1. Chapter 3, Section 3.1, Question 006

Find the derivative of the given function.

\[y = x^{10} \]

\[y' = \]

2. Chapter 3, Section 3.1, Question 010

Find the derivative of the given function.

\[y = x^{2.1} \]

\[y' = \]

3. Chapter 3, Section 3.1, Question 011

Find the derivative of the given function.

\[y = x^{-\frac{11}{5}} \]

\[y' = \]

4. Chapter 3, Section 3.1, Question 014

Find the derivative of the given function.

\[y = 2x^2 + 5x + 3 \]

\[y' = \]
5. Chapter 3, Section 3.1, Question 018

Find the derivative of the given function.

\[f(z) = -\frac{1}{z^{6.8}} \]

\[f'(z) = \]

6. Chapter 3, Section 3.1, Question 022

Find the derivative of the given function.

\[h(\theta) = \frac{1}{\sqrt[5]{\theta}} \]

Include a multiplication sign between symbols. For example, \(a \times x \).

\[h'(\theta) = \]

7. Chapter 3, Section 3.1, Question 025
Find the derivative of the given function.

\[y = 8x^{\frac{3}{2}} - 3x^{\frac{1}{2}} \]

To enter \(\sqrt{a} \), type \texttt{sqrt(a)}.

\[y' = \]

8. Chapter 3, Section 3.1, Question 028

Find the derivative of the given function.

\[y = 9z^2 + \frac{1}{2z} \]

\[y' = \]

9. Chapter 3, Section 3.1, Question 030

Find the derivative of the given function.

\[h(w) = -5w^{-2} + 10\sqrt{w} \]

To enter \(\sqrt{a} \), type \texttt{sqrt(a)}.

\[h'(w) = \]

10. Chapter 3, Section 3.1, Question 035
Find the derivative of the given function.

\[y = t^{\frac{1}{2}} (16 + \sqrt{t}) \]

To enter \(\sqrt{a} \), type sqrt(a).
Use multiplication sign in all cases of multiplication.

\[\frac{dy}{dz} = \]

11. Chapter 3, Section 3.1, Question 036

Find the derivative of the given function.

\[h(t) = \frac{6}{t} + \frac{4}{t^2} \]

\[h'(t) = \]

12. Chapter 3, Section 3.1, Question 038

Find the derivative of the given function.

\[y = \frac{z^2 + 6}{z} \]

\[y'(x) = \]

13. Chapter 3, Section 3.1, Question 043
Find the derivative of the given function. Assume that \(a, b, \) and \(c \) are constants.

\[
j(x) = \frac{x^5}{a} + \frac{a}{b}x^4 - cx
\]

\[
j'(x) = \]

14. Chapter 3, Section 3.1, Question 068

If \(f(x) = (7x + 17)(6x - 12) \), find \(f'(x) \) and \(f''(x) \).

\[
f'(x) = \]

\[
f''(x) = \]

15. Chapter 3, Section 3.1, Question 069

Find the equation of the line tangent to the graph of \(f \) at \((1, 2)\), where \(f \) is given by \(f(x) = 6x^3 - 6x^2 + 2 \).

\[
y = \]

16. Chapter 3, Section 3.1, Question 114

If \(f(x) = 16x^3 + 24x^2 - 95x + 17 \), find the intervals on which \(f'(x) \geq 1 \).
a. \(x \geq 2 \) or \(x \leq 1 \)

b. \(x \geq 1 \) or \(x \leq -1 \)

c. \(x \geq 1 \) or \(x \leq -2 \)

d. \(x \geq 2 \) or \(x \leq -2 \)

e. \(x \geq 2 \) or \(x \leq -1 \)

Answer:

17. Chapter 3, Section 3.1, Additional Question 004

Find the equation of the tangent line to the curve

\[y = 2x^2 - 4x + 3 \] at the point \((0, 3)\).

\[y = \]