Today: §5.1-5.2: Eigenvalues; Characteristic Polynomial

Next: §5.3: Diagonalization

Reminders:
MATLAB Homework #5: Due next Friday (March 10)
MyMathLab Homework #7: Due Monday, March 13
MATLAB QUIZ: March 14 (or 13)
Given an \(n \times n \) matrix \(A \), an eigenvector is a vector \(\mathbf{v} \in \mathbb{R}^n \) with the property that
\[
A \mathbf{v} = \lambda \mathbf{v} \quad (\therefore A(2\mathbf{v}) = 2A\mathbf{v} = 2\lambda \mathbf{v})
\]
for some scalar \(\lambda \in \mathbb{R} \), called the eigenvalue.

- The set of eigenvectors of \(A \) for a given eigenvalue \(\lambda \) is equal to \(\text{Nul}(A - \lambda I) \). So it is a subspace of \(\mathbb{R}^n \), called the eigenspace for \(\lambda \).

- Typically hard to find the eigenvalues of a matrix; once known, finding the eigenspace is routine.

- If \(A \) is triangular, its eigenvalues are the diagonal entries.
Theorem: Eigenvectors with different eigenvalues are linearly independent.

Pf. (Case: 2 eigenvalues \(\lambda, \mu \) (\(\lambda \neq \mu \))

\[A\mathbf{v} = \lambda \mathbf{v} \quad \text{and} \quad A\mathbf{w} = \mu \mathbf{w} \]

Suppose that \(\mathbf{v}, \mathbf{w} \) are linearly dependent.

They are parallel, so \(\mathbf{w} = c\mathbf{v} \) for some scalar \(c \).

Also \(\mu \mathbf{w} = A\mathbf{w} = A(c\mathbf{v}) = cA\mathbf{v} = c\lambda \mathbf{v} \)

\[0 = \mu \mathbf{w} - \mu \mathbf{w} = c\lambda \mathbf{v} - c\mu \mathbf{v} \]

Contradiction: \(c(\lambda - \mu)\mathbf{v} < 0 \neq 0 \)
Corollary

If A is an $n \times n$ matrix with n distinct eigenvalues, then there is a basis of \mathbb{R}^n consisting of eigenvectors of A. Let's write any vector in the \mathbb{R}^n basis:

$$v = x_1 A v_1 + x_2 A v_2 + \ldots + x_n A v_n$$

Consider the eigenvectors of A consisting of vectors v_1, v_2, \ldots, v_n such that $v_i = \lambda_i v_i$. The eigenvalues, then, are a basis of \mathbb{R}^n. If A is an $n \times n$ matrix with n distinct eigenvalues, then there is a basis of \mathbb{R}^n consisting of eigenvectors of A. Let's write any vector in the \mathbb{R}^n basis:

$$v = x_1 A v_1 + x_2 A v_2 + \ldots + x_n A v_n$$

Corollary: If A is an $n \times n$ matrix with n distinct
Definition: \(n \times n \) matrices \(A \) and \(B \) are called similar if there is an invertible \(n \times n \) matrix \(P \) with the property

\[
A = PBP^{-1} \quad (\therefore AP = PB \quad \therefore P^{-1}AP = B \quad \text{where} \quad Q = P^{-1})
\]

- We just saw that, if \(A \) has all distinct eigenvalues, then it is similar to a diagonal matrix. That's important; more on that next time.

- Similarity is not the same as row equivalent.

Eg. \(A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{row equivalent, but not similar.} \)

\[
(Pz \begin{bmatrix} a & b \\ c & d \end{bmatrix}; \quad \text{want} \quad AP = PB = P \quad \text{\therefore} \quad \begin{bmatrix} \quad \color{red}{a+c} & \color{red}{b+d} \\ \quad \color{red}{c} & \quad \color{red}{d} \end{bmatrix} = \begin{bmatrix} \quad \color{red}{a} & \quad \color{red}{b} \\ \quad \color{red}{c} & \quad \color{red}{d} \end{bmatrix} \quad \text{\therefore c = d = 0.} \quad \text{P = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \color{red}{\text{not invertible.}}}
\]
Theorem: If A and B are similar, then they have the same eigenvalues; and the eigenspaces for A have the same dimensions as the eigenspaces for B.

Pf. Let λ be an eigenvalue of A, and let E_λ be its eigenspace: $E_\lambda = \text{Null}(A-\lambda I)$.

Let $B = PAP^{-1}$.

$A\mathbf{v} = \lambda \mathbf{v}$

$P^{-1}BP\mathbf{v} = \lambda \mathbf{v}$

$BP\mathbf{v} = P(\lambda \mathbf{v}) = \lambda (P \mathbf{v})$.

So $P \mathbf{v}$ is an eigenvector of B with eigenvalue λ.
Consider the matrices A and B and their eigenvalues.

For A, its eigenvalues are 1 and 2.

For B, its eigenvalues are 1.

The eigenspace of A with eigenvalue 1 has dimension 1.

The eigenspace of A with eigenvalue 2 has dimension 1.

The eigenspace of B with eigenvalue 1 has dimension 1.

The nullspace of $A - I$ is the nullspace of $B - I$.

$\dim(\text{null}(A - I)) = \dim(\text{null}(B - I))$

$\dim(\text{null}(I - A)) = \dim(\text{null}(I - B))$

$\dim(\text{null}(I - B)) = 1$

$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
How can we actually find the eigenvalues?

\(\lambda \) is an eigenvalue of \(A \) iff
\[\text{Nul} (A - \lambda I) \neq \{0\} \]
iff \(A - \lambda I \) is not invertible
iff \(\det (A - \lambda I) = 0 \).

\[
A - \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix}
\]
\[
\det (A - \lambda I) = (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + ad - bc
\]

Definition: The characteristic polynomial of a square matrix \(A \) is
\[
P_A(\lambda) = \det (A - \lambda I)
\]

Theorem: If \(A \) is \(n \times n \), \(P_A \) is a degree \(n \) polynomial,
whose roots are the eigenvalues of \(A \).
Eg. \(A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}\)
\[p_A(\lambda) = \det \begin{bmatrix} 5-\lambda & 3 \\ 3 & 5-\lambda \end{bmatrix} = (5-\lambda)^2 - 9\]

Solve \(p_A(\lambda) = 0\)
\((5-\lambda)^2 - 9 = 0\)
\[(5-\lambda)^2 = 9\]
\[5-\lambda = \pm 3\] \(\Rightarrow\) \(\lambda = 2, 8\).

\[A - 2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}\]
Note: \(\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}\)
\(\Rightarrow\) \(A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}\)

Eg. \(A = \begin{bmatrix} 7 & -2 \\ 2 & 3 \end{bmatrix}\)
\(\text{NEXT TIME}\)
Eg. \[A = \begin{bmatrix} 5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{bmatrix} \]
Theorem: If A and B are similar, they have the same characteristic polynomial. Therefore, they have the same eigenvalues with the same (algebraic) multiplicities.

NEXT TIME