose Young diagram is
obtained by flipping Y (λ) across the main diagonal. For example, the transpose of (4, 2, 1)
is (3, 2, 1, 1):

Note that we get the parts of a partition from a Young diagram by reading off the row
lengths. The transpose is obtained by instead reading off the column lengths. The notation
is λT . If we want a formula: λTi = |{j | λj ≥ i}|.

Note that (λT )T = λ. A partition λ is self-conjugate if λ = λT .

Example 3.15. Some self-conjugate partitions: (4, 3, 2, 1), (5, 1, 1, 1, 1), (4, 2, 1, 1):

, ,

�

Theorem 3.16. The number of partitions λ of n with `(λ) ≤ k is the same as the number
of partitions µ of n such that all µi ≤ k.

Proof. We get a bijection between the two sets by taking transpose. Details omitted. �

Theorem 3.17. The number of self-conjugate partitions of n is equal to the number of
partitions of n using only distinct odd parts.

Proof. Given a self-conjugate partition, take all of the boxes in the first row and column of
its Young diagram. Since it’s self-conjugate, there are an odd number of boxes. Use this as
the first part of a new partition. Now remove those boxes and repeat. For example, starting

with we get and starting with we get .
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In formulas, if λ is self-conjugate, then µi = λi − (i− 1) + λTi − (i− 1)− 1 = 2λi − 2i+ 1
and so µ1 > µ2 > · · · .

This process is reversible: let µ be a partition with distinct odd parts. Each part µi can
be turned into a shape with a single row and column, both of length (µi + 1)/2. Since the
µi are distinct, these shapes can be nested into one another to form the partition λ (this is
easiest to understand by studying the two examples above). �

3.4. 12-fold way, summary. We have k balls and n boxes. We want to count the number
of assignments f of balls to boxes. We considered 3 conditions on f : arbitrary (no conditions
at all), injective (no box receives more than one ball), surjective (every box has to receive at
least one ball). We also considered conditions on the balls: indistinguishable (we can’t tell
the balls apart) and distinguishable (we can tell the balls apart) and similarly for the boxes:
they can be distinguishable or indistinguishable.

balls/boxes f arbitrary f injective f surjective
dist/dist nk, see (1) (n)k, see (2) n!S(k, n), see (3)

indist/dist

(
n+ k − 1

k

)
, see (4)

(
n

k

)
, see (5)

(
k − 1

n− 1

)
, see (6)

dist/indist
n∑
i=1

S(k, i), see (7)

{
1 if n ≥ k

0 if n < k
, see (8) S(k, n), see (9)

indist/indist p≤n(k), see (10)

{
1 if n ≥ k

0 if n < k
, see (11) pn(k), see (12)

(1) These are words of length k in an alphabet of size n.
(2) These are words of length k without repetitions in an alphabet of size n. Recall that

(n)k = n(n− 1)(n− 2) · · · (n− k + 1).

(3) These are ordered (set) partitions of [k] into n blocks. Recall that S(k, n) is the
Stirling number of the second kind, i.e., the number of partitions of [k] into n blocks.

(4) These are multisets of [n] of size k; equivalently, weak compositions of k into n parts.
(5) These are subsets of [n] of size k.
(6) These are compositions of k into n parts.
(7) These are set partitions of [k] where the number of blocks is ≤ n.
(8) If n < k, then we can’t assign k balls to n boxes without some box receiving more

than one ball (pigeonhole principle), so the answer is 0 in that case. If n ≥ k, then
there is certainly a way to make an assignment, but they’re all the same: we can’t
tell the boxes apart, so it doesn’t matter where the balls go.

(9) These are set partitions of [k] into n blocks.
(10) These are the number of integer partitions of k where the number of parts is ≤ n.

Remember that pi(k) is the notation for the number of integer partitions of k into i
parts.

(11) The reasoning here is the same as (8).
(12) These are the number of integer partitions of k into n parts.
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4. Binomial theorem and generalizations

4.1. Binomial theorem. The binomial theorem is about expanding powers of x+ y where
we think of x, y as variables. For example:

(x+ y)2 = x2 + 2xy + y2,

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

Theorem 4.1 (Binomial theorem). For any n ≥ 0, we have

(x+ y)n =
n∑
i=0

(
n

i

)
xiyn−i.

Here’s the proof given in the book.

Proof. Consider how to expand the product (x + y)n = (x + y)(x + y) · · · (x + y). To get a
term, from each expression (x + y), we have to either pick x or y. The final term we get is
xiyn−i if the number of times we chose x is i (and hence the number of times we’ve chosen y
is n − i). The number of times this term appears is therefore the number of different ways
we could have chosen x exactly i times. For each way of doing this, we can associate to it a
subset of [n] of size i: the number j is in the subset if and only if we chose x in the jth copy
of (x+ y). We have already seen that the number of subsets of [n] of size i is

(
n
i

)
. �

Here’s a proof using induction.

Proof. For n = 0, the formula becomes (x+ y)0 = 1 which is valid.
Now suppose the formula is valid for n. Then we have

(x+ y)n+1 = (x+ y)(x+ y)n = (x+ y)
n∑
i=0

(
n

i

)
xiyn−i.

For a given k, there are at most 2 ways to get xkyn+1−k on the right side: either we get it
from x ·

(
n
k−1

)
xk−1yn−k+1 or from y ·

(
n
k

)
xkyn−k. If we add these up, then we get

(
n+1
k

)
by

Pascal’s identity. �

We can manipulate the binomial theorem in a lot of different ways (taking derivatives with
respect to x or y, or doing substitutions). This will give us a lot of new identities. Here are
a few of particular interest (some are old):

Corollary 4.2. 2n =
n∑
i=0

(
n

i

)
.

Proof. Substitute x = y = 1 into the binomial theorem. �

This says that the total number of subsets of [n] is 2n which is a familiar fact from before.

Corollary 4.3. For n > 0, we have 0 =
n∑
i=0

(−1)i
(
n

i

)
.

Proof. Substitute x = −1 and y = 1 into the binomial theorem. �

If we rewrite this, it says that the number of subsets of even size is the same as the number
of subsets of odd size. It is worth finding a more direct proof of this fact which does not rely
on the binomial theorem.
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Corollary 4.4. n2n−1 =
n∑
i=0

i

(
n

i

)
.

Proof. Take the derivative of both sides of the binomial theorem with respect to x to get
n(x+ y)n−1 =

∑n
i=0 i

(
n
i

)
xi−1yn−i. Now substitute x = y = 1. �

It is possible to interpret this formula as the size of some set so that both sides are different
ways to count the number of elements in that set. Can you figure out how to do that? How
about if we took the derivative twice with respect to x? Or if we took it with respect to x
and then with respect to y?

4.2. Multinomial theorem. Below, we have sums with multiple lines below the summation
symbol. This is usually means that we are summing over what is in the first line and the
following lines are conditions that are imposed by the things we sum. Generally, the variables
represent integers. So for example, ∑

i
0≤i≤10

means the same thing as
∑10

i=0.

Theorem 4.5 (Multinomial theorem). For n, k ≥ 0, we have

(x1 + x2 + · · ·+ xk)
n =

∑
(a1,a2,...,ak)

ai≥0
a1+···+ak=n

(
n

a1, a2, . . . , ak

)
xa11 x

a2
2 · · ·x

ak
k .

Proof. The proof is similar to the binomial theorem. Consider expanding the product (x1 +
· · ·+ xk)

n. To do this, we first have to pick one of the xi from the first factor, pick another
one from the second factor, etc. To get the term xa11 x

a2
2 · · ·x

ak
k , we need to have picked x1

exactly a1 times, picked x2 exactly a2 times, etc. We can think of this as arranging n objects,
where ai of them have “type i”. In that case, we’ve already discussed that this is counted
by the multinomial coefficient

(
n

a1,a2,...,ak

)
. �

By performing substitutions, we can get a bunch of identities that generalize the one from
the previous section. I’ll omit the proofs, try to fill them in.

kn =
∑

(a1,a2,...,ak)
ai≥0

a1+···+ak=n

(
n

a1, a2, . . . , ak

)
,

0 =
∑

(a1,a2,...,ak)
ai≥0

a1+···+ak=n

(1− k)a1
(

n

a1, a2, . . . , ak

)
,

nkn−1 =
∑

(a1,a2,...,ak)
ai≥0

a1+···+ak=n

a1

(
n

a1, a2, . . . , ak

)
.
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4.3. Re-indexing sums. The next chunk of the course heavily involves sums and ma-
nipulating them, so let me make a few remarks about re-indexing sums. There isn’t any
mathematical content here, it’s just working with notation, but it may be helpful to have
this spelled out.

Say we have a sum starting from 1 and going to some other quantity, like 10:

10∑
i=1

f(i).

For whatever reason, we might prefer that it starts at 0. You can do this by defining j = i−1.
If you substitute i = j + 1 everywhere, you get

9∑
j=0

f(j + 1).

If you like, you can now replace j with i again to get
∑9

i=0 f(i+ 1). This is a common thing
we’ll do, so it’s good to get used to it. This is especially useful if we want to combine sums
that don’t have the same starting and ending points:

10∑
i=1

f(i) +
9∑

k=0

g(k) =
9∑
i=0

f(i+ 1) +
9∑

k=0

g(k) =
9∑
i=0

(f(i+ 1) + g(i)).

5. Formal power series

5.1. Definitions. A formal power series (in the variable x) is an expression of the form
A(x) =

∑∞
n=0 anx

n where the an are scalars (usually integers or rational numbers). Instead
of writing the sum from 0 to ∞, we will usually just write A(x) =

∑
n≥0 anx

n. If A(x)
is a formal power series, let [xn]A(x) denote the coefficient of xn in A(x), so in this case,
[xn]A(x) = an.

