Name: _______________________________ PID: ________________

TA: __________________ Sec. No: _____ Sec. Time: _____

Math 20B.
Midterm Exam 1
January 27, 2011

Turn off and put away your cell phone.
You are not allowed to use a calculator during this exam.
Read each question carefully, and answer each question completely.
Show all of your work; no credit will be given for unsupported answers.
Write your solutions clearly and legibly; no credit will be given for illegible solutions.
If any question is not clear, ask for clarification.

<table>
<thead>
<tr>
<th>#</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>
1. (9 points) Evaluate the given expression:

(a) \(\frac{d}{dx} \left(\int_{\frac{e}{2}}^{e} \left(\frac{2t}{1 + t^3} \right)^{1/4} dt \right) \)

(b) \(\int_{0}^{\pi/2} \sin^6 x \cos x \, dx \)
(c) \[\int \frac{dx}{x \ln(\sqrt{x})} \]
2. (6 points) A particle is moving along a straight line with velocity \(v(t) = 6t^2 + 6t - 12 \) feet per second.

(a) Find the average velocity of the particle (i.e. the average value of the function \(v \)) on the interval \([0, 2]\).

(b) Find the distance travelled by the particle on the interval \([0, 2]\).
3. (9 points) Let \mathcal{R} be the region enclosed by the curves $y = x^2 + 2$, $y = 0$, $x = 0$ and $x = 2$, as shown in the figure to the right.

(a) Write down (but do not evaluate) an expression involving definite integrals that equals the volume of the solid obtained by rotating \mathcal{R} about the x-axis.

(b) Write down (but do not evaluate) an expression involving definite integrals that equals the volume of the solid obtained by rotating \mathcal{R} about the y-axis.

(c) Write down (but do not evaluate) an expression involving definite integrals that equals the volume whose base is \mathcal{R} and whose cross-sections perpendicular to the x-axis are semi-circles.
4. (3 points) Write down (but do not evaluate) an expression involving definite integrals that equals the area of the region that lies inside the curve $r = 3 + 2 \sin \theta$ and outside the circle $r = 2$.

Polar region $2 < r < 3 + 2 \sin(\theta)$