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Abstract. We consider the invariance principle without the classi-
cal condition of asymptotic negligibility of individual terms. More
precisely, letr.v.'s(&n;} and{nn;} be such that

E{&nj} = E{nnj} =0, E{&3;} =E{n3;} = 03, Zcﬁj =1,
]
and the r.v.’s{nn;} are normal. We set
k k k
Sin= z &nj, Ykn = z Nnj, tkn= z Opj-
=1 =1 =1

Let X, (t) andYy(t) be continuous piecewise linear (or polygonal) ran-
dom functions with vertices &tyn, Skn) and (tkn, Zkn), respectively,

and letP, andQp, be the respective distributions of the proces§gb)
andYy(t) in C[0, 1].

The goal of the present paper is to establish necessary and sufficient

conditions for convergence &, — Q, to zero measure not involving
the condition of the asymptotic negligibility of the r.v{£,;} and

{Nnj}.
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1 Introduction and results

1.1 Background and Motivation

The term “non-classical” concerns various limit theorems not involving the con-
dition of asymptotic negligibility of the individual random variables (r.v.'s). To
our knowledge, the convergence of the distributions of sums of r.v.s to the nor-
mal distribution in the general situation, that is, without the condition mentioned,
was first considered by P&vy [7] and M. Laéve [9, Chapter VIII, Section 28].

A developed theory with necessary and sufficient conditions was built by V.M.
Zolotarev and his followers, V.M. Kruglov and Yu.Yu. Machis; see, e.g., [18], [6],
[10], the monograph [19], the review part in [13], and references therein.

A somewhat different approach - see also comments below - that uses different
types of conditions, was suggested in [12] and [13]. In this paper, we proceed
mainly from the framework of [12] and [13].

In the case of normal convergence and finite variances, the simplest result from
[12] and [13] may be stated as follows.

Let {&jn} be an array of independent r.v.s such tEg€j,} = O, E{Ejzn} =
0%, < %, and for eachn,

zcjzn =1 (1.1.1)
J

Without loss of generality, we assume aj, # 0.

Let Fjn(x) be the distribution function (d.f.) dj,, and®j,(x) be the normal
d.f. with the same zero expectation and the same variance; th@&x) =
®(x/0jn), Whered(x) is the standard normal d.f. S&f= 3 ;&jn.

Proposition 1 ([12]) For

P(Sh < X) — d(x), for all x, asn — oo, (1.1.2)



it is necessary and sufficient that

3 / X - [Fin(X) — ®jn(x)|dx— 0, asn — o, foranye >0.  (1.1.3)

(This particular result is presented also in [17] and [14].) It is easy to show
(see, for example, [14, p.310]) that in the classical case whes¢aj, — 0, the
Lindeberg condition implies (1.1.3), so Lindeberg’s theorem follows from Propo-
sition 1. On the other hand, condition (1.1.3) takes into account possible proxim-
ity of the distributions of the r.v.'s to normal ones. In particulafjf = ®j, and
henceP(S, < x) = ®(x), then (1.1.3) becomes trivial.

Itis worthwhile to note also that Proposition 1 is equivalent to Zolotarev’s non-
classical theorem from [18] proved much earlier. In the framework of [18], the
summands were directly divided into two groups: those with “small” variances,
and the rest. For the r.v.s from the former group, Lindeberg’s condition was im-
posed, while the summands from the latter group were required to be close to the
corresponding normal r.v.'s indvy’s metric. Such a division into two groups re-
flects the essence of the matter: “small” summands should be in the framework of
the classical CLT, while “large” summands should be themselves close to normals.
On the other hand, condition (1.1.3) allows to treat the summands in a unified way.
Another difference between the theorem from [18] and Proposition 1 is that the
latter uses an integral metric.

In the sufficiency case, the result of Proposition 1 was generalized to the
case of semi-martingales in Liptser and Shiryaev’s paper [8]; see also Jacod and
Shiryaev’s book [4, VII, 5b; VIII, 4c].