By definition, two formal power series are equal if and only if all of their coefficients match
up, i.e., A(x) = B(x) if and only if an = bn for all n. We can treat these like infinite degree
polynomials.

Let B(x) =
∑

n≥0 bnx
n be a formal power series. The sum of two formal power series is

defined by

A(x) +B(x) =
∑
n≥0

(an + bn)xn.

The product is defined by

A(x)B(x) =
∑
n≥0

cnx
n, cn =

n∑
i=0

aibn−i.

This is what you get if you just distribute like normal. As a special case, if ai = 0 for i > 0,
we just get

a0B(x) =
∑
n≥0

a0bnx
n.

Addition and multiplication are commutative, so A(x)+B(x) = B(x)+A(x) and A(x)B(x) =
B(x)A(x). They are also associative, so it is unambiguous how to add or multiply 3 or more
power series.
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Example 5.1. Let A(x) = B(x) =
∑

n≥0 x
n. Then

A(x) +B(x) =
∑
n≥0

2xn,

A(x)B(x) =
∑
n≥0

(n+ 1)xn. �

A formal power series A(x) is invertible if there is a power series B(x) such that
A(x)B(x) = 1. In that case, we write B(x) = A(x)−1 = 1/A(x) and call it the inverse
of A(x). If it exists, then B(x) is unique.

Example 5.2. Let A(x) =
∑

n≥0 x
n and B(x) = 1− x. Then A(x)B(x) = 1, so B(x) is the

inverse of A(x). For that reason, we will use the expression

1

1− x
=
∑
n≥0

xn.

However, the formal power series x is not invertible: the constant term of xB(x) is 0 no
matter what B(x) is, so there is no way that an inverse exists. �

Theorem 5.3. A formal power series A(x) is invertible if and only if its constant term is
nonzero.

Proof. Write A(x) =
∑

n≥0 anx
n. We want to solve A(x)B(x) = 1 if possible. If we multiply

the left side out and equate coefficients, we get the following (infinite) system of equations:

a0b0 = 1

a0b1 + a1b0 = 0

a0b2 + a1b1 + a2b0 = 0

a0b3 + a1b2 + a2b1 + a3b0 = 0

...

If a0 = 0, then there is no solution to the first equation so A(x) is not invertible.
If a0 6= 0, then we can solve the equations one by one. Formally, we can prove by induction

on n that there exist coefficients b0, . . . , bn that make the first n+ 1 equations valid. For the
base case n = 0, we have b0 = 1/a0. So suppose we have found the coefficients b0, . . . , bn
already. At the next step, we will have

bn = − 1

a0

n∑
i=1

aibn−i.

In the sum, we have i > 0, so bn−i is a coefficient we already solved for in a previous step.
Hence we get a formula for bn that makes the next equation valid as well. �

It is important to emphasize that formal here means that we are not considering questions
of convergence. We can take infinite sums and infinite products of formal power series as
long as the coefficient of xn involves only finitely many multiplications and additions for each
n (adding 0 or multiplying by 1 infinitely many times is ok). For example, if we have formal
power series A1(x), A2(x), . . . , then the infinite sum

A1(x) + A2(x) + A3(x) + · · ·
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is defined as long as the coefficient of xn in Ai(x) is only nonzero for finitely many i.
The precise conditions for infinite products are more tricky to characterize, but an impor-

tant case that we will use often is when all of the constant terms are equal to 1 and, for each
n > 0, the coefficient of xn in Ai(x) is nonzero only for finitely many i.

Given two formal power series A(x) and B(x), suppose that A(x) has no constant term.
Then we can define the composition by

(B ◦ A)(x) = B(A(x)) =
∑
n≥0

bnA(x)n.

This looks like it could have problems with infinite sums, but because A(x) has no con-
stant term, for each d, the coefficient of xd is 0 in A(x)n whenever n > d, so to compute
the coefficient of xd in the above expression, we only do finitely many multiplications and
additions.

Example 5.4. Let d be a positive integer, A(x) = xd and B(x) =
∑

n≥0 x
n. Then B(A(x)) =∑

n≥0 x
dn. We can do this substitution into the identity

(1− x)B(x) = 1

to get

(1− xd)
∑
n≥0

xdn = 1,

from which we conclude that
1

1− xd
=
∑
n≥0

xdn. �

We can also take the derivative D of a formal power series. We define it as follows:

(DA)(x) = A′(x) =
∑
n≥0

nanx
n−1 =

∑
n≥0

(n+ 1)an+1x
n.

All of the familiar properties of derivatives hold:

D(A+B) = DA+DB

D(A ·B) = (DA) ·B + A · (DB)

D(B ◦ A) = (DA) · (DB ◦ A)

D(1/A) = −D(A)

A2

D(An) = nD(A)An−1.

Example 5.5. We have 1
1−x =

∑
n≥0 x

n. Taking the derivative of the left side gives 1
(1−x)2 .

Taking the derivative of the right side gives
∑

n≥0 nx
n−1 =

∑
n≥0(n + 1)xn. We’ve already

seen that these two expressions are equal.
How would we simplify B(x) =

∑
n≥0 nx

n? We have a few options. First:

B(x) =
∑
n≥0

(n+ 1)xn −
∑
n≥0

xn =
1

(1− x)2
− 1

1− x
=

1− (1− x)

(1− x)2
=

x

(1− x)2
.

Or more directly:

B(x) = x
∑
n≥0

nxn−1 = x
1

(1− x)2
. �
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We will use exp(x) or ex to denote the formal power series
∑

n≥0
1
n!
xn.

5.2. Binomial theorem (general form). If m is a rational number and k is a non-negative
integer, we define generalized binomial coefficients by(

m

0

)
= 1,

(
m

k

)
=
m(m− 1)(m− 2) · · · (m− k + 1)

k!
(k > 0).

Note that when m is a positive integer, this agrees with our previous formulas. An important
difference: if m is a non-negative integer and k > m, then

(
m
k

)
= 0. If m is not a non-negative

integer, then
(
m
k

)
6= 0 for all k. This lets us formulate a generalized binomial theorem:

Theorem 5.6 (General binomial theorem). Let m be a rational number. Then

(1 + x)m =
∑
n≥0

(
m

n

)
xn.

When m is a non-negative integer, this agrees with the ordinary binomial theorem with
y = 1. When m is a negative integer, the meaning is (1 + x)m = 1/(1 + x)−m. For fractional
m, we can also interpret them. For example, (1 + x)1/2 =

√
1 + x, which represents a formal

power series whose square is equal to 1 + x. In other words,(∑
n≥0

(
1/2

n

)
xn

)2

= 1 + x.

This will be useful in later calculations. Let’s work out a few cases.

Example 5.7. Consider m = −1. We know from before that

1

1− x
=
∑
n≥0

xn

If we substitute in −x for x, then we get

1

1 + x
=
∑
n≥0

(−1)nxn.

We should also be able to get this from the binomial theorem with m = −1. We have(
−1

n

)
=

(−1)(−2) · · · (−1− n+ 1)

n!
=

(−1)nn!

n!
= (−1)n.

More generally, consider m = −d for some positive integer d. Then from what we just did,
we have

(1 + x)−d =

(∑
n≥0

(−1)nxn

)d

.

The right side could be expanded, possibly by using induction on d, but we’d have to know
a pattern before we could proceed. Instead, let’s use the binomial theorem directly:(

−d
n

)
=

(−d)(−d− 1) · · · (−d− n+ 1)

n!
=

(−1)n(d+ n− 1)(d+ n− 2) · · · (d)

n!

= (−1)n
(d+ n− 1)!

(d− 1)!n!
= (−1)n

(
d+ n− 1

n

)
.
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This gives us the identities

1

(1 + x)d
=
∑
n≥0

(−1)n
(
d+ n− 1

n

)
xn,

1

(1− x)d
=
∑
n≥0

(
d+ n− 1

n

)
xn. �

Example 5.8. Consider m = 1/2. Then(
1/2

n

)
=

(1/2)(−1/2)(−3/2) · · · (1/2− n+ 1)

n!
=

(−1)n−1(2n− 3)(2n− 5) · · · 3
2nn!

.

This doesn’t simplify much further, so now is a good time to introduce the double factorial:
if n is a positive integer, we set n!! = n(n− 2)(n− 4) · · · . In other words, if n is odd, then
n!! is the product of all positive odd integers between 1 and n, and if n is even, then n!! is
the product of all positive even integers between 2 and n. Keep in mind this does not mean
we do the factorial twice. With our new notation, we have(

1/2

n

)
=

(−1)n−1(2n− 3)!!

2nn!
.

Remember that this means that(∑
n≥0

(−1)n−1(2n− 3)!!

2nn!
xn

)2

= 1 + x.

To check that by hand, we could expand the left side, but it would be a lot of work. �

In the previous example, we found a square root to the formal power series 1 +x. Because
(−1)2 = 1, if we multiplied that solution by −1, we’d get another solution. Are there more?
If we were talking about numbers, then no. The same holds for formal power series too.
More generally, if we’re trying to solve a quadratic equation

A(x)t2 +B(x)t+ C(x) = 0

where A(x), B(x), C(x) are formal power series, then there are at most two different solutions
t in formal power series (there could be only one or none). We won’t prove this because it’s
beyond the scope of this course, but we will use this later to solve some problems.

