Definition of a vector space over \(\mathbb{R} \): A vector space (over \(\mathbb{R} \)) is a nonempty set \(V \) of objects called vectors. The vector space comes with two operations on its vectors:
- addition, denoted +
- scalar multiplication

The operations must satisfy the following ten axioms for every \(\vec{u}, \vec{v}, \vec{w} \in V \) and every \(c, k \in \mathbb{R} \):
1. There is a “zero vector”, denoted \(\vec{0} \), in \(V \) with \(\vec{0} + \vec{v} = \vec{v} \).
2. \(\vec{u} + \vec{v} \in V \)
 Language note: We say that “\(V \) is closed under addition” because when you add two vectors in \(V \), their sum does not escape from \(V \).
3. \(c\vec{v} \in V \)
 Language note: We say that “\(V \) is closed under scalar multiplication” because when you multiply a vector in \(V \) by a scalar, the result does not escape from \(V \).
4. \(\vec{u} + \vec{v} = \vec{v} + \vec{u} \)
5. \(\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w} \)
6. If \(\vec{v}_1 \in V \), then there is a \(\vec{v}_2 \in V \) with \(\vec{v}_1 + \vec{v}_2 = \vec{0} \).
7. \((c + k)\vec{v} = c\vec{v} + k\vec{v} \)
8. \((ck)\vec{v} = c(k\vec{v}) \)
9. \(c(\vec{v} + \vec{w}) = c\vec{v} + c\vec{w} \)
10. \(1\vec{v} = \vec{v} \)