To generalize the result above to the case of convergence to distributions dif-
ferent from normal, one may proceed as follows. Consider another array of inde-
pendent r.v.{nj,}. We assume that for eachthe numbers of terms fdys and
n's in the arrays{§jn} and{nj,} are the same and, just for simplicity, are finite.
LetE{njn} =0, E{n},} = o%,, and letGj, denote the distribution afj,. The
problem is to establish conditions under which

[]Fin—[]Gin=0asn— w, (1.1.4)

j j
where product of distributions is understood in the sense of convolution, and con-
vergence=-itself is weak convergence (with respect of all continuous bounded

functions). At least formally, this is a more general setup, since (1.1.4) does not
presuppose the existence of limits {q¢ Fj, and[]; Gj, separately. On the other
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hand, in the particular case whé&, = ®jy, (1.1.4) clearly coincides with (1.1.2)
in view of (1.1.1).
In the general situation (1.1.4), instead of (1.1.3), we consider the condition

Z / X| - [Fjn(X) — Gjn(X)|dx— 0, asn — oo, for anye > 0. (1.1.5)

e

In [5], it was shown that whe(®j, are Poisson, (1.1.5) remains to be a necessary
and sufficient condition for the fulfillment of (1.1.4), however attempts to obtain
a similar result in the general case failed. The situation became clear when in
[15] and [16] it was proved that in general, relation (1.1.5) is necessary for a more
stronger type of convergence. Namely, (1.1.5) proves to be true if and only if

Fin — Gjh = 0asn— o, (1.1.6)
J€Bn j€Bn
for any sequencéB,} of subsets of the indiceg See [15] and [16] for detail;
note also that in [16] the case of infinite variances is considered as well.

The fact that in the normal case, (1.1.4) and (1.1.6) occur to be equivalent is
connected with the fact that normal distributions are only possible components
of the decomposition of the normal law. The same concerns the Poisson case,
however in general, relations (1.1.4) and (1.1.6) are certainly not equivalent.

Next, note that (1.1.6) deals with all possible partial sums, so if we manage to
establish the validity of this relation, it is natural to continue and consider a more
sophisticated problem, namely, the asymptotic proximity of the distributions of
the partial-sum-processes based on the {&;s} and{njn}.

The main goal of this note is to point out the fact that condition (1.1.3) is
necessary and sufficienfor the validity of invariance principle in the case of
Gaussian limiting processes in the general, that is, non-classical setup. To our
knowledge, this fact has not been aired yet, though as we will see, in view of
already known results, the proof turns out to be not very difficult.

Note also that, as a matter of fact, we consider a slightly more general problem
of proximity of the distributions of the polygonal process generated by the above
r.v.’'s ¢jn and the polygonal process generated by the corresponding normal r.v.’s.
In the classical case, whemax; oj, — 0, such a result clearly corresponds to the
classical invariance principle of Donsker-Prokhorov ([2], [11]), however without
the condition mentioned we deal with a somewhat more complicated situation.

We hope to consider a more general case of non-normal limiting distributions
in the next publication.



1.2 Results

As was mentioned, we assume for simplicity that for eadhe numbers of terms
in each array{&jn} or {njn}, are finite. Suppose aff’s are normal, s&jn(x) =
Djn(x) = P(x/0jn). We again assume (1.1.1) to hold, and set

S = szn, Yn:Zrljnv
J J

k

k
Sn = Z‘Ejm Yin = anm
=1 =1
a 2
tkn = ZGJ” (1.2.1)
=1

Let Xy(t) andYy(t) be continuous piecewise linear (or polygonal) random func-
tions with vertices attkn, Sn) and (tkn, Ykn), respectively. Let?, and Q, be the
respective distributions of the proces3@ét) andY,(t) in C = CJ0, 1].

Theorem 2 Condition (1.1.3) is necessary and sufficient for
Pi— Q=0 (1.2.2)
(more precisely, to zero measure) weakly.

Below, we show that the sequencg®,} and{Q,} are relatively compact,
and hence in our case the above convergence is equivalent to that igue L
Prokhorov’s metriat, that is,(?,, Q,) — O. In general, when compactness does
not take place, and so to speak, “parts of the distributions move to infinity”, as-
ymptotic proximity of distributions even in the one-dimensional case may be de-
fined in different ways, so the very notion of proximity requires further analysis.
We consider this question separately in [1].