Conveniently, the quadratic formula applies in this situation.
If A(x) is invertible (remember this is equivalent to having nonzero constant term), we

get (at most) two solutions:

t =
−B(x)±

√
B(x)2 − 4A(x)C(x)

2A(x)
.

If B(x)2 = 4A(x)C(x), then there’s only one solution. If A(x) is not invertible, then the
situation is more subtle. If we know (for some reason) that there must be a solution which

is a power series, then this means that A(x) divides either −B(x) +
√
B(x)2 − 4A(x)C(x)

or −B(x) −
√
B(x)2 − 4A(x)C(x) (possibly both). The one case we’ll see later is when

A(x) = x. In that case, divisibility just means that one of the possibilities −B(x) ±√
B(x)2 − 4A(x)C(x) does not have a constant term.
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6. Ordinary generating functions

Ordinary generating functions are just a way of encoding infinite sequences of numbers
as formal power series. Formally, given a sequence of numbers a0, a1, a2, . . . , the ordinary
generating function is

∑
n≥0 anx

n.

6.1. Linear recurrence relations. Our first application of ordinary generating functions
is to solve linear recurrence relations. A sequence of numbers is said to satisfy a linear
recurrence relation of order d if there are scalars c1, . . . , cd such that cd 6= 0, and for all
n ≥ d, we have

an = c1an−1 + c2an−2 + · · ·+ cdan−d.

We’ve seen this idea before, although in slightly different forms.

Example 6.1. The Fibonacci numbers Fn are given by the sequence 1, 1, 2, 3, 5, 8, 13, 21, . . . .
This isn’t really telling you what the general Fn is, so instead let me say that for all n ≥ 2,
we have

Fn = Fn−1 + Fn−2.

Together with the initial conditions F0 = 1, F1 = 1, this is enough information to calculate
any Fn. So (by definition), the Fibonacci numbers satisfy a linear recurrence relation of
order 2. �

In general, if we want to define a sequence using a linear recurrence relation of order d,
we need to specify the first d initial values a0, a1, . . . , ad−1 to allow us to calculate all of the
terms.

Our goal here is to get closed formulas for sequences that satisfy linear recurrence relations.

Example 6.2. When d = 1, this is easy to do:

an = c1an−1 = c21an−2 = c31an−3 = · · · = cn1a0. �

So now we’ll focus on the case d = 2. So we have a sequence of numbers a0, a1, a2, . . . that
satisfies a recurrence relation of the form

an = c1an−1 + c2an−2

whenever n ≥ 2 (here c1, c2 are some constants and c2 6= 0). We want to find a closed formula
for an.

The characteristic polynomial of this recurrence relation is defined to be

t2 − c1t− c2.

The roots of this polynomial are
c1 ±

√
c21 + 4c2
2

. Call them r1 and r2. (They will be

imaginary numbers if c21 + 4c2 < 0, but everything will still work.) So we can factor the
characteristic polynomial as

t2 − c1t− c2 = (t− r1)(t− r2).(6.3)

Comparing constant terms, we get r1r2 = c2, so r1 6= 0 and r2 6= 0 because we assumed that
c2 6= 0.

Here is the first statement:
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Theorem 6.4. If r1 6= r2, then there are constants α1 and α2 such that

an = α1r
n
1 + α2r

n
2

for all n.

To solve for the coefficients, plug in n = 0 and n = 1 to get

a0 = α1 + α2

a1 = r1α1 + r2α2.

Then you have to solve for α1, α2 (a0, a1 are part of the original sequence, so are given to
you).

Example 6.5. Let’s finish with the example of the Fibonacci numbers Fn. These are defined
by

F0 = 1

F1 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2.

So the characteristic polynomial is t2− t− 1. Its roots are
1±
√

5

2
. Set r1 = (1 +

√
5)/2 and

r2 = (1−
√

5)/2. So we have

Fn = α1r
n
1 + α2r

n
2

and we have to solve for α1 and α2. Plug in n = 0, 1 to get:

1 = α1 + α2

1 = α1r1 + α2r2.

So α1 = 1− α2; plug this into the second formula to get 1 = (1− α2)r1 + α2r2. Rewrite this
as 1− r1 = α2(r2 − r1). We can simplify this: r2 − r1 = −

√
5 and 1− r1 = (1−

√
5)/2. So

α2 = −1−
√

5

2
√

5
, α1 = 1− α2 =

1 +
√

5

2
√

5
.

In conclusion:

Fn =
1 +
√

5

2
√

5

(
1 +
√

5

2

)n

− 1−
√

5

2
√

5

(
1−
√

5

2

)n

=
1√
5

(
1 +
√

5

2

)n+1

− 1√
5

(
1−
√

5

2

)n+1

.

(The last step wasn’t necessary, we just did that to reduce the number of radical signs.) �

Proof of Theorem 6.4. Define

A(x) =
∑
n≥0

anx
n.

The recurrence relation says that we have an identity

A(x) = a0 + a1x+
∑
n≥2

(c1an−1 + c2an−2)x
n = a0 + a1x+ c1

∑
n≥2

an−1x
n + c2

∑
n≥2

an−2x
n.
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Remember the recurrence is only valid for n ≥ 2, so we have to separate out the first two
terms. Now comes an important point: the last two sums are almost the same as A(x) if we
re-index them: ∑

n≥2

an−1x
n =

∑
n≥1

anx
n+1 = x

∑
n≥1

anx
n = xA(x)− a0x∑

n≥2

an−2x
n =

∑
n≥0

anx
n+2 = x2A(x).

In particular,
A(x) = a0 + a1x+ c1xA(x)− c1a0x+ c2x

2A(x).

We can rewrite this as

A(x) =
a0 + (a1 − c1a0)x

1− c1x− c2x2
.(6.6)

We want to factor the denominator. To do this, plug in t 7→ x−1 into (6.3) and multiply by
x2 to get

1− c1x− c2x2 = (1− r1x)(1− r2x).

Now we can apply partial fraction decomposition to (6.6) to write

A(x) =
α1

1− r1x
+

α2

1− r2x
for some constants α1, α2. But these terms are both geometric series, so we can further write

A(x) = α1

∑
n≥0

rn1x
n + α2

∑
n≥0

rn2x
n.

The coefficient of xn on the left side is an and the coefficient of xn on the right side is
α1r

n
1 + α2r

n
2 . So we have equality for all n. �

There is a loose end: what if r1 = r2?

Theorem 6.7. If r1 = r2, then there are constants α1 and α2 such that

an = α1r
n
1 + α2nr

n
1

for all n.

Again, to solve for α1, α2, just plug in n = 0, 1 to get a system of equations:

a0 = α1

a1 = α1r1 + α2r1.

(From this we could solve the general case, but I think it’s easier to remember the way I’ve
written it.)

Proof. We can start in the same way as in the previous proof. The only difference is that we
are trying to take the partial fraction decomposition of

A(x) =
a0 + (a1 − c1a0)x

(1− r1x)2
.

This can still be done, but now it looks like

β1
1− r1x

+
β2

(1− r1x)2
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for some constants β1, β2. The first is a geometric series, and the second we’ve seen: remem-
ber that 1/(1− x)2 =

∑
n≥0(n+ 1)xn. So we get instead

A(x) = β1
∑
n≥0

rn1x
n + β2

∑
n≥0

(n+ 1)rn1x
n.

Comparing coefficients, we get

an = β1r
n
1 + β2(n+ 1)rn1 = (β1 + β2)r

n
1 + β2nr

n
1 .

So α1 = β1 + β2 and α2 = β2. �

Higher degree recurrence relations

an = c1an−1 + · · ·+ cdan−d

can be solved in the same way: one has to first find the roots of the characteristic polynomial
td − c1td−1 − c2td−2 − · · · − cd and apply partial fraction decomposition as in the two proofs
above. The simplest case is when the roots r1, . . . , rd are all distinct. In this case, we can
say that there exist constants α1, . . . , αd such that

an = α1r
n
1 + · · ·+ αdr

n
d

for all n. In order to solve for α1, . . . , αd, we have to consider n = 0, . . . , d− 1 separately to
get a system of d linear equations in d variables. When the roots appear with multiplicities,
we have to do something like we did in Theorem 6.7. For example, if d = 5 and the roots
are r1 with multiplicity 3 and r2 with multiplicity 2 (and r1 6= r2), then we would have

an = α1r
n
1 + α2nr

n
1 + α3n

2rn1 + α4r
n
2 + α5nr

n
2 .

This should look familiar to you if you’ve ever solved a linear homogeneous differential
equation with constant coefficients.

I’ll leave it to you to formulate the general case.

Example 6.8. We’ve only been dealing with homogeneous linear recurrence relations so
far, i.e., an is expressed as a linear combination of previous terms, but how about the
inhomogeneous case? For example, consider the recurrence relation

an = an−1 + an−2 + 2 (n ≥ 2).

When we don’t know what to do, we can always try to find a formula for the generating
function. In this case, setting A(x) =

∑
n≥0 anx

n, we have

A(x) = a0 + a1x+
∑
n≥2

anx
n

= a0 + a1x+
∑
n≥2

(an−1 + an−2 + 2)xn

= a0 + a1x+ x(A(x)− a0) + x2A(x) +
2x2

1− x
and then we can solve for A(x) as before (I’ll stop here). Sometimes, there are shortcuts we
can use to turn these into homogeneous linear recurrence relations (though of higher degree).
For example, if n ≥ 3, then we know that an = an−1 + an−2 + 2 and an−1 = an−2 + an−3 + 2,
so taking the difference gives

an = 2an−1 − an−3
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which is now order 3, but homogeneous. We originally had 2 initial values a0 and a1, so we
should remember that a2 can be determined by using the original equation a2 = a1 + a0 + 2.

