Math 184, Spring 2023
Homework 4
Due: Wednesday, May 10 by 11:59PM via Gradescope (late homework will not be accepted)
Explanations should be given for your solutions when appropriate. Use complete sentences.
(1) If a formula is used from class, state which one you are using.
(a) What is the coefficient of $x_{1}^{5} x_{3}^{2} x_{4}^{2}$ in $\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)^{9}$?
(b) What is the coefficient of x^{15} in $\frac{1}{(2-x)^{2}}$?
(c) Let α be a scalar. What is the coefficient of x^{12} in $\frac{2+2 x^{3}}{(1+\alpha x)^{5}}$?
(d) Let α be a scalar. What is the coefficient of x^{5} in $\frac{\sqrt{1-\alpha x}}{(1-x)^{4}}$?
(2) (a) Define a sequence by

$$
a_{0}=1, \quad a_{1}=3, \quad a_{n}=8 a_{n-1}-16 a_{n-2}+3^{n} \quad \text { for } n \geq 2 .
$$

Find a closed formula for a_{n}.
(b) Define a sequence by

$$
b_{0}=2, \quad b_{1}=1, \quad b_{n}=5 b_{n-1}-6 b_{n-2}+n \quad \text { for } n \geq 2
$$

Find a closed formula for b_{n}.
(3) Define a sequence by
$a_{0}=-1, \quad a_{1}=3, \quad a_{2}=1, \quad a_{n}=3 a_{n-2}+2 a_{n-3}+n^{2} \quad$ for $n \geq 3$.
Write $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ as a rational function ($=$ a polynomial divided by another polynomial) in x. You do not need to solve for a closed formula for a_{n}.
(4) Let $S(n, k)$ be the Stirling number of the second kind. For each $k \geq 1$, define the ordinary generating function

$$
\mathbf{S}_{k}(x)=\sum_{n \geq 0} S(n, k) x^{n}=S(0, k)+S(1, k) x+S(2, k) x^{2}+\cdots
$$

(a) For $k \geq 2$, translate the identity from lecture

$$
S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k) \quad(\text { for } n \geq k)
$$

into an identity involving $\mathbf{S}_{k}(x)$ and $\mathbf{S}_{k-1}(x)$.
(b) Use the identity you found in (a) and induction on k to show that for all $k \geq 1$:

$$
\mathbf{S}_{k}(x)=\frac{x^{k}}{(1-x)(1-2 x) \cdots(1-k x)}
$$

(5) You want to build a stack of blocks that is n feet high. You have 3 different kinds (unlimited of each): green blocks are 1 foot high, while red and blue blocks are 2 feet high. Blocks of the same color are considered indistinguishable. Let a_{n} be the number of ways to stack these blocks.

Find a linear recurrence relation and initial conditions satisfied by a_{n}. You don't need to solve for a closed formula.