We supplement Theorem 2 by the following simple proposition. Let for each
n, the functiona?(t) = E{X2(t)}. Clearly,on(t) is continuous oro, 1],

k
2 2
0-n(tkn) = Z Ojn>
=
and in each segmeftt,_1)n,tn), the functiono?(t) is a quadratic function.

5



Proposition 3 The proces¥j(t) converges in distribution to a Gaussian process
Y(t) on[0,1] such thate{Y(t)} = 0 andE{Y?(t)} = ¢?(t) if and only if for each
t €[0,1],

on(t) — o(t).

If max oj, — 0, thenc?(t) =t, andY(t) is the standard Wiener process.
In general, the segmen®, 1] may be divided into two set#, and B, with the
following properties.

The setA is a union of a finite or countable number of segments, and on each
such a segment the procesg) is linear.

The seB = [0, 1\ A, and if a segmerig, b|] C B, then the procesg(a+s) —
Y (a) is the standard Wiener process € [0,b—a].

2 Proofs

The main issue is to prove the relative compactness of the measure seguByjces
and{Qu} (with respect to weak convergence of distribution€in For brevity,
we omit sometimes the adjective “relative”.

2.1 Compactness in the normal case

For the proof below, we need to consider a modification of the proGgss For
eachn=1,2,..., consider a partition of0,1) into some intervalgs j_1)n, Sjn)
wherej =1,...,my < o0, and0 = Sy, < Sip < .... The number of intervals may be
infinite, pointssj, may differ from the points;, above.

Let Wh(t) be a continuous piecewise linear process suchWhéd) = 0, on
each interva[s<j_1)n,sjn) the trajectory of the process is linear, and each incre-
mentWh(Sjn) —Wn(s(j_l)n) is either equal to zero, or to a normal r.g;, with
zero mean and a variance §f — Sj_1)n. We prove the relative compactness of
the family of the distributions ofAq(t).

In accordance with a well known criterion (see, e.g., [3]), it suffices to prove
that

(A) supg,P{\Wh(0)| > A} — 0asA — oo;
(B) there exist constantsb,c > 0 such that for any andt,s € [0, 1],

E{Mh(t) —Wh(s)[*} < clt —s**P.



In our case, (A) is obvious. We verify (B) with=4, b= 1.

Setvs, = E{(Wh(sjn) —Wh(S(j_1)n))?}. By the definition of\, eitherv, =0,
O V&, = Sjn — §j_1)n-

If both pointst,s € [Sk_1)n, Sn| for somek > 1, andvjzn ~0, then

4
E{[Wh(t) —Wh(9)|*) = E { (’t‘s‘zkn) } <5 <an-s @1y
ki

2
an n

since in this cas@ —s| < v2.. On the other hand, ifi, = 0, thenWh (t) —Wh(s) =
0, and (2.1.1) is clearly true.

If t = sy ands = syp for somek andm > k, then the r.v.W,(t) —Wi(s) is
normal with a variance that does not excegd— skn. Then

E{|Wh(t) —Wh(s)|*} < 3(smn—sn)® = 3t — 5.

In general, ift € [Sk_1)n, n] @NAS € [Sm_1)n, Smn| fOr somek andm > k, then
in view of the above bounds,

E{|[Wh(t) —Wn(5)|4} <E { (|Wn(t) —Wh(Skn)| + [Wh(skn) —Wn(s(m—l)n)|
+Wh(Sm-1n) ~Wh(9)])*}

< 27{E {|Wh(t) ~ Wa(sin)[*} + E { Mh(S) ~ Wa(Sim 10|}
+E {Wh(Stm-10) —Wh(9)[*} } < 243t — 5. m

2.2 Compactness of P}

First, note that in [8, Lemma 2], relative compactness in the non-classical situation
was established in the general case of |laoaltingaleswith respect to weak
convergence if). However, it is not exactly what we need since we consider
convergence it.