This works out for a lot of different kinds of inhomogeneous situations, but instead of
taking a difference, we may have to take other linear combinations (for example, instead of
a constant 2, we might have 2n) and repeating the process can be helpful too (for example,
instead of a constant 2, we might have 2n) as well as combining these ideas (for example,
n2n). �

6.2. Combinatorial interpretations. Here we are going to interpret operations on ordi-
nary generating functions. The mindset here is that we think of an as counting the number
of some kind of “structure” on the set [n].

Example 6.9. If an = n!, we can think of this as the number of ways to order the elements
of [n]. So

∑
n≥0 n!xn is the ordinary generating function for orderings.

If bn = 2n, we can think of this as the number of ways of picking some subset of elements
of [n] to be considered special. �

Of course, there can be many interpretations for the same numbers.
Adding generating functions corresponds to the OR operation, i.e., an + bn is the number

of ways of putting structure A on the set [n] or putting structure B on the set [n].

Example 6.10. From the last example: an + bn = n! + 2n is the number of ways of either
putting an ordering on the elements of [n] or picking a subset of the elements to be special.

This may seem weird if we try to interpret an + an, but one way to keep this in check is
to think of 2 different people as doing the task. So an + an = 2n! can be thought of as the
number of ways of either letting person 1 order the elements of [n] or letting person 2 order
the elements of [n]. �

The product of generating functions can be thought of as a way of “concatenating” struc-
tures. Remember that the formula for the coefficients of the product is cn =

∑n
i=0 aibn−i. We

can think of this as the number of ways of first picking a way to break [n] into 2 consecutive
pieces {1, . . . , i} ∪ {i + 1, . . . , n} (one of them is empty if i = 0 or i = n) and then putting
structure A on the first set and structure B on the second set.

Example 6.11. A class consists of n days. We want to split the lectures of the class into
two pieces: the first half is the theoretical part and the second part is the laboratory part.
The theoretical part needs 1 day for a guest lecturer while the laboratory part needs 2 days.
How many ways can we plan out this course?

Let an = n be the number of ways of picking a day for a guest lecturer for a course with n
days and let bn =

(
n
2

)
be the number of ways of picking two days for a guest lecturer. Then

define A(x) =
∑

n≥0 anx
n and B(x) =

∑
n≥0 bnx

n. The coefficient of xn in A(x)B(x) is the
answer that we want.

We can find nice expressions by taking derivatives of the identity
∑

n≥0 x
n = 1

1−x and
multiplying by the appropriate powers of x (for A(x) take derivative then multiply by x; for

B(x) take derivative twice and then multiply by x2

2
):

A(x) =
∑
n≥0

nxn =
x

(1− x)2
,

B(x) =
∑
n≥0

(
n

2

)
xn =

x2

(1− x)3
.
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Then the product is

A(x)B(x) =
x3

(1− x)5
.

Apply the general binomial theorem:

x3(1− x)−5 = x3
∑
n≥0

(
−5

n

)
(−x)n = x3

∑
n≥0

(
n+ 4

n

)
xn.

The coefficient of xn in the above expression is
(
n+1
n−3

)
=
(
n+1
4

)
. Can you see a direct way to

get that answer? �

6.3. Partition generating functions. Let p≤k(n) be the number of integer partitions of n
with at most k parts. To make the following cleaner, we use the convention that p≤k(0) = 1.
Using the transpose of partitions, this is also the number of integer partitions of n using
only the numbers 1, . . . , k, and we will instead use this interpretation. We want a simple
expression for

∑
n≥0 p≤k(n)xn. When k = 1, we get p≤1(n) = 1 for all n, so∑

n≥0

p≤1(n)xn =
1

1− x
.

Now consider k = 2. We can think of partitions in terms of how many 1’s they use and
how many 2’s they use. Then consider the product

(1 + x+ x2 + x3 + · · · )(1 + x2 + (x2)2 + (x2)3 + · · · ).
When we multiply this out, each term is of the form xa(x2)b = xa+2b, so we see that the total
coefficient of xn is exactly the number of ways of writing n as a sum of 1’s and 2’s. Both
sums are geometric series, so we have∑

n≥0

p≤2(n)xn =
1

(1− x)(1− x2)
.

This same reasoning extends to any k, and we can prove that∑
n≥0

p≤k(n)xn =
k∏
i=1

1

1− xi
=

1

(1− x)(1− x2) · · · (1− xk)
.

We can actually take k →∞ to guess the formula (due to Euler)∑
n≥0

p(n)xn =
∏
i≥1

1

1− xi
.

Why is this correct? First, we specify that the meaning of an infinite product of terms of
the form 1 + · · · is to multiply out choices where something with a positive power of x is
only chosen a finite number of times (so that each term has finite degree and we’re otherwise
multiplying 1 infinitely many times).1

Consider the coefficient of xd in the infinite product on the right. We have to consider the
infinite product

(1 + x+ x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · ) · · ·
1There’s a more rigorous and conceptual way to set this up using the idea of limits of sequences of formal

power series, but that’s something I treat in 188 and skip in this course.
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and the only way to get xd is to choose 1 from (1 + xi + x2i + · · · ) if i > d, so the coefficient

of xd is the same as the coefficient of xd in
∏d

i=1
1

1−xi =
∑

n≥0 p≤d(n)xn. Since p≤d(d) = p(d),
the infinite product indeed has the right coefficients.

More generally, the same argument proves the following:

Proposition 6.12. For any subset S of the positive integers, the generating function for the
number of partitions that only use parts from S is∏

i∈S

1

1− xi
.

Let podd(n) be the number of partitions of n such that all parts are odd. Let pdist(n) be
the number of partitions of n such that all parts are distinct.

Theorem 6.13 (Euler). podd(n) = pdist(n).

For example, when n = 5, both quantities are 3 since we have (5), (3, 1, 1), (1, 1, 1, 1, 1) for
podd(5) and (5), (4, 1), (3, 2) for pdist(5).

Proof. There are ways to build bijections, but they’re not easy, and we’ll prove this by
showing that they have the same generating function.

By Proposition 6.12, we have∑
n≥0

podd(n)xn =
∏
i≥0

1

1− x2i+1
=

1

(1− x)(1− x3)(1− x5)(1− x7) · · ·
.

How about for pdist(n)? I claim that∑
n≥0

pdist(n)xn =
∏
i≥1

(1 + xi) = (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · .

To multiply out the right side, we either choose 1 or xi from the ith term, and we can only
avoid choosing 1 finitely many times. What we get then is xN where N is the sum of the i
where we chose xi. But we get xN one time for every partition of N into distinct parts, so
the coefficient is pdist(N).

Now we observe that (1 + xi) = 1−x2i
1−xi , so we can rewrite it as∑

n≥0

pdist(n)xn =
1− x2

1− x
· 1− x4

1− x2
· 1− x6

1− x3
· 1− x8

1− x4
· 1− x10

1− x5
· · ·

We can start canceling: each 1 − x2i on the top cancels with the corresponding 1 − x2i on
the bottom. What we’re left with is

∏
i≥0

1
1−x2i+1 =

∑
n≥0 podd(n)xn. �

6.4. Catalan numbers. The Catalan numbers are denoted Cn and have a lot of different
interpretations. One of them is the number of ways to arrange n pairs of left and right
parentheses so that they are balanced: meaning that every ) pairs off with some ( that
comes before it. More formally, a word consisting of parentheses is balanced, if for every
initial segment, the number of ( is always greater than or equal to the number of ). Our
convention is that C0 = 1.

Example 6.14. For n = 3, there are 5 ways to balance 3 pairs of parentheses:

()()(), (())(), ((())), (()()), ()(()). �
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Some other interpretations will be given on homework. For now, we’ll see how we can use
generating functions to obtain a formula for Cn. Define

C(x) =
∑
n≥0

Cnx
n.

Proposition 6.15. We have
C(x) = 1 + xC(x)2.

Proof. We’re going to use the concatenation interpretation of products of OGFs.
For n > 0, a balanced set of n pairs of parentheses w has the following decomposition: w =

(w1)w2 where w1 and w2 are also balanced sets (possibly empty) of parentheses. Furthermore,
this decomposition is unique since the parenthesis after w1 is exactly the one that matches
the first right parenthesis. This suggests the following: let an be the number of balanced
parentheses of the form (w1) where w1 is a set of n− 1 pairs of balanced parentheses. Then
an = Cn−1 if n > 0 and a0 = 0; if A(x) is its generating function, then A(x) = xC(x).

The previous discussion lets us conclude that∑
n≥1

Cnx
n = A(x)C(x) = xC(x)2.

But the left side is just C(x)− 1 since C0 = 1. �

Remark 6.16. The relation for C(x) is essentially equivalent to the following identity for
n > 0:

Cn =
n−1∑
i=0

CiCn−i−1.

The proof of this is almost identical to what we just said: every balanced set of n pairs of
parentheses is made up of two smaller balanced sets w = (w1)w2, and w1 is made up of i
pairs where 0 ≤ i ≤ n− 1 and w2 is made up of n− 1− i pairs; since i can be any of these
values, we sum over all possible cases. �

This means that C(x) is a solution of the quadratic polynomial xt2− t+ 1 = 0. Using the
quadratic formula, we deduce that C(x) is one of the solutions

1±
√

1− 4x

2x
.

Note that x isn’t invertible as a power series, so we have to be careful here. Since C(x) is
a power series, it must be that x divides the numerator, i.e., the numerator cannot have a
constant term. Which choice of sign is correct? The constant term of

√
1− 4x is

(
1/2
0

)
= 1,

so the correct choice is a negative sign, and so

C(x) =
1−
√

1− 4x

2x
.

