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Let C be a smooth curve of genus g over an algebraically closed field k of characteristic
0 and define its canonical ring via

ΓC =
⊕
d≥0

H0(C;ω⊗dC ).

This is a finitely generated module over A = Sym(H0(C;ωC)) ∼= k[x1, . . . , xg]. We are
concerned with the vanishing of the graded Betti numbers

βi,j(C) = dimk TorAi (ΓC ,k)j.

Green’s conjecture states that βi,i+2(C) = 0 for i < Cliff(C), the Clifford index of C. This
governs for how many steps the equations of C have only linear syzygies. Rather than define
the Clifford index, we just remark that for most curves (in a sense which can be made precise
using the moduli space of curves), the Clifford index of C is gon(C)− 2 where gon(C) (the
gonality of C) is the minimum degree of a non-constant map from C to the projective line.

Voisin [4, 5] showed that Green’s conjecture holds generically. That is, there is a
nonempty Zariski dense set in the moduli space of curves such that Green’s conjecture holds
for the curves in this set. The Clifford index of a curve is bounded from above by (g − 1)/2
and a finer version of the result shows that this set contains curves of every gonality. Various
strengthenings or refinements were introduced since then, but of interest to us is a recent
proof by Aprodu, Farkas, Papadima, Raicu, and Weyman [1] which reproves Voisin’s result
using ideas from representation theory. The method of proof is in some ways simpler and
extends the result to fields of characteristic p ≥ (g + 2)/2. (Of relevance is work of Schreyer
[3] which shows that Green’s conjecture does fail in small characteristic.)

The idea behind [1] is to consider rational cuspidal curves. These are smoothable, and
due to the upper semicontinuity of Betti numbers in flat families, it suffices to prove that
a version of Green’s conjecture holds for them. Rational cuspidal curves (in their canonical
embedding) with g cusps can be realized as hyperplane sections of the tangential surface Tg
of the degree g rational normal curve, and hence the rational cuspidal curve and Tg have the
same graded Betti numbers. There is a short exact sequence of graded modules

0→ k[Tg]→ k̃[Tg]→M(−1)→ 0
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where the first term is the homogeneous coordinate ring of Tg, the middle term is its normal-
ization, and M is the canonical module of the homogeneous coordinate ring of the degree
g rational normal curve (the (−1) denotes a grading shift). The Tor groups of M can be
computed explicitly using the Eagon–Northcott complex, and the Tor groups of the middle
term can be computing using the method of Kempf collapsing of vector bundles. Hence one
is left to analyze the corresponding long exact sequence on Tor, and the goal is to prove that
the following map is surjective for i ≥ (g − 1)/2:

TorAi (k̃[Tg],k)i+1 → TorAi (M,k)i.

Using careful analysis of the representation theory of SL2(k), the authors show that the
cokernel of this map is identified with the middle homology of the following complex

Symg−2−i(Di+1k2)⊗D2i(k2)→ Symg−1−i(Di+1k2)⊗Di+1(k2)→ Symg−i(Di+1k2)

where D denotes the divided power functor. The upshot is that by summing over all g, this
gives a Koszul module, in the following sense. Given a vector space V and a linear subspace
K ⊂ ∧2 V , the Koszul module W (V,K) is the middle homology of the modified Koszul
complex

Sym(V )⊗K → Sym(V )⊗ V (1)→ Sym(V )(2).

In the above setting, V = Di+1(k2) and K = D2i(k2). One of the main results of [1] is that
the following are equivalent:

� K⊥ ⊂ ∧2(V ∗) contains no nonzero rank 2 matrix,

� W (V,K) is finite-dimensional,

� W (V,K)d = 0 for all d ≥ dimV − 3.

This translates to the desired vanishing result for the rational cuspidal curve.
In [2] we follow a similar strategy using ribbons, a different degeneration of canonical

curves. These are non-reduced double structures on the projective line, which can be realized
as hyperplane sections of non-reduced double structures on rational normal scrolls known as
K3 carpets. For the scroll, we choose two parameters a and g and consider the join of the
degree a rational normal curve with the degree g − 1− a rational normal curve (we assume
that a ≤ g − 1 − a). The corresponding ribbon is a degeneration of a genus g curve with
Clifford index a and gonality a+ 2. In this case, we get an extension

0→ ωB → B′ → B → 0

where B is the homogeneous coordinate ring of the rational normal scroll, ωB is its canonical
module, and B′ is the homogeneous coordinate ring of the K3 carpet. As before, the Eagon–
Northcott complex can be used to explicitly compute the Tor groups of B and ωB, so one
needs to analyze the corresponding long exact sequence and show that the following map is
surjective for i < a:

TorAi+1(B,k)i+2 → TorAi (ωB,k)i+2.

2



Everything in sight is bi-graded, and so can be further refined. We omit this detail but it
is possible to identify the cokernel with bi-graded components of a bi-graded analogue of
a Koszul module, in the following sense. Let V1, V2 be vector spaces and let K be a linear
subspace of V1⊗V2 ⊂

∧2(V1⊕V2). Then the bi-graded Koszul module W (V,K) is the middle
homology of the modified Koszul complex (which is now bi-graded):

Sym(V1 ⊕ V2)⊗K →
Sym(V1 ⊕ V2)⊗ V1(0, 1)
Sym(V1 ⊕ V2)⊗ V2(1, 0)

→ Sym(V1 ⊕ V2)(1, 1)

We prove in [2] that the following are equivalent for bi-graded Koszul modules:

� K⊥ ⊂ V ∗1 ⊗ V ∗2 contains no nonzero rank ≤ 2 matrix,

� W (V,K)d,e = 0 for d, e� 0,

� W (V,K)d,e = 0 for d ≥ dimV2 − 2 and e ≥ dimV1 − 2.

Modulo the missing explanation above, this proves that an analogue of Green’s conjecture
holds for ribbons of Clifford index a and genus g. In fact, this result holds as long as the
characteristic of k is at least a, so that we get a bound for where the refined generic Green
conjecture holds in positive characteristic. Furthermore, this also improves the bound in [1]
since the Clifford index of a genus g curve is at most (g − 1)/2.
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