Certainly, once we consider continuous processes, and if limiting processes
are also continuous (which is true in our case), compactneBsimplies con-
vergence inC. However, when considering piecewise linear processelike
we loose the martingale property even when the rdy’sare independent. On
the other hand, if we switch to piecewise constant processes, we have to consider
convergence i, which is not enough for us.

We believe that this is a technical obstacle and it may be somehow fixed, but
in any case, in our opinion, a self contained (and relatively short) proof for the
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situation of independent summands would have an intrinsic value. So, we provide
this proof.
Thus, we establish relative compactnes$®f} in C under condition (1.1.3).
Setkjn = [t(j_1)n, tjn], Wwhere the pointt, are defined as in (1.2.1). Fdr> 0,
we define the proces§(t;d) as aresult of replacement of the r.é&jg by the r.v.’s
jn = Ejnl{ojzn > &} in the definition ofXy(t). (As usual 1{A} is the indicator of
a conditionA.)
First, we show that for a fixed > 0 the family of the distributions aX,(t; )

is compact. Indeed, denote kg, = (m i nﬂén] the segmentkj, where the

processXy(t;3) is not constant. We assume tHe,, is on the left ofk?mﬂ)

Sinced > 0, the number of the segmerffsm is finite. Denote this number by
q(n, 8). Clearly,q(n,d) < q=[1/d] where[a] stands for the integer part af It is
convenient to think that always = 1, ..., q, settingk®,, = [1, 1] form>q(n,d).

Clearly, there exists a subsequenice {f;} and segmentls?n = [r?m_l),rﬁn],
m=1,....q, such that N N

kes — khas i— o,

(that is, the corresponding endpoints of the segments converge).

On the other hand, for ea&,, the distribution of the incremed,(rg,,; &) —

Xn(r?m 1 d) is equal to a distributioftj, for somej. Then from the main condi-

tion (1.1.3) it follows that the distribution of (r2 i 8) — Xn(r® m- 1)’ ; ©) weakly
converges to the normal distribution with zero mean and the variance equal to the
length ofkg,. (We skip a formal proof of this fact. Because (1.1.3) is true for any
€ > 0, we have convergence in the corresponding integral metric on any segments
[€,00) and (—o, —¢]. This implies weak convergence. Since the limiting distrib-
ution is continuous, we have as a matter of fact uniform convergence, but we do
not need it.)

Since the distribution of the proceX8(-) is uniquely specified by the finite di-
mensional distribution of the increments on the segmleﬁusrve finally conclude
that the distribution oXﬁi( 0) weakly converges to the distribution of a contin-
uous piecewise linear Gaussian procéis; &) having points of growth only in
the segmentk?, and such that the incremeM&(r%; 5) —W(rd ) 6) are normal

(m-1
with zero mean and variancg, —r (m )
Now, we proceed to a direct proof of compactness. Consider a sequence of
positive numbers, — 0. As was shown, there exists a subsequente= {ni(l)}



such that 4
X @)(+;01) =W(-;81) asi — oo,
where2 stands for weak convergence of the corresponding distributions, and
W®1(.) is a Gaussian process of the ty@(-) described above.

Similarly, we can choose a subsequenée of the sequence? such that
Xn_(z)(-; 02) :d>W(, 02) asi — oo,
wherew?®(.) is a Gaussian process with the same properties as above. Continuing
to reason in the same fashion, we come to a nested sequence of subsequences
n® >n@ > ... suchthatforalk=12,...,

Xn(k>(-:5k):d>W(-;6k) asi — .

Next, consider the sequence of the Gaussian proc€gses 61), W(-; &), ... }.
By the result of Section 2.1, there exists a subsequenaeich that

W(-; 8m) S W(),
whereW(+) is a Gaussian process.

Now, we censor the sequenag® D n® D ..., choosing onlyn(™) D p(M) >
... . By construction, we can choose a sequamcey, ... such that

nen™ nen™ . nen™,

and
Xni (5 Omy) :d>W(-) asi — oco.