Theorem 6.17. Cn =
1

n+ 1

(
2n

n

)
.

Proof. We will use the binomial theorem. First, we have

(1− 4x)1/2 =
∑
n≥0

(
1/2

n

)
(−4x)n.
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Let’s simplify the coefficients (assuming n > 0):

(−1)n4n
(

1/2

n

)
= (−1)n4n

1
2
−1
2
−3
2
· · · −(2n−3)

2

n!
= −2n

(2n− 3)!!

n!
.

Note that (2n− 3)!!(2n− 2)!! = (2n− 2)!, so we can multiply top and bottom by (2n− 2)!!
to get

−2n
(2n− 2)!

n!(2n− 2)!!
= −2

(2n− 2)!

n!(n− 1)!
= − 2

n

(
2n− 2

n− 1

)
.

Since
(
1/2
0

)
= 1, we can simplify:

C(x) =
1−
√

1− 4x

2x
=

∑
n≥1

2
n

(
2n−2
n−1

)
xn

2x
=
∑
n≥1

1

n

(
2n− 2

n− 1

)
xn−1 =

∑
n≥0

1

n+ 1

(
2n

n

)
xn. �

Here are a few other things that are counted by the Catalan numbers together with the 5
instances for n = 3:

• The number of ways to apply a binary operation ∗ to n+ 1 elements:

a ∗ (b ∗ (c ∗ d)), a ∗ ((b ∗ c) ∗ d), (a ∗ b) ∗ (c ∗ d), ((a ∗ b) ∗ c) ∗ d, (a ∗ (b ∗ c)) ∗ d.

• The number of rooted binary trees with n+ 1 leaves:

a

b

c d

a

b c

d

a b c d a b

c

d

a

b c

d

• The number of paths from (0, 0) to (n, n) which never go above the diagonal x = y
and are made up of steps either moving in the direction (0, 1) or (1, 0). (This will
appear on homework.)

It turns out that the Catalan recursion shows up a lot. There are more than 200 other
known interpretations for the Catalan numbers.

6.5. Composition of ordinary generating functions. As usual, we interpret an as the
number of ways to put a certain structure (call it type α) on the set [n]. For this section,
we will assume that a0 = 0. Let hn be the number of ways to break [n] into disjoint
consecutive intervals and putting that structure on each piece. Define H(x) =

∑
n≥0 hnx

n

and A(x) =
∑

n≥0 anx
n.

Theorem 6.18. With the above notation, H(x) = 1
1−A(x) .

Proof. By induction on k, we see that the coefficient of xn in A(x)k is the number of ways of
breaking [n] into k disjoint consecutive intervals and putting a structure of type α on each
interval. hn counts all of the ways to do this when we vary k, so H(x) =

∑
k≥0A(x)k =

1
1−A(x) . �

Example 6.19. There are n soldiers lined up. We want to split the line in a few places to
form squads and assign one soldier from each squad to be the leader. Let hn be the number
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of ways to do this. With the above notation, let an = n be the number of ways to assign a
leader from n soldiers. Then A(x) =

∑
n≥0 nx

n = x
(1−x)2 , and so∑

n≥0

hnx
n =

1

1− x
(1−x)2

=
(1− x)2

(1− x)2 − x
=

1− 2x+ x2

1− 3x+ x2
=

1− 2x

1− 3x+ x2
+ x2

1

1− 3x+ x2
.

If we do partial fraction decomposition for both terms, we end up with

hn =
1√
5

(
3 +
√

5

2

)n

− 1√
5

(
3−
√

5

2

)n

. �

In addition, we might want to put some kind of structure (call it type β) on the set of
intervals. Let bn be the number of ways to assign such a structure when we have n intervals.
Define B(x) =

∑
n≥0 bnx

n. Finally, let hn be the number of ways to break [n] into disjoint
consecutive intervals, put a structure of type α on each piece, and then put a structure of
type β on the set of intervals. If we generalize the proof above, then we get the following:

Theorem 6.20 (Composition formula). With the notation above,
∑

n≥0 hnx
n = B(A(x)).

This generalizes the first case because there we didn’t do anything to the set of intervals,
which we can think of as the case when bn = 1 for all n.

Example 6.21. Continuing with the soldier example, suppose that in addition, we also want
to select some (possibly none of them and possibly all of them) of the squads to perform
night watch. Let hn be the number of ways to do this. In this case, bn = 2n since the
structure on the intervals is a choice of a subset. So B(x) =

∑
n≥0 2nxn = 1

1−2x , and so

H(x) = B(A(x)) =
1

1− 2x
(1−x)2

=
(1− x)2

(1− x)2 − 2x
=

1− 2x+ x2

1− 4x+ x2
. �

7. Exponential generating functions

7.1. Definitions. Let a0, a1, a2, . . . be a sequence of numbers. The associated exponential
generating function (EGF) is the formal power series

A(x) =
∑
n≥0

an
xn

n!
.

When an = 1 for all n, we use the notation

ex =
∑
n≥0

xn

n!
.

These can be useful in some situations where ordinary generating functions are not.

Example 7.1. Define a sequence by a0 = 1 and an = n(an−1 − n + 2) for all n ≥ 1. Let
B(x) =

∑
n≥0 anx

n be the ordinary generating function. Then we can try to find a relation:

B(x) = a0 +
∑
n≥1

anx
n = a0 +

∑
n≥1

nan−1x
n +

∑
n≥1

n(2− n)xn.

The first sum is most naturally simplified as xD(xB(x)), so the relation on B(x) is a differ-
ential equation.
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We can instead try EGF. Let A(x) =
∑

n≥0 an
xn

n!
. Then

A(x) = a0 +
∑
n≥1

an
xn

n!
= a0 +

∑
n≥1

an−1
xn

(n− 1)!
−
∑
n≥1

(n− 2)
xn

(n− 1)!

= a0 + xA(x)− x

(∑
n≥1

(n− 1)
xn−1

(n− 1)!
−
∑
n≥1

xn−1

(n− 1)!

)
= a0 + xA(x)− x2ex + xex.

Hence,

A(x) =
a0 + x(1− x)ex

1− x
=

a0
1− x

+ xex = a0
∑
n≥0

xn +
∑
n≥0

xn+1

n!
.

The coefficient of xn on the right side is a0 + 1
(n−1)! , and the coefficient of xn on the left side

is an
n!

, so we conclude that (since a0 = 1)

an = n! + n. �

7.2. Products of exponential generating functions.

Lemma 7.2. If A(x) =
∑

n≥0 an
xn

n!
and B(x) =

∑
n≥0 bn

xn

n!
, then A(x)B(x) =

∑
n≥0 cn

xn

n!

where cn =
∑n

i=0

(
n
i

)
aibn−i.

Proof. The coefficient of xn in A(x)B(x) is
∑n

i=0
ai
i!

bn−i

(n−i)! . By definition it is also cn/n!, so

cn =
∑n

i=0

(
n
i

)
aibn−i. �

This gives a variation of “concatenating” structures like we saw for multiplying OGF. If
we think an and bn as counting the number of structures (call them type α and β) on the set
[n], then cn above counts the number of ways of choosing a subset S of [n] (not necessarily
consecutive) and putting a structure of type α on S and a structure of type β on [n] \S. We
restate this:

Theorem 7.3. With the notation above, A(x)B(x) is the EGF for picking two disjoint
subsets S1, S2 of [n] such that S1 ∪ S2 = [n], then putting a structure of type α on S1 and a
structure of type β on S2.

Example 7.4. Consider a set of n football players. We want to split them up into two
groups. Both groups needs to be assigned an ordering and the second group additionally
needs to choose one of 3 colors for their uniform. Let cn be the number of ways to do this.

Let an = n! be the number of ways to order a group of n people.
Let bn = 3nn! be the number of ways to order a group of n people and have each choose

one of 3 colors for their uniform.
Their exponential generating functions are A(x) = 1

1−x and B(x) = 1
1−3x , so cn/n! is the

coefficient of xn in
1

(1− x)(1− 3x)
=

3/2

1− 3x
− 1/2

1− x
.

Hence,

cn = n!(
3

2
3n − 1

2
) =

n!

2
(3n+1 − 1). �
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Example 7.5. We have n distinguishable telephone polls which are to be painted either red
or blue. The number which are blue must be even. Let cn be the number of ways to do this.

Let R(x) be the EGF for painting n polls red and B(x) be the EGF for painting n polls
blue, both subject to our constraints. Let C(x) be the EGF for cn. Then C(x) = B(x)R(x).

First, there is 1 way to paint n polls red for any n, so R(x) = ex. Second, there is 1 way
to paint n polls blue if n is even, and 0 otherwise, so

B(x) =
∑
n≥0

x2n

(2n)!
.

Here we are deleting all of the odd powers of x from ex. To get a nice expression, note that
this is the same as (ex+ e−x)/2. (How about if we wanted to delete the even terms instead?)
Hence we get

H(x) =
1

2
ex(ex + e−x) =

1

2
(e2x + 1) =

1

2

∑
n≥0

2nxn

n!
+

1

2
.

So cn = 2n−1 if n > 0 and c0 = 1.
Actually we could have derived this formula using earlier stuff: we’re just trying to pick a

subset of even size to be painted blue. We know that half of the subsets of [n] have even size
and half have odd size, so we can also see 2n−1. However, the approach given here generalizes
more easily if we introduce more colors, for example. �

We can multiply k EGF, say C(x) = A1(x) · · ·Ak(x). Suppose that the coefficient of
xn/n! in Ai(x) counts the number of ways to put a structure of type αi on [n]. In that
case, by induction, we have the following interpretation. If we write C(x) =

∑
n≥0 cn

xn

n!
,

then cn is the number of ways of choosing k disjoint subsets X1, . . . , Xk of [n] such that
X1 ∪ X2 ∪ · · · ∪ Xk = [n] and putting a structure of type αi on Xi for i = 1, . . . , k. The
X1, . . . , Xk can be thought of a set partition, except that the order of the subsets matters.

Example 7.6. Continuing the above discussion, define an = 1 if n > 0 and a0 = 0. Then
A(x) =

∑
n≥0 an

xn

n!
= ex − 1. The coefficient of xn/n! of A(x)k is then the number of ways

to choose k disjoint non-empty subsets X1, . . . , Xk of [n] whose union is all of [n]. In other
words, this is k!S(n, k). We conclude that∑

n≥0

S(n, k)
xn

n!
=

(ex − 1)k

k!
.

For the Bell number, we have B(n) =
∑n

k=0 S(n, k), which we could also write as B(n) =∑∞
k=0 S(n, k) since S(n, k) = 0 if k > n. We conclude that∑

n≥0

B(n)
xn

n!
=
∑
n≥0

∑
k≥0

S(n, k)
xn

n!
=
∑
k≥0

(ex − 1)k

k!
= ee

x−1. �

7.3. Compositions of exponential generating functions. Let an be the number of ways
of putting a structure of type α on the set [n] and assume that a0 = 0. Let hn be the number
of ways of first picking a set partition of [n] and putting a structure of type α on each block.

Theorem 7.7 (Exponential formula). With the above notation,
∑

n≥0 hn
xn

n!
= eA(x).

Proof. From the interpretation of products of EGF, A(x)k is the EGF for picking a set
partition of [n] into k blocks, together with order, and putting a structure of type α on each
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block. So A(x)k/k! is the same without the order. We want to consider how to do this
without any constraint on k, so the EGF for hn is∑

n≥0

hn
xn

n!
=
∑
k≥0

A(x)k

k!
= eA(x). �

Example 7.8. If an = 1 for n > 0 and a0 = 0, then hn is just the number of set partitions
of [n], and we already saw that ee

x−1 is the corresponding EGF. �

Proposition 7.9. If H(x) = eA(x), then

H ′(x) = H(x)A′(x).

Proof. This follows from taking the derivative of H(x) = eA(x). �

This identity can be used to get a recursion for the coefficients of H(x) if A(x) is simple
enough.

Example 7.10. A bijection f : [n] → [n] is an involution if f ◦ f is the identity function.
Let hn be the number of involutions on [n]. Note that an involution can be specified by
the following data: some elements that map to themselves, and otherwise we have pairs
of elements that get swapped. Let a1 = 1 and a2 = 1. Then we can think of this as the
structure where on [1], we put the identity function, and on [2], we swap the two elements.
The corresponding EGF is A(x) = x+ x2/2 and from above, we get∑

n≥0

hn
xn

n!
= eA(x) = ex+

x2

2 .

In particular,

H ′(x) = H(x)(1 + x).

Taking the coefficient of xn for n ≥ 1 of this identity gives the identity

hn+1

n!
=
hn
n!

+
hn−1

(n− 1)!

which simplifies to hn+1 = hn + nhn−1. �

Example 7.11. Let hn be the number of ways to divide n people into nonempty groups
and have each sit in a circle. We consider rotations of an arrangement to be equivalent. Let
H(x) =

∑
n≥0 hn

xn

n!
.

Let an be the number of ways to have n people sit in a circle. So a0 = 0 and otherwise
an = (n − 1)! since there are n! orderings but all n rotations of them are the same. Let
A(x) =

∑
n≥0 an

xn

n!
.

Then as above, we have H(x) = eA(x). Since A′(x) is the geometric series, we see that
(1− x)H ′(x) = H(x), which translates to (for any n ≥ 1)

hn+1

n!
− hn

(n− 1)!
=
hn
n!
,

or more simply hn+1 = (n + 1)hn. This, combined with h0 = 1, implies that hn = n!. Is
there a way to see that more directly? �
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Finally, we have the general interpretation for compositions as follows. Let an be the
number of ways of putting a structure of type α on the set [n] and assume a0 = 0 and
A(x) =

∑
n≥0 an

xn

n!
. Let bn be the number of the number of ways of putting a structure of

type β on the set [n] and assume b0 = 0 and B(x) =
∑

n≥0 bn
xn

n!
.

Now let hn be the number of ways of picking a set partition on [n], putting a structure of
type α on each block, and then putting a structure of type β on the set of blocks.

Theorem 7.12 (Composition formula, exponential version). With the notation above,∑
n≥0

hn
xn

n!
= B(A(x)).

7.4. Cayley’s enumeration of labeled trees. A labeled (simple) graph on a (nonempty)
set S is a collection of 2-element subsets of S. The elements of S are called vertices, and the
2-element subsets are called edges. We visualize these by thinking of S as a set of points and
drawing an edge between two points if that edge is in our collection. Just keep in mind that
this just a visualization tool: there are many different ways to draw the same labeled graph.

The number of labeled graphs is then 2(n
2) by using what we already know about subsets, so

we’ll discuss a more interesting counting problem.
The graph has a cycle if there is a sequence v1, . . . , vd such that the vi are all distinct,
{vi, vi+1} is an edge for i = 1, . . . , d − 1 and so is {vd, v1}. If the graph has no cycles, it is
called a labeled forest. If, in addition, it is connected (meaning we can go from any point
to any other by following edges), then is a labeled tree. Let tn be the number of labeled
trees on [n]. Our goal is the following formula for tn.

Theorem 7.13 (Cayley). For n > 0, we have tn = nn−2.

There are a lot of different ways to get this, but we will focus on using EGF.

Example 7.14. When n = 1 or n = 2, we get 1 labeled tree. When n = 3, we get 3,
corresponding to the following pictures:

1 2 3 2 1 3 1 3 2

When n = 4, there are 2 types of unlabeled trees:
There are 4 labelings of the first kind since it only matters what goes in the middle, and the
second has 12 = 4!/2 labelings since a labeling can be thought of as a permutation of size 4,
except that reversing the order gives the same tree. �

We need one more definition: a rooted labeled tree is a pair (T, i) where T is a labeled
tree and i ∈ [n] is one of its vertices, which we call its root. More simply, we can think of it
labeled tree where one of the points has been colored or marked in some way. The number
of rooted labeled trees is then ntn. Similarly, we define a planted labeled forest to be a
labeled forest in which each connected component is a rooted labeled tree. Let fn be the
number of planted labeled forests. Define EGFs

F (x) =
∑
n≥0

fn
xn

n!
, R(x) =

∑
n≥0

ntn
xn

n!
.
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Lemma 7.15. F (x) = eR(x).

Proof. Every planted labeled forest is a disjoint union of rooted labeled trees (in a unique
way), so this follows from the exponential formula. �

Lemma 7.16. R(x) = xF (x).

Proof. First, we claim that for n ≥ 1, we have tn = fn−1. To see this, we construct a bijection
between labeled trees on [n] and labeled planted forests on [n− 1]. Given a labeled tree T ,
delete the vertex n and all edges that contain n. We are left with a labeled forest T ′, and
for every edge {i, n} in the original tree, mark i as a root in the new forest. Note that we
marked exactly one root in each connected component of T ′ (if not, then a path between
two roots combined with their edges connecting to n would be a cycle in T ). Hence T ′ is a
rooted labeled forest.

Conversely, given a rooted labeled forest T ′ on [n − 1], we add n as a vertex and add an
edge {i, n} for each i which was a root in T ′. This gives a labeled tree T . The two functions
are inverse to one another, so we have the desired bijection.

In particular, we have (the constant term of R(x) is 0t0 = 0):

R(x) =
∑
n≥1

ntn
xn

n!
=
∑
n≥1

nfn−1
xn

n!
= x

∑
n≥1

fn−1
xn−1

(n− 1)!
= xF (x). �

Combining these two identities gives the equation

R(x) = xeR(x).

We can try to solve this coefficient by coefficient: say that R(x) =
∑

n≥0 rnx
n and we are

trying to solve for the ri. The left hand side has no constant term, so we must have r0 = 0.
This tells us that R(x)n starts with the term xn. Expanding the equation, we get

R(x) = x(1 +R(x) +
R(x)2

2!
+ · · · ).

So if we want to solve for rn we just need to consider x(1 + R(x) + · · · + R(x)n−1

(n−1)! ) since all

other terms don’t have a xn term. In particular,

r1 = [x1]R(x) = [x1]x = 1,

r2 = [x2]R(x) = [x2]x(1 +R(x)) = 0 + r1 = 1,

r3 = [x3]R(x) = [x3]x(1 +R(x) +
R(x)2

2
) = 0 + r2 +

r0r2 + r21 + r2r0
2

=
3

2
,

...

We can continue like this, but it would be nice to have a closed formula without having
to guess one. This can be done with the Lagrange inversion formula which we discuss next.

7.5. Lagrange inversion formula.

Theorem 7.17 (Lagrange inversion formula). Let G(x) be a formal power series whose
constant term is nonzero. Then there is a unique formal power series A(x) such that

A(x) = xG(A(x)).
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Furthermore, A(x) has no constant term, and for n > 0, we have

[xn]A(x) =
1

n
[xn−1](G(x)n).

A proof of this is probably too complicated to explain in this course, so we will omit it.

Proof of Cayley’s formula, Theorem 7.13. We take A(x) = R(x) and G(x) = ex. For n > 0,
the Lagrange inversion formula tells us that

[xn]R(x) =
1

n
[xn−1]enx =

1

n
[xn−1]

∑
d≥0

nd

d!
xd =

1

n

nn−1

(n− 1)!
=
nn−1

n!
.

Remember that [xn]R(x) = ntn/n!, so we conclude that tn = nn−2. �

We’ll give a couple of other examples where this can be applied.

Example 7.18. Let’s return to the problem of computing Catalan numbers from §6.4.
Let C(x) =

∑
n≥0Cnx

n where Cn is the Catalan number. Recall that we proved that

C(x) = 1 +xC(x)2 and we solved this with the quadratic formula. Here’s another way using
the Lagrange inversion formula. First, this formula isn’t of the right form, but if we define
A(x) = C(x)− 1, then our relation becomes

A(x) + 1 = 1 + x(A(x) + 1)2.

(Remember that the A(x) that is solved for in Lagrange inversion has no constant term, so
it was necessary to do some kind of change like above.) Subtracting 1 from both sides, this
is of the right form where G(x) = (x+ 1)2. Hence, we see that for n > 0, we have

[xn]A(x) =
1

n
[xn−1](x+ 1)2n =

1

n

(
2n

n− 1

)
where we used the binomial theorem. Since [xn]A(x) = [xn]C(x) for n > 0, we conclude that
Cn = 1

n

(
2n
n−1

)
. This isn’t quite the formula we derived, but

1

n

(
2n

n− 1

)
=

1

n

(2n)!

(n− 1)!(n+ 1)!
=

1

n+ 1

(2n)!

n!n!
=

1

n+ 1

(
2n

n

)
. �

Example 7.19. Continuing with the Catalan example, recall that we discussed why Catalan
numbers count the number of rooted binary trees with n + 1 leaves. Equivalently, this is
the number of rooted binary trees with n internal vertices. More generally, we can consider
rooted k-ary trees with n internal vertices. We’ll leave k out of the notation for simplicity,
and let cn be the number of rooted k-ary trees with n internal vertices. To build one when
n > 0, we start with a single node for our root, and then attach k rooted k-ary trees below
it. This gives us the relation

cn =
∑

(i1,i2,...,ik)
i1+···+ik=n−1

ci1ci2 · · · cik for n > 0.

The sum is over all weak compositions of n− 1 with k parts. Here ij represents the number
of internal vertices that are in the jth tree connected to our original root. As before, if
C(x) =

∑
n≥0 cnx

n, this leads to the relation

C(x) = 1 + xC(x)k.
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Now we don’t have a general method of solving this polynomial equation for general k, but
we can use Lagrange inversion like in the previous example. Again, we set A(x) = C(x)− 1
to convert the relation into

A(x) = x(A(x) + 1)k.

So we take G(x) = (x+ 1)k and we conclude that

[xn]A(x) =
1

n
[xn−1](x+ 1)kn =

1

n

(
kn

n− 1

)
=

1

(k − 1)n+ 1

(
kn

n

)
. �

8. Sieving methods

8.1. Inclusion-exclusion.

Example 8.1. Suppose we have a room of students, and 14 of them play basketball, 10 of
them play football. How many students play at least one of these? We can’t answer the
question because there might be students who play both. But we can say that the total
number is 24 minus the amount in the overlap.

B F

Alternatively, let B be the set who play basketball and let F be the set who play football.
Then what we’ve said is:

|B ∪ F | = |B|+ |F | − |B ∩ F |.
New situation: there are additionally 8 students who play hockey. Let H be the set of

students who play hockey. What information do we need to know how many total students
there are?

B F

H

Here the overlap region is more complicated: it has 4 regions, which suggest that we need 4
more pieces of information. The following formula works:

|B ∪ F ∪H| = |B|+ |F |+ |H| − |B ∩ F | − |B ∩H| − |F ∩H|+ |B ∩ F ∩H|.
To see this, the total diagram has 7 regions and we need to make sure that students in each
region get counted exactly once in the right side expression. For example, consider students
who play basketball and football, but don’t play hockey. They get counted in B, F , B ∩ F
with signs +1, +1, −1, which sums up to 1. How about students who play all 3? They get
counted in all terms with 4 +1 signs and 3 −1 signs, again adding up to 1. You can check
the other 5 to make sure the count is right. �

The examples above have a generalization to n sets, though the diagram is harder to draw
beyond 3.
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Theorem 8.2 (Inclusion-Exclusion). Let A1, . . . , An be finite sets. Then

|A1 ∪ · · · ∪ An| =
n∑
j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aij |.

Proof. We just need to make sure that every element x ∈ A1 ∪ · · · ∪ An is counted exactly
once on the right hand side. Let S = {s1, . . . , sk} be all of the indices such that x ∈ Asr .
Then x belongs to Ai1 ∩· · ·∩Aij if and only if {i1, . . . , ij} ⊆ S. So the relevant contributions
for x is a sum over all of the nonempty subsets of S:∑

T⊆S

(−1)|T |−1 = −
|S|∑
n=1

(
|S|
n

)
(−1)n.

However, since |S| > 0, we have shown before that
∑|S|

n=0

(|S|
n

)
(−1)n = 0, so the sum above

is
(|S|

0

)
= 1. �

We can also prove this by induction on n. Can you see how?
We use this to address two counting problems.
First, we can think of a permutation of [n] as the same thing as a bijection f : [n] → [n]

(given the bijection, f(i) is the position in the permutation where i is supposed to appear).
A derangement of size n is a permutation such that for all i, i does not appear in position
i. Equivalently, it is a bijection f such that f(i) 6= i for all i.

Theorem 8.3. The number of derangements of size n is
n∑
i=0

(−1)i
n!

i!
.

Proof. It turns out to be easier to count the number of permutations which are not derange-
ments and then subtract that from the total number of permutations. For i = 1, . . . , n,
let Ai be the set of bijections f such that f(i) = i. Then the set of non-derangements is
A1 ∪ · · · ∪ An. To apply inclusion-exclusion, we need to count the size of Ai1 ∩ · · · ∩ Aij
for some choice of indices i1, . . . , ij. This is the set of bijections f : [n] → [n] such that
f(i1) = i1, . . . , f(ij) = ij. The remaining information to specify f are its values outside of
i1, . . . , ij, which we can interpret as a bijection of [n] \ {i1, . . . , ij} to itself. So there are
(n− j)! of them. So we get

|A1 ∪ · · · ∪ An| =
n∑
j=1

(−1)j−1
∑

1≤i1<···<ij≤n

|Ai1 ∩ · · · ∩ Aij |

=
n∑
j=1

(−1)j−1
∑

1≤i1<···<ij≤n

(n− j)!

=
n∑
j=1

(−1)j−1
(
n

j

)
(n− j)!

=
n∑
j=1

(−1)j−1
n!

j!
.
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Remember that we have to subtract this from n!. So the final answer simplifies as so:

n!−
n∑
j=1

(−1)j−1
n!

j!
=

n∑
j=0

(−1)j
n!

j!
. �

The problem with formulas coming from inclusion-exclusion is the alternating sign. It can
generally be hard to estimate the behavior of the quantity as n grows. For example, binomial
coefficients

(
n
i

)
(for fixed i) limit to infinity as n goes to infinity. However, the alternating

sum
n∑
i=0

(−1)i
(
n

i

)
is 0. For derangements, we can use the following observation. For any real number r, we
have an infinite sum formula for er:

er =
∞∑
i=0

ri

i!
.

Taking r = −1 and only take the terms up to i = n, then we get the number of derangements
divided by n!, i.e., the percentage of permutations that are derangements.

If we use calculus (for example, Lagrange’s version of the Taylor remainder formula2), we
can bound the difference: ∣∣∣∣∣

∞∑
i=n+1

(−1)i

i!

∣∣∣∣∣ ≤ 1

(n+ 1)!
.

In particular, we see that as n→∞, the proportion of permutations that are derangements
limits to e−1 ≈ .368, so roughly 36.8% of them are derangements when n is somewhat large.

Actually, this lets us derive a surprisingly compact formula for the number of derange-
ments. From what we just said, we have

n!

e
=

n∑
i=0

(−1)i
n!

i!
+

∞∑
i=n+1

(−1)i
n!

i!
.

The first term on the right is the number of derangements of n objects and the second term
is at most n!/(n + 1)! = 1/(n + 1) in absolute value. Hence the number of derangements is
in the interval [n!

e
− 1

n+1
, n!
e

+ 1
n+1

], so it is simply the closest integer to n!/e.

Proposition 8.4. The number of derangements of size n is round(n!/e) where round just
means round to the nearest integer.

We can also use inclusion-exclusion to get an alternating sum formula for Stirling numbers.

Theorem 8.5. For all n ≥ k > 0,

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n =

k∑
i=0

(−1)i
(k − i)n

i!(k − i)!
.

2It’s not crucial for this course, but let me remind you what (a special case of) it says: if f(x) is an
infinitely differentiable function whose Taylor series at 0 converges at r, then for each n, there exists ξ

between 0 and r such that f(r) −
∑n
i=0

f(i)(0)
i! ri = f(n+1)(ξ)

(n+1)! r
n+1. For our purposes, r = −1, and we know

that eξ ≤ 1 for all ξ ∈ [−1, 0].
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Proof. As we discussed before, k!S(n, k) is the number of ordered set partitions of [n] with
k blocks, and we interpreted that as the number of surjective functions f : [n] → [k] (the
blocks are just the preimages f−1(i)). So we will count this quantity. For i = 1, . . . , k, let
Ai be the set of functions f : [n] → [k] such that i is not in the image of f . The surjective
functions are the complement of A1 ∪ · · · ∪ Ak from the set of all functions (there are kn

total functions). To apply inclusion-exclusion, we need to count the size of Ai1 ∩ · · ·∩Aij for
1 ≤ i1 < · · · < ij ≤ k. This is the set of functions so that {i1, . . . , ij} are not in the image;
equivalently, this is identified with the set of functions f : [n] → [k] \ {i1, . . . , ij}, so there
are (k − j)n of them. So we can apply inclusion-exclusion to get

|A1 ∪ · · · ∪ Ak| =
k∑
j=1

(−1)j−1
∑

1≤i1<···<ij≤k

|Ai1 ∩ · · · ∩ Aij |

=
k∑
j=1

(−1)j−1
∑

1≤i1<···<ij≤k

(k − j)n

=
k∑
j=1

(−1)j−1
(
k

j

)
(k − j)n.

Remember we have to subtract:

k!S(n, k) = kn −
k∑
j=1

(−1)j−1
(
k

j

)
(k − j)n =

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.

Now divide both sides by k! to get the first equality of the theorem statement. The second
equality of the theorem statement comes from canceling the k! from the binomial coefficient.

�

It’s more difficult to get asymptotic statements here since we have 2 parameters. For
example, k!S(n, k)/kn is the percentage of functions [n] → [k] which are surjective. If k is
fixed and n→∞, this limit goes to 1 by the formula above, and this intuitively makes sense
(we are almost guaranteed to hit every one of the k elements if we randomly pick one n times
and n is very large). On the other hand, if n is fixed and k →∞ we get a limit of 0. So the
only meaningful thing to do is let both n and k go to ∞ in some fixed way (like set n = αk
for some constant α). There’s a lot of possibility here but I couldn’t find an easy special
case.

8.2. Möbius inversion. Let A be an alphabet of size k. We want to count the number of
words of length n in A up to cyclic symmetry. This means that two words are considered
the same if one is a cyclic shift of another. For example, for words of length 4, the following
4 words are all the same:

a1a2a3a4, a2a3a4a1, a3a4a1a2, a4a1a2a3.

We can think of these as necklaces: the elements of A might be different beads we can put
on the necklace, but we would consider two to be the same if we can rotate one to get the
other. Naively, we might say that the number of necklaces of length n is kn/n since we have
n rotations for each necklace. However, there is a problem: the n rotations might not all be
the same. For example there are only 2 different rotations of 0101.
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We have to separate necklaces into different groups based on their period: this is the
smallest d such that rotating d times gives the same thing. So for n = 4, we can have
necklaces of periods 1, 2, or 4, examples being 0000, 0101, 0001. There aren’t any of period
3: the period must divide the length (this isn’t entirely obvious but we will not try to prove
it).

Let ω(d) denote the number of words of period d (this notation should also incorporate k,
but we’ll assume k is fixed). Hence for necklaces of length 4, we get the following formula:

|ω(1)|+ |ω(2)|
2

+
|ω(4)|

4
.

For general n, we would have

|necklaces of length n| =
∑
d|n

ω(d)

d
.

So we want a formula for the number of words of a given period. We have another identity:

kn = |words of length n| =
∑
d|n

ω(d).

This gives a system of linear equations which we can solve.

Example 8.6. If we want the number of words of period 4, we start with

k4 = ω(1) + ω(2) + ω(4).

We want to subtract off ω(2), so use the next identity

k2 = ω(1) + ω(2)

and this tells us ω(4) = k4 − k2.
For words of period 6, we get

k6 = ω(1) + ω(2) + ω(3) + ω(6)

and then we can subtract off

k3 = ω(1) + ω(3)

which leaves us with

ω(6) + ω(2) = k6 − k3.
Now let’s subtract off k2 = ω(1) + ω(2) to get

ω(6)− ω(1) = k6 − k3 − k2.
Finally, we have ω(1) = k, so we conclude that

ω(6) = k6 − k3 − k2 + k. �

As we see, doing this calculation differed a lot for 4 and 6. It would be nice to have a
general formula for the coefficients that appear.

Definition 8.7. Define µ(1) = 1. Otherwise, for an integer n > 1, define the Möbius
function to be

µ(n) =

{
0 if n is divisible by the square of a prime number

(−1)k if n is a product of k distinct prime numbers
. �
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In other words, if any prime divides n more than once, then µ(n) = 0. Otherwise, we
count how many different prime numbers divide n; µ(n) = 1 if that number is even and
µ(n) = −1 if that number is odd.

Lemma 8.8. If n > 1, then
∑

d|n µ(d) = 0.

Proof. Let n = pa11 · · · parr be its prime factorization. The sum can be rewritten∑
d|n

µ(d) =
∑

0≤e1≤a1
0≤e2≤a2

...
0≤er≤ar

µ(pe11 · · · perr ) =
∑

0≤e1≤1
0≤e2≤1

...
0≤er≤1

µ(pe11 · · · perr ).

The second equality holds because if any ei ≥ 2 then pe11 · · · perr is divisible by the square
of a prime, namely p2i . The last sum is a sum over all products of subsets of the primes
{p1, . . . , pr}, so we get∑

S⊆{p1,...,pr

µ(
∏
p∈S

p) =
∑

S⊆{p1,...,pr}

(−1)|S| =
r∑

k=0

(−1)k
(
r

k

)
= 0.

(Since n > 1, there is at least one prime in the factorization, so r > 0.) �

Theorem 8.9. Let α and β be two complex-valued functions on the positive integers.

(1) If

α(d) =
∑
e|d

β(e)

for all positive integers d, then we also have

β(d) =
∑
e|d

µ(d/e)α(e).

for all positive integers d.
(2) Similarly, if

α(d) =
∏
e|d

β(e)

for all positive integers d and β(e) 6= 0 for all e, then

β(d) =
∏
e|d

α(e)µ(d/e)

for all positive integers d.

Proof. The second part is similar to the first, so we’ll just focus on that.
Start with the right hand side and use the equation α(e) =

∑
f |e β(f):

∑
e|d

µ(d/e)α(e) =
∑
e|d

µ(d/e)
∑
f |e

β(f)


=
∑
f |d

β(f)
∑

e divides d and
is divisible by f

µ(d/e)
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We have a function

ϕ : {e | e divides d and is divisible by f} → {r | r divides d/f}

defined by ϕ(e) = d/e, which is well-defined since (d/f)/(d/e) = e/f which an integer by
the properties of e. There is an inverse function ψ defined by ψ(r) = d/r, which is also well-
defined: (d/f)/r is an integer, and so d/f = f · (d/f)/r is divisible by f , and d/(d/r) = r
so it also divides d. Using this bijection, we can rewrite the last sum:

=
∑
f |d

β(f)
∑
g| d

f

µ(g)

 .

By Lemma 8.8, the inner sum is 0 if d/f > 1, so it simplifies to

= β(d)
∑
g|1

µ(g) = β(d),

which is the left hand side of the identity we’re trying to prove. �

Corollary 8.10. For any positive integer d, we have

ω(d) =
∑
e|d

µ(d/e)ke.

where the sum is over all positive integers e that divide d.

Proof. Take β = ω and α(d) = kd in the previous theorem. �

Example 8.11. Let’s apply this to the case n = 4. Then we have the following formulas:

ω(1) = µ(1/1)k = k

ω(1) = µ(2/1)k + µ(2/2)k2 = −k + k2

ω(1) = µ(4/1)k + µ(4/2)k2 + µ(4/4)k4 = 0− k2 + k4.

So the number of necklaces of length 4 is k + k2−k
2

+ k4−k2
4

= (k4 + k2 + 2k)/4. �

Example 8.12. We can more easily compute words of period 6:

ω(6) = µ(6/1)k + µ(6/2)k2 + µ(6/3)k3 + µ(6/6)k6 = k − k2 − k3 + k6. �

Remark 8.13. There was nothing special about the functions being complex-valued. In
fact, we can unify (1) and (2) of the previous theorem in the following way. Let G be any
abelian group with its operation written as addition. Then the proof of (1) works verbatim
in this scenario if α, β are functions from the positive integers to G. Then (2) is proven by
taking G to be the nonzero complex numbers with multiplication as the operation. �

Here’s another instance of the Möbius function. For the rest of the notes, let i denote one
of the square roots of −1.

Recall that e2πi = 1. This tells us that the n complex numbers {e2πik/n | k = 1, . . . , n} are
all of the solutions of the equation xn − 1 = 0. They are usually called the nth roots of
unity. If k and n have a common factor r, then e2πik/n is also a root of xn/r − 1; if k and n



NOTES FOR MATH 184 45

are relatively prime we call e2πik/n a primitive nth root of unity. The nth cyclotomic
polynomial can be defined as

Φn(x) =
∏
k

(x− e2πik/n)

where the product is over all k such that k and n are relatively prime. Then from our
discussion, we conclude that

xn − 1 =
∏
j|n

Φj(x).

Hence using the remark, (taking G to be rational functions under multiplication) if we define
α(d) = xd − 1 and β(d) = Φd(x), then we conclude that

Φn(x) =
∏
j|n

(xj − 1)µ(n/j).

Example 8.14. For n = 6 we have

Φ6(x) =
(x6 − 1)(x− 1)

(x2 − 1)(x3 − 1)
= x2 + x+ 1.

For n = 8 we have

Φ8(x) =
x8 − 1

x4 − 1
= x4 + 1. �
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