At the last step of the proof, we sBj(t; &) = X (t) — Xx(t; 8), and consider the
sequence of the processést) = Z, (t; dm ). Each procesd;(t) is a continuous
process that is linear on each segmignt and such that the variance of the incre-
ment of the process on eakly, does not exceedy. Sincedn — 0 asi — o,
all increments are asymptotically negligible. Formally, the proce8d9g$)} are
not exactly of the type appearing in the classical invariance principle since for
a finite number of segmenks (with appropriate indices), the increments equals
zero rather than having a variance equal the length dfievertheless, the proof
of compactness may run exactly as, e.g., in the classical proof from Prokhorov’s
paper [11, Section 3.1].

Thus, the sequence of the distributionsJgf- ) is compact, and so does the se-
quence of the distributions o, (-; dn ). It remains to observe that the processes
Ui(-) andXq (-; 0y ) are independent.
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2.3 Proof of Theorem 2
2.3.1 Necessity

Let
Bo— Q=0 (2.3.1)

weakly inC[0,1]. As was shown in Section 2.1, the sequefi@g} is compact.
Then{®,} is compact either.

Now, sincey ; ojzn = 1, the marginal distribution function fof, i.e., P(Yy <
X) = ®(x). Hence, in view of (2.3.1),

P(Sh < X) — D(X).

By virtue of Proposition 1, this implies the validity of (1.1.3).

2.3.2 Sufficiency

Assume that condition (1.1.3) holds. Then, as was proved above, both sequences,
{®} and{Q,}, are compact. Hence, it suffices to establish the convergence of
the differences of all finite-dimensional marginal distributions.

Lett; <ty < ... <tx be pointsin[0,1]. SetXp(ty,...,tx) = (Xn(t1),..., Xn(tk))
andYn(ty,...,tx) = (Ya(t1),...,Ya(tx)) and denote byPy(ts,...,tx) andQn(ty, ..., tk)
the distributions of the random vectofg(ty, ..., t) and¥p(ty, ..., tk), respectively.
Both sequencegPn(ty, ...,tx) andQn(ty, ..., tk), are compact.

We should prove that

Pn(t]_,,tk)—Qn(tl,,tk) =0. (232)

Let the half interval (j,n) = [t;j_1)n,tjn), and the relationg € r(min,n), i =
1.,,,.k, define the integemy,. Then fori =1,....k,

t|—t n
Xn(tl) = S(mnfl)n‘k—mzmnn, (233)

ti—t
Yolt) = Zimg-mnt =g Nman- (2:3.4)
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For eacn, consider the random vectors

myp—1 mpn—1
< Z Ejl’h Em1n7 Z Ejn; Emgnl(mZ > ml)a
=1

j=min+1
mn—1
ceny Z Ejl"l? Ewnl(”k > m(—l) ) (235)
J=mg-1)nt+1
and
mpn—1 Mpn—1
( Z Nijns Nmygns z Nin, Nmpn L(M2 > my), ...
=1 j=mn+1
mn—1
o> Njny Nmn2(Me> mica) (2.3.6)
j=Mg_1n+1

where, by conventiory2 = 0 for a > b.

Vectors (2.3.5) and (2.3.6) are those with independent coordinates and are
of the fixed dimensiorzk. Denote thejth coordinates of these vectors By,
andYjn, respectively, and s&¥p = (W1n, ..., %2kn), Yn = (Y1n,..., Yok n). Let the
symbol?x denote the distribution of a r.v. or a random vecxor

First, note that the families of the distributiof® y_} and{?y. } are compact.
Second, by results of [15]-[16] mentioned in the Introduction, condition (1.1.3)
implies that

an - q)Jn = 0
j€Bn j€Bn
weakly for any sequenciB,,} of sets of indices. In particular, this means that
quJjn — Tan =0

weakly for eachj. Since the coordinates of the vect#g andY;, are independent,
this implies that

Py, —Py,=0.
On the other hand, in view of (2.3.3) and (2.3.4), eachXx{t;) is a linear com-
bination of the r.v.’s¥,, and each r.W(t;) is the linear combination of the r.v.'s
Yin with the same coefficientss for X,(tj). Together with the compactness of
Py, and?Py,, this leads to (2.3.2)

Since the sequence of the distributigng, } is compact, the proof of Proposi-
tion 3 is straightforward, and we skip it